- Doriconference call

Schematie
pull-mp revistor to +11 a +16 ?
DB 15 daen mat go. A Cartidye Poors 5
add Pouves * giound itschmatus

Magnanrox part for convial annig for neuthithon.
peln pish-on waither
antunar cobl -46/218-6
antinna cmitil
pound feet

Zmnuahed!
2ntreomestion hetureas Ps x Dtagee hoadd Thanformer cuncth is toad comiitina castindeo comector
contriles coble x comestor
Fish paper

VIDEO GAME SPECIFICATIONS FOR GENERAL INSTRUMENTS ${ }^{1 / 9}$

Dr. David P. Chandler

1. GENERAL

The objective of the systems engineering task is to develop a programmable video game which is attractive, versatile, offers sophisticated game play and captivating visual and sound effects, and meets F.C.C. and UL requirements -- all at the minimum cost consistent with these objectives.
2. GENERAL INSTRUMENTS RESPONSIBILITIES

The portions of this engineering task for which General Instruments is responsible are:
A. Circuit development and design, except for the controllers, which are Mattel responsibility. The circuit design is to be separated into three printed circuit boards:
(1) Logic board
(2) Power supply board
(3) Cartridge board
B. Development of test procedures and equipment to perform:
(1) 100% testing of parts delivered by General Instrments to Magnavox.
(2) Sampled receiving inspection at Magnavox of General Instrument integrated circuits tested as sets.
-(3)-100\%-go-no-go restirg of each assembled pr inted circuit board. (4) Fault isolation testing of failed printed circuit boards $3^{(5)} 100 \%$ go-no-go testing of assembled systems for use as final inspection at Magnavox and as sampled receiving inspection by Mattel.
C. Management of preparation for and obtaining F.C.C. approval.

3. FUNCTIONAL CHARACTERISTICS

The electrical functional characteristics are most accurately defined
by identifying the major circuit elements to be designed into this system，which are：

A． 11610 CPU
B． 1 STIC II TV Interface Chip（per spec dated
C． 120 K ROM（40pin）Graphics ROM（GROM）＇
D． 512×8 RAM Graphics RAM（GRAM）
E． 1 RA－3－9600 Background RAM，Bus Buffer，and 112×16 Scratchpad RAM
F． 128 X 8 RAM Additional Scratchpad RAM
G． 1 20K ROM（40Pin）Resident Program ROM
H． 1 Sound－I／O IC
I．Place for 1 additional 20 K （ 28 Pin ）Resident ROM
J． 1 ASTEC 1284 Modulator，with channel $3-4$ select and both color and sound modulated．
K． 1 or 220 K ROM（ 28 Pin ）Cartridge Program ROM per Cartridge
L．All the necessary circuitry（including power supply）to make these work properly

4．PHYSICAL CHARACTERISTICS

The physical constraints imposed on the various printed circuit boards are defined by Mattel＇s drawings：Layout（2609），Layout P．C．B．（2609）．

5．LOGIC BOARD
All the parts listed in section 3 above except the cartridge ROM（s） are mounted on the logic board．It is a two－sided board with plated through holes，which is mounted with components－side down．The functional interfaces with this board are：

A．Cartridge（I／O）－ 22 Pin（ 0.100 Centers，single sided，part number to be determined）edge connector into which cartridge P．C．board plugs．Note that cartridge housing completely surrounds this connector and the tongue of the logic board as far back as the
 depth of the connector h gusing．Signals on this connector are DBO－DBX年，年control lines，ground， and $2+5$ volt lines．（The cartridge connects +5 volt power back to the logic board．）

B．Controllers－Two 9 Pin connectors（Magnavox part 菲 181254）．See （Input）layout P．C．B．drawing for desired location．On each connector，pin 1 is ground，pins $2-9$ are 8 bit input character going to sound－I／O IC．Pin 2 is least significant bit．Controllers are 8 switches to the ground line with a maximum of 100 ohms series resistance per switch．

