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INTRODUCTION 
This is one o'f two books that replace An Introduction to Microcomputers: Volume 2 - Some Real Microprocessors. That 
volume went through several printings and in 1978 was printed loose-leaf. Six bimonthly updates to the loose-leaf ver­
sion were published in 1979 and early 1980 to provide information on newly introduced microcomputer devices. The 
loose-leaf version proved, however, to be quite unpopular with bookstores because of packaging and handling con­
siderations. It also became more and more difficult to maintain a timely flow-of the bimonthly updates. For these 
reasons, Volume 2 is being replaced by two bound paperback books: the Osborne 4 & 8-Bit Microprocessor Handbook 
and the Osborne 16-Bit Microprocessor Handbook. Together these handbooks include all of the information that was 
contained in Volume 2 and the six updates. All known errors have been corrected and new data sheets have been 
added to the two handbooks. We have divided Volume 2 into two separate handbooks because the single-volume ver­
sion would be over 1800 pages in length and rather difficult to bind. In addition, the devices lend themselves to this 
grouping since the 16-bit microprocessors are generally much more powerful than the four- and eight-bit 
microprocessors, and thus are directed toward different applications. 

Volume 2 was part of a four-volume Introduction to Microcomputers series: 

Volume 0 - The Beginner's Book was written for readers who know nothing about computers. 

Volume 1 - Basic Concepts provides a detailed explanation of microprocessor concepts including number 
systems, addressing modes, typical instruction sets, input/output techniques, and so on. The device descrip­
tions in the 4 & 8-Bit Microprocessor Handbook and the 16-Bit Microprocessor Handbook assume that you 
have a working knowledge of the general concepts presented in Volume 1, and we will occasionally make 
references to material presented in Volume 1. 
Volume 2 - Some Real Microprocessors, which is being replaced by these handbooks. 

Volume 3 - Some Real Support Devices, which describes general support devices that may be used with 
any microprocessor. Some dedicated support devices are the 4 & 8-Bit Microprocessor Handbook and the 
16-Bit Microprocessor Handbook. We define a "dedicated" support device as one best used with its parent 
microprocessor. We define a "general" support device as one that can be used with any microprocessor. We 
will occasionally make reference in this book to some of the general support devices in Volume 3. When 
designing a system based on one of the microprocessors described in this handbook, you should not auto­
matically assume that the dedicated support devices described in this book are the only ones or the best 
ones to use with a particular microprocessor: you should always check the functionally equivalent parts de­
scribed in Volume 3 

In addition to this Introduction to Microcomputers series, we have begun publishing other individual handbooks. The 
first two handbooks of this series are: The 8089110 Processor Handbook, which includes the 8289 bus arbiter, and the 
CRT Controller Handbook, which describes five LSI CRT controller devices. This individual handbook approach w'ill be 
used in the future to maintain a convenient flow of detailed, objective information on new microprocessors and related 
support devices. 

SIGNAL CONVENTIONS 

Signals may be active high, active low or active in two states. An active high signal is one Which, in the high 
state, causes events to occur, while in the low state has no significance. A signal that is active low causes 
events to occur when in the low state, but has no significance in the high state. A signal that has two active 
states will cause two different types of events to occur, depending upon whether the signal is high or low; this 
signal has no inactive state. Within this book a signal that is active low has a bar placed over the signal name. 
For example, WR identifies a "write strobe" signal which is pulsed low when data is ready for external logic to 
receive. A signal that is active high or has two active states has no bar over the signal name. 
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TIMING DIAGRAM CONVENTIONS 

Timing diagrams play an important part in the description of any microprocessor or support device. Timing 
diagrams are therefore used extensively in this book. All timing diagrams observe the following conventions: 

1) A low signal level is equivalent to no voltage. A high signal level is equivalent to voltage present: 

I 
Voltage present 

No voltage 

2) A single signal making a low-to-high transition like this: 

low I 
high 

3) A single signal making a high-to-Iow transition is illustrated like this: 

high 

\ low 

4) When using two or more parallel signals exist. the notation: 

r= signals change 

I 
states that one or more of the parallel signals change level. but the transition (high-to low or low-to-high) is 
unspecified). 

5) A three-state single signal is shown floating thus: 

~-------~ 
Signal 

floating 

6) A three-state bus containing two or more signals is shown floating thus: 

_______ r---~~---4~------
floating 

7) When one signal condition triggers other signal changes. an arrow indicates the relationship as follows: 

Cond'bon ~ 

h". J 

Causes 
change 

here 
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Thus a signal making a low-to-high transition would be illustrated triggering another signal making a high-to-Iow 
transition as follows: 

-~-----
A signal making a high-to-Iow transition triggering a bus change of state would be illustrated as follows: 

c::::..-
x 

8) When two or more conditions must exist in order to trigger another logic event. the following illustration is used: 

The,. ~ 
cond;tio", ) 

cause 
change 

here 

Thus a low-to-high transition of one signal occurring while another signal is low would be illustrated triggering a 
third event as follows: 

9) When a single triggering condition causes two or more events to occur, the following illustration is used: 

This ~ condition 

causes 
these 

changes 
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Thus a low-to-high transition of one signal triggering changes in two other signal levels would be illustrated as 
follows: 

10) All signal level changes are shown as square waves. Thus rise and fall times are ignored. These times are given in 
the data sheets which appear at the end of every chapter. 

INSTRUCTION SET CONVENTIONS 

Every microcomputer instruction set is described with two tables. One table identifies the operations which 
occur when the instruction set is executed, while the second table defines object codes and instruction times. 

Because of the wide differences that exist between one instruction set and another, we have elected not to 
use a single set of codes and symbols to describe the operations for all instructions in all instruction sets. We 
believe any type of universal convention is like to confuse rather than clarify; therefore each instruction set 
table is preceded by a list of symbols as used within the table alone. 