C．Power（Input）－ 5 pin connector（Magnavox part 非181300）．See
layout P．C．B．drawing for desired location．Pin designation left up to General Instruments．

D．Antennaf Cable－Phono socket on modulator．RF signal suitable （Output）

E．Channel Select－Slide switch（Magnavox part 非160556－2）． （Input）

F．Reset Switch－Momentary，normally open contacts（Magnavox part （Input）非160599－1 and 160599－2）．These parts must be attached to circuitry side of P．C．board and may require special holes．Coordinate with Cliff Perry．

Note that（1）logic board should be designed for two resident ROMS（only the 40 pin one is presently planned to be used，（2）all 28 and 40 pin IC＇s should have single sided pin holes with no copper on the component side and no plating through the holes so that components can be removed without destroying the P．C．board，（3）if logic board length approaches the max－ imum length，the controller connectors will have to be recessed to provide clearance from the power supply board and the transformer．

6．POWER SUPPLY BOARD
The power supply board is a single sided P．C．board which is mounted with the components side up．The space allocated for the power supply board is shown on the layout drawing．The length of the power supply board can be extended if the logic board is not made the maximum length． Note that enough space must be left between the two boards．

The power supply board is used as a junction between the transformer and the on－off switch．Thus，all the transformer secondary leads are connected to the power supply board using a 5 pin connector（Magnavox part 非10000）． The output power from the power supply board to the logic board is trans－ mitted by a 5 wire cable with leads soldered into the power supply board． The thies limes，he cuntctid go and comefromion．dry 181013－5 7．CARTRIDGE PRINTED CIRCUIT BOARD

The printed circuit board in the cartridge is a single sided board with edge fingers to mate with the connector on the logic board and is designed to mount 1 or 228 pin ROMS．The physical constraints for the board are indicated on drawing The circuit connections are those described in 5A．An example of the circuit connections using the standard ROM pinout is shown in attachedosketuh．

VIDEO GAME SPECIFTCATIONS FOR GENERAL INSTRUMENTS

Dr. David P. Chandler

1. GENERAL

The objective of the systems engineering task is to develop a programmable video game which is attractive, versatile, offers sophisticated game play and captivating visual and sound effects, and meets F.C.C. and UL requirements -- all at the minimum cost consistent with these objectives.
2. GENERAL INSTRUMENTS RESPONSIBILITIES

The portions of this engineering task for which General Instruments is responsible are:
A. Circuit development and design, except for the controllers, which are Mattel responsibility. The circuit design is to be separated into three printed circuit boards:
(1) Logic board
(2) Power supply board
(3) Cartridge board
B. Development of test procedures and equipment to perform:
(1) $\mathbf{1 0 0 \%}$ testing of parts delivered by General Instruments to Magnavox.
(2) Sampled receiving inspection at Magnavox of General Instrument integrated circuits tested as sets.
(3) 100% go-no-go testing of each assembled printed circuit board.
(4) Fault isolation testing of failed printed circuit boards.
(5) 100% go-no-go testing of assembled systems for use as final inspection at Magnavox and as sampled receiving inspection by Mattel.
C. Management of preparation for and obtaining F.C.C. approval.

3. FUNCTIONAL CHARACTERISTICS

The electrical functional characteristics are most accurately defined

Video Game Specitications for G．I．
March 6， 1978
Page 2
by identifying the major circuit elements to be designed into this system，which are：

A． 11610 CPU
B． 1 STIC II TV Interface Chip（per spec dated
C． 120 K ROM（40pin）Graphics ROM（GROM）
D． 512×8 RAM Graphics RAM（GRAM）
E． 1 RA－3－9600 Background RAM，Bus Buffer，and 112×16 Scratchpad RAM
F． 128 X 8 RAM Additional Scratchpad RAM
G． 120 K ROM（40Pin）Resident Program ROM
H． 1 Sound－I／O IC
I．Place for 1 additional 20 K （ 28 Pin ）Resident ROM
J． 1 ASTEC 1284 Modulator，with channel $3-4$ select and both color and sound modulated．
K． 1 or 220 K ROM（ 28 Pin）Cartridge Program ROM per Cartridge
L．All the necessary circuitry（including power supply）to make these work properly

4．PHYSICAL CHARACTERISTICS

The physical constraints imposed on the various printed circuit boards are defined by Mattel＇s drawings：Layout（2609），Layout P．C．B．（2609）．

5．LOGIC BOARD
All the parts listed in section 3 above except the cartridge ROM（s） are mounted on the logic board．It is a two－sided board with plated through holes，which is mounted with components－side down．The functional interfaces with this board are：

A．Cartridge（I／O）－ 22 Pin（ 0.100 Centers，single sided，part number to be determined）edge connector into which cartridge P．C．board plugs．Note that cartridge housing completely surrounds this connector and the tongue of the logic board as far back as the
 depth of the connecto ryousing．Signals on this connector are DBO－DB14，（公 Tontrol lines，ground， and $2+5$ volt lines．（The cartridge connects +5 volt power back to the logic board．）

B．Controllers－Two 9 Pin connectors（Magnavox part 非 181254）．See （Input）layout P．C．B．drawing for desired location．On each connector，pin 1 is ground，pins $2-9$ are 8 bit input character going to sound－I／O IC．Pin 2 is least significant bit．Controllers are 8 switches to the ground line with a maximum of 100 ohms series resistance per switch．

C．Power（Input）－ 5 pin connector（Magnavox part $⿰ ⿰ 三 丨 ⿰ 丨 三 一 181300$ ）．See $181031-5$

layout P．C．B．drawing for desired location．Pin designation left up to General Instruments．

D．Antennae Cable－Phono socket on modulator．RF signal suitable （Output） for driving all properly operating T．V．＇s through antennae cable and switch（Magnavox part 非461218 and ）．

E．Channel Select－Slide switch（Magnavox part 非160556－2）． （Input）

F．Reset Switch－Momentary，normally open contacts（Magnavox part （Input）非160599－1 and 160599－2）．These parts must be attached to circuitry side of P．C．board and may require special holes．Coordinate with Cliff Perny．

Note that（1）logic board should be designed for two resident ROMS（only the 40 pin one is presently planned to be used，（2）all 28 and 40 pin IC＇s should have single sided pin holes with no copper on the component side and no plating through the holes so that components can be removed without destroying the P．C．board，（3）if logic board length approaches the max－ imum length，the controller connectors will have to be recessed to provide clearance from the power supply board and the transformer．

6．POWER SUPPLY BOARD
The power supply board is a single sided P．C．board which is mounted with the components side up．The space allocated for the power supply board is shown on the layout drawing．The length of the power supply board can be extended if the logic board is not made the maximum length． Note that enough space must be left between the two boards．

The power supply board is used as a junction between the transfomer and the on－off switch．Thus，all the transformer secondary leads are connected
 The output power from the power supply board to the logic board is trans－ mitted by a 5 wire cable with leads soldered into the power supply board．

7．CARTRIDGE PRINTED CIRCUIT BOARD
The printed circuit board in the cartridge is a single sided board with edge fingers to mate with the connector on the logic board and is designed to mount 1 or 228 pin ROMS．The physical constraints for the board are indicated on the drawing．The circuit connections are those described in 5A．An example of the circuit connections using the standard ROM pinout is shown in attached．

VIDEO GAME SPECIFICATIONS FOR GENERAL INSTRUMENTS

Dr. David P. Chandler

1. GENERAL

The objective of the systems engineering task is to develop a programmable video game which is attractive, versatile, offers sophisticated game play and captivating visual and sound effects, and meets F.C.C. and UL requirements -- all at the minimum cost consistent with these objectives.
2. GENERAL INSTRUMENTS RESPONSIBILITIES

The portions of this engineering task for which General Instruments is responsible are:
A. Circuit development and design, except for the controllers, which are Mattel responsibility. The circuit design is to be separated into three printed circuit boards:
(1) Logic board
(2) Power supply board
(3) Cartridge board
B. Development of test procedures and equipment to perform:
(1) 100% testing of parts delivered by General Instruments to Magnavox.
(2) Sampled receiving inspection at Magnavox of General Instrument integrated circuits tested as sets.
(3) 100% go-no-go testing of each assembled printed circuit board.
(4) Fault isolation testing of failed printed circuit boards.
(5) 100% go-no-go testing of assembled systems for use as final inspection at Magnavox and as sampled receiving inspection by Mattel.
C. Management of preparation for and obtaining F.C.C. approval.
3. FUNCTIONAL CHARACTERISTICS

The electrical functional characteristics are most accurately defined

Viqeo Game Specifications for G.I.
March 6, 1978
Page 2
by identifying the major circuit elements to be designed into this system, which are:
A. 11610 CPU
B. 1 STIC II TV Interface Chip (per spec dated
C. 1 20K ROM (40pin) Graphics ROM (GROM)
D. 512 X 8 RAM Graphics RAM (GRAM)
E. 1 RA-3-9600 Background RAM, Bus Buffer, and 112×16 Scratchpad RAM
F. 128 X 8 RAM Additional Scratchpad RAM
G. 120 K ROM (40Pin) Resident Program ROM
H. 1 Sound - I/O IC
I. Place for 1 additional 20 K (28 Pin) Resident ROM
J. 1 ASTEC 1284 Modulator, with channel $3-4$ select and both color and sound modulated.
K. 1 or 220 K ROM (28 Pin) Cartridge Program ROM per Cartridge
L. All the necessary circuitry (including power supply) to make these work properly

4. PHYSICAL CHARACTERISTICS

The physical constraints imposed on the various printed circuit boards are defined by Mattel's drawings: Layout (2609), Layout P.C.B. (2609).

5. LOGIC BOARD

All the parts listed in section 3 above except the cartridge ROM(s) are mounted on the logic board. It is a two-sided board with plated through holes, which is mounted with components-side down. The functional interfaces with this board are:
A. Cartridge (I/0) - 22 Pin (0.100 Centers, single sided, part number to be determined) edge connector into which cartridge P.C. board plugs. Note that cartridge housing completely surrounds this connector and the tongue of the logic board as far back as the depth of the connector housing. Signals on this connector are DBO-DB14, 4 control lines, ground, and $2+5$ volt lines. (The cartridge connects +5 volt power back to the logic board.)
B. Controllers - Two 9 Pin connectors (Magnavox part 非 181254). See
(Input) layout P.C.B. drawing for desired location. On each connector, pin 1 is ground, pins $2-9$ are 8 bit input character going to sound-I/O IC. Pin 2 is least significant bit. Controllers are 8 switches to the ground line with a maximum of 100 ohms series resistance per switch.
C. Power (Input) - 5 pin connector (Magnavox part 非181300). See
layout P．C．B．drawing for desired location．Pin designation left up to General Instruments．

D．Antennae Cable	Phono socket on modulator．RF signal suitable
（Output）	for driving all properly operating T．V．＇s through
antennae cable and switch（Magnavox part 非461218	
	and

E．Channel Select－S1ide switch（Magnavox part 非160556－2）． （Input）

F．Reset Switch－Momentary，normally open contacts（Magnavox part （Input）非160599－1 and 160599－2）．These parts must be attached to circuitry side of P．C．board and may require special holes．Coordinate with Cliff Pery．

Note that（1）logic board should be designed for two resident ROMS（only the 40 pin one is presently planned to be used，（2）all 28 and 40 pin IC＇s should have single sided pin holes with no copper on the component side and no plating through the holes so that components can be removed without destroying the P．C．board，（3）if logic board length approaches the max－ imum length，the controller connectors will have to be recessed to provide clearance from the power supply board and the transformer．

6．POWER SUPPLY BOARD
The power supply board is a single sided P．C．board which is mounted with the components side up．The space allocated for the power supply board is shown on the layout drawing．The length of the power supply board can be extended if the logic board is not made the maximum length． Note that enough space must be left between the two boards．

The power supply board is used as a junction between the transformer and the on－off switch．Thus，all the transformer secondary leads are connected to the power supply board using a 5 pin connector（Magnavox part 非181300－6）． The output power from the power supply board to the logic board is trans－ mitted by a 5 wire cable with leads soldered into the power supply board．

7．CARTRIDGE PRINTED CIRCUIT BOARD

The printed circuit board in the cartridge is a single sided board with edge fingers to mate with the connector on the logic board and is designed to mount 1 or 228 pin ROMS．The physical constraints for the board are indicated on the drawing．The circuit connections are those described in 5A．An example of the circuit connections using the standard ROM pinout is shown in attached．

Dr. David P. Chandler

1. GENERAE

$$
\begin{aligned}
& \text { underlying this apecelsitudn w } \\
& \text { The, objective of the systems engineering task-is to develop } \wedge^{\text {a program- }} \\
& \text { mable video game which is attractive, versatile, offers sophisticated } \\
& \text { game play and captivating visual and sound effects, and meets F.C.C. } \\
& \text { and UL requirements -- all at the minimum cost consistent with these } \\
& \text { objectives. Charactenctice. }
\end{aligned}
$$

2. GENERAL INSTRUMENTS RESPONSIBILITIES

The portions of this engineering task for which General Instruments is responsible are:
A. Circuit development and design, except for the controllers, which are Mattel responsibility. The circuit design is to be separated into three printed circuit boards:
(1) Logic board
(2) Power supply board
(3) Cartridge board
B. Development of test procedures and equipment to perform:
(1) 100% testing of parts delivered by General instruments to Magnavox.
(2) Sampled receiving inspection at Magnavox of General Instrument integrated circuits tested as sets.
(3) 100% go-no-go testing of assembled systems for use as final inspection at Magnavox and as sampled receiving inspection by Mattel.
C. Management of preparation for and obtaining F.C.C. approval.
3. FINCTIONAL CHARACTERISTICS

The electrical functional characteristics are most accurately defined

Video Game Specifications for G.I.
March 6, 1978 (Revised March 8, 1978)
-Page 2
by identifying the major circuit elements to be designed into this system, which are:
A. 11610 CPU
B. 1 STIC II TV Interface Chip (per spec dated
C. 1 20K ROM (40pin) Graphics ROM (GROM) \longleftarrow color chis
D. 512×8 RAM Graphics RAM (GRAM)
E. 1 RA-3-9600 Background RAM, Bus Buffer, and 112×16 Scratchpad RAM
F. 128 X 8 RAM Additional Scratchpad RAM
G. 1 20K ROM (40Pin) Resident Program ROM
H. 1 Sound - I/O IC
I. Place for I additional 20 K (28 Pin) Resident ROM
J. 1 ASTEC 1284 Modulator, with channel 3-4 select and both color and sound modulated.
K. 1 or 220 K ROM (28 Pin) Cartridge Program ROM per Cartridge
L. All the necessary circuitry (including power supply) to make these work properly

4. PHYSICAL CHARACTERISTICS

The physical constraints imposed on the various printed circuit boards are defined by Mattel's drawings: Layout (2609), Layout P.C.B. (2609).

ievoduys.

5. LOGIC BOARD

All the parts listed in section 3 above except the cartridge $R C M(s)$ and powessyy are mounted on the logic board. It is a two-sided board with plated through holes, which is mounted with components-sige down. The functional interfaces with this board are:
A. Cartridge (I/O) - Pin (0.100 Centers, sing we -sided part number to be determined) edgeonoctor into which $i d g$ e.P.C. board plugs, Note that cartridge housing complete ply surf ounds this connector and the tongue of the 1 logic board as far back as the depth of the connector housing. \quad Signals on this connector are $D B 0-D B 15,3$ control lines, ground, and $2+5$ volt lines. (The cartridge connects +5 volt power back to the logic bo ard.) There au. Contact in th. other eide of thicomectr. wp the le swing sigma
B. Controllers
(Input)

- Two 9 Pin connectors (Magnavox part- +1.81254). See layout P.C.B. drawing for desired location. On each connector, pin 1 is ground, pins $2-9$ are 8 bit input character going to sound-I/O IC. Pin 2 is least significant bit. Controllers are 8 switches to the ground line with a maximum of 100 ohms series resistance per switch.
C. Power (Input)
- 5 pin connector (Magnavox part $4181031-5 \geqslant$.

See

March 6, 1978 (Revised March 8, 1978)
layout P.C.B. drawing for desired location. Pin designation left up to Geacon Instruments. GI.
D. Antenna Cable (Output)

- Phono socket on modulator. RF signal suitable for driving all properly operating T.V.'s through
 and $701702=005$).
- Slide switch (Magnavox pare-160556-2\%) nountid m PC read.
- Momentary, normally open contacts (Magnavox-part
 attached to circuitry side of P.C. board and may

Note that (1) logic board should be designed for two resident-ROMS (only the 40 pin one is presently planned to be used, (2) all 28 and 40 pin IC's sh ould have sing le-sided pin holes with no copper on the component side and no platig Ehrough the holes so that components can be removed without dest ging the P.C. board, (3) if logic board length approaches the maximum length, the controller connectors will have to be recessed to provide clearance from the power supply board and the transformer.
6. POWER SUPPLY BOARD

The power supply board is a single sided P.C. board which is mounted with the components side up. The space allocated for the power supply board-is shown on the layout drawing The length of the power supply board can be extendedif the logic board is not made the maximum length. Note that enough space must be left between the two boards. for contiolles connuectos acces.
The power supply board is used as a junction becween the transformer and the on-off switch. Thus, all the transformer secondary leads are connected to the power supply board using a 5 pin connector (Magnavox part 非181013-5). The three lines to be switched go to and come from the on-off switch through a 6 lead cable which is soldered into the power supply board. The output power from the power supply board to the logic board is transmitted by a 5 wire cable with leads soldered into the power supply board.
7. CARTRIUGE PRINTED CIRCUIT BOARD

The printed circuit board in the cartridge is a single sided board with edge fingers to mate with the connector on the logic board and is designed to mount 1 or 228 pin ROMS. The physical constraints for the board are indicated on drawings非 \qquad - The circuit connections are those described in 5 A. An example of the circuit connections using the standard ROM pinout is shown in attached sketch.

DPC/1b

$$
\begin{aligned}
& \text { to systend }
\end{aligned}
$$

$$
\begin{aligned}
& \text { supply }
\end{aligned}
$$

m.s. $3 / 6$

TO: Distribution

FROM:
Kent Wall
DATE: May 10, 1978
SUBJECT: Sales Meeting and CES - June 7-15

This is to outline the schedule for both the Sales Meeting and the Consumer Electronics Show (CES) in Chicago. I have included a list of as many of the coordinating details as can be defined at this time. Please review the attached as it affects your specific area of responsibility and get back to me with any questions and/or problems.

Information on hotel accommodations, etc. will be coordinated directly by Sylvia Meza (Ext. 1852).

SKW:slm
Distribution:
A. Adler
D. Bogart
A. Carlson
D. Chandler
R. Chang
H. Cohen
J. Dickerman
J. Kingsbury
E. Krakauer
M. Kuhn
F. Murnane
S. Platt
H. Reekie
J. Rochlis
J. Rubenstein
P. Towne
S. Verduzco
cc: Steve Goldstein
Jeff Heimbuck
Gus Lizzi
Missy Powell
OUTLINE / SCHEDULE

$$
\text { C E S } 1978
$$

$$
\begin{aligned}
& \text { OUTLINE/SCHEDULE } \\
& \text { SALES MEETING AND CES } 1978 \\
& \frac{\text { DATE }}{6 / 7} \quad 9: 00 \text { A.M. }
\end{aligned} \begin{aligned}
& \text { Mattel personnel and } \\
& \begin{array}{l}
\text { equipment arrive throughout } \\
\text { the day. }
\end{array}
\end{aligned} \begin{aligned}
& \text { Mattel Suite at the } \\
& \text { Ritz-Carlton Hotel }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EQUIPMENT/RESPONSIBILITY } \\
& \hline
\end{aligned}
$$

OUTLINE/SCHEDULE

SALES MEETING AND CES 1978

DATE	TIME	ACTIVITY
	$9: 00$ A.M.	Mattel personnel and equipment arrive threughout the day.

500 Pinball Press Kits
(Joel Rubenstein)

- Stored in the suite

500 Hand-Held Press Kits
(Joel Rubenstein)
200 Video Press Kits
(Joel Rubenstein)

- Stored in the suite

Stored in the suite
50 Demonstrator Scripts for 50 Demonstrator Scripts for Each
Hand-Held Game (Sylvia Meza) Hand-Held Game (Sylvia Meza)

- Stered in the suite - Stered in the suite Six (6) Hand-Held Counter Demo Units
(Denny Bogart) - Stored in the suite

12 Units Each Hand-Held Game with Pkgs. (Denny Bogart and Shel Platt) Stored in the suite 10,000 Hand-Held Game Brochures
(Denny Bogart and Sylvia Meza) - Stored in the suite

EQUIPMENT/RESPONSIBILITY

$$
\begin{array}{r}
\text { (John Dickerman) } \\
-\quad \text { Stored in }
\end{array}
$$

the suite

LOCATION

Mattel's Suite at the Ritz-Carlton Hotel
 el the day.

TIME
9:00 A.M

6/7
DATE

DATE
$\stackrel{7}{10}$
OUTLINE/SCHEDULE
SALES MEETING AND CES 1978

EQUIPMENT/RESPONS:IBILITY

EQUIPMENT/RESPONSIBILITY

\quad commercials for Video System,

\quad Basketball and Football games and
-
the Video System AV presentations
-
LOCATION
McCormick Place
Mattel's Suite at the
Ritz-Carlton Hotel
McCormick Place
Mattel's Suite at the
Ritz-Carlton Hotel

$$
\begin{array}{ll}
\text { 9:30 A.M. } & \text { Booth Set Up } \\
\text { 9:00 A.M. } & \begin{array}{l}
\text { Key Account Presentations } \\
\text { by Appointment } \\
\text { unt } \begin{array}{l}
\text { Only }
\end{array} \\
\text { noon }
\end{array} \\
\text { 9:00 A.M. } & \text { Booth Set Up } \\
\text { 1:00 P.M. } & \text { RS Training } \\
\text { to } \\
\text { 4:00 P.M. }
\end{array}
$$

DATE
LOCATION $\stackrel{\infty}{0}$
Outline/SCHEDULE
SALES MEETING AND CES 1978
\square
$\underline{\text { DATE }}$
6/10
 System
*l 6 mm film of Fcotball, Basketball,
and Video System commercials
Lady Luck Display Prototype

$$
\begin{aligned}
& \text { *16mm film of Fcotbal1, Basketball, } \\
& \text { and Video System commercials }
\end{aligned}
$$ System

*16mm film of Fcotball, Basketball,
and Video System commercials
Lady Luck Display Prototype System
$* 16 \mathrm{~mm}$ film of Fcotball, Basketball,
and Video System commercials
Lady Luck Display Prototype
Video System Prototype In-Store
All Video cassettes and packages
200 salesmen's brochures for Videc,
Pinball, and Hand-Held games

- Electric Company Storyboard
- 200 Salesmen's Briefcases
$\frac{\text { LOCATION }}{\text { Ritz-Car1ton Meeting Room }}$
Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
Three Las Vegas Pinball Machines
Three each of all hand-held games
with packages
Three hand-held game counter demo units
Video tape playback equipment for TV
commercials as back up to film system

Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
Three Las Vegas Pinball Machines
Three each of all hand-held games
with packages
Three hand-held game counter demo units
Video tape playback equipment for TV
commercials as back up to film system
Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
Three Las Vegas Pinball Machines
Three each of all hand-held games
with packages
Three hand-held game counter demo units
Video tape playback equipment for TV
commercials as back up to film system
Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
Three Las Vegas Pinball Machines
Three each of all hand-held games
with packages
Three hand-held game counter demo units
Video tape playback equipment for TV
commercials as back up to film system
- Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
- Three Las Vegas Pinball Machines
- Three each of all hand-held games
- Thith packages
- Three hand-held game counter demo units
- Video tape playback equipment for TV
\quad commercials as back up to film system
Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for
Basketball and Math if possible
Three Las Vegas Pinball Machines
Three each of all hand-held games
with packages
Three hand-held game counter demo units
Video tape playback equipment for TV
commercials as back up to film system and to show A/V presentation on Video
 David Chandler, and Jim Kingsbury will move the following equipment from the suite to the meeting room:
- Video System Prototype In-Store Demo Unit - A11 Video cassettes and packages
EQUIPMENT/RESPONSIBILITY
Denny Bogart, Kent Wall, Mal Kuhn,
David Chandler, and Jim Kingsbury will
move the following equipment from the
suite to the meeting room:
- Video System with Football, Space Game,
Baseball, and Las Vegas PROM set up
along with representative frames for

[^0]OUTLINE/SCHEDULE
SALES MEETING AND CES 1978
Attendance by all sales reps plus Ed Krakauer, Mal Kuhn, Kent Wall, Frank Murnane, Jeff Rochil Sharon Verduzco, David Chandler (or Rick), and At the conclusion of the Sales Meeting the
following items will be moved to the McCormick
Place booth by Denny Bogart, Jim Kingsbury,
and David Chandler:

- All Pinball machines
- All Hand-Held games and packages
except for one set which stays in the
All counter demo units for hand-held

$$
\angle \text { e8ed }
$$

games except for one which stays in
the suite

$$
\begin{aligned}
& \text { the suite } \\
& \text { Lady Luck Display }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lady Luck Display } \\
& \text { Video System In-Store Display } \\
& \text { All video cassettes, packages, and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { All press releases except for } 10 \text { which } \\
& \text { remain in the suite }
\end{aligned}
$$

$$
\text { All salesmen's brochures except for } 100
$$

which remain in the suite
A.11 price lists and order forms
Video emulators and game programs
Video cassettes of Video System
commercia1, Footbal1 and Basketball
commercials, and Video A/V presentation

$$
\begin{aligned}
& \mathrm{Pi} \text { nball and Video System Print ads } \\
& \text { BrPChures of GE Service Center List }
\end{aligned}
$$

$$
\begin{aligned}
& \text { BrpChures of GE Service Center Listings } \\
& \text { Piplall Warranty Statements }
\end{aligned}
$$

Pipball Owner's Manual
Electric Company Storyboard

OUTLINE/SCHEDULE
SALES MEETING AND
LOCATION
Ritz-Carlton Meeting Room
McCormick Place
$\frac{\text { TIME }}{4: 05 \text { P.M. }}$
9:00 A.M.
6:00 P.M.
$\frac{\text { DATE }}{6 / 10}$
6/11-14
6:00

.

EQUIPMENT/RESPONSIBILITY
A11 equipment is packed and returned to Hawhorne or New York.

[^0]: Sharon Verduzco will arrange for a 16 mm sound projector, 35 mm slide carousel unit and a large screen for the Sales Meeting. All price lists, etc. will be the responsibility of Sharon Verduzco and Mal Kuhn.