A short benchmark program is given to illustrate each instruction set. Some comments regarding benchmark 
programs in general are, however, in order. We are not attempting to highlight strengths or weaknesses of 
different devices, nor does this book make any attempt to comparative analyses, since the criteria which make 
one microcomputer better than another are simply too dependent on the application. 

Consider an application which requires relatively high speed processing. The only important cri­
terion will be program execution speed, which may limit the choice to just one of the microcom­
puters we are describing. 

COMPARATIVE 
ANALYSIS 

Execution speeds of all of the microcomputers may, on the other hand, be quite adequate for a second application; in 
this case, price may be the only overriding factor. In a third application, a manufacturer may have already invested in a 
great deal of engineering development expense, using one particular microcomputer that was available in quantity ear­
lier than any others; the advantages or disadvantages of using a different microcomputer, based on minor cost of per­
formance advantages, will likely be overwhelmed by the extra expense and time delays involved with switching in 
midstream. 

And what about benchmark programs 7 

There have been a number of benchmark programs in the literature, purporting to show the 
strengths or weaknesses of one microcomputer versus another; individual manufacturers 
have added to the confusion by putting out their own competing benchmarks, aimed at showing their product to 
be superior to an immediate rival. 

Benchmark programs are misleading, irrelevant and worthless for these reasons: 

1) In a majority of microcomputer applications, program execution speed, and minor variations in program 
length, are simply overwhelmed by pricing considerations. 

2) Even assuming that for some specific application, program length and execution speed are important, trivial 
changes in the benchmark program definition can profoundly alter the results that are obtained. This is one 
point we will demonstrate in this book, while describing individual instruction sets. 

3) Benchmark programs are invariable written by the smartest programmers in an organization, and they take 
an enormous amount of time to ensure programming accuracy and excellence. This is not the level at which 
any user should anticipate "run of the mill" programmers working; indeed, a far more realistic evaluation of 
a microcomputer's instruction set could be generated by giving an average programmer too little time in 
which to implement an incompletely defined benchmark. This will more closely approximate the working 
conditions under which real products are developed. Of course, defining the "average programmer," "too 
little time" and an "incomplete specification" are all sufficiently subjective that they defy resolution. 
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We will demonstrate the capriciousness of benchmark programs via the following benchmark program: 

Raw data has been input to a general purpose input buffer. beginning at IOBUF. This raw data is to be moved to 
a permanent table. which may be partially filled; the raw data is to be stored in the data table starting with the 
first unfilled byte. The benchmark may be illustrated as follows: 

r-----.... TABLE 

HOW THIS BOOK HAS BEEN PRINTED 
Notice that text in this book has been printed in boldface type and lightface type. This has been done to help you 
skip those parts of the book that cover subject matter with which you are familiar. You can be sure that 
lightface type only expands on information presented in the previous boldface type. Therefore. only read boldface 
type until you reach a subject about which you want to know more. at which point start reading the lightface type. 
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Chapter 1 
THE NATIONAL SEMICONDUCTOR 

PACE AND INS8900 

PACE was developed by National Semiconductor as a single-chip implementation of its multi-chip IMP-16. 
Since it was the first 16-bit. single-chip microprocessor. PACE is the first 16-bit microprocessor described in 
this book. 

As might be expected of an early entry product. PACE had a number of problems - both in design and fabrication 
technology - which limited its acceptance. Therefore the INS8900 was recently introduced by National Semiconduc­
tor. The INS8900 is a redesigned. NMOS PACE. with internal logic problems resolved. 

In this chapter we will describe both PACE and the INS8900. Specifically. we will identify the problems faced by a 
PACE user. which have been eliminated in the INS8900. 

PACE and the INS8900 are 16-bit microprocessors because they handle data in 16-bit units. In many ways. however. 
the internal architecture of PACE and the INS8900 have an 8-bit orientation; this is something you should keep in mind 
while reading this chapter. because it does result in PACE and the INS8900 having program execution speeds that are 
comparable to. rather than being significantly faster than. the 8-bit microprocessors we have described in earlier chap­
ters. 

The only current manufacturer for PACE and the INS8900 is: 

NATIONAL SEMICONDUCTOR. INC. 
2900 Semiconductor Drive 

Santa Clara. CA 95050 

There are agreements between Rockwell International and National Semiconductor and between Signetics and 
National Semiconductor to exchange microcomputer technical information and to produce each other's products. At 
the present time, neither Signetics nor Rockwell International has elected to second source PACE or the INS8900, and it 
is extremely unlikely that they will since both PACE and the INS8900 are products with limited futures. The amount of 
support that National Semiconductor provides is rapidly declining as newer, more powerful 16-bit microprocessors 
enter the marketplace. 

As shown in Figure 1-1, a typical PACE microcomputer will consist of a mixture of special-purpose PACE support 
devices and standard devices. The PACE microcomputer devices described in this chapter consist of: 

• The PACE CPU 
• The System Timing Element (STE). which generates clock signals for PACE and the system. 
• The Bidirectional Transceiver Element (BTE). which converts the MOS-Ievel PACE signals to TTL-level signals 

for other devices. The BTE is 8 bits wide. 

The INS8900 needs a clock generator; a 2 MHz crystal and a 74C04 inverter are recommended. Otherwise. there are no 
special INS8900 support devices; in fact. you can easily use any NMOS support devices described in Volume 3 
with the INS8900. Specifically. the STE and BTE devices cannot be used with the INS8900. because they provide 
MOS-to-TTL signal level conversions for PACE 

PACE requires +5V. +8V and -12V power supplies. The +8V is a substrate vcltage require­
ment of the CPU and can be derived from the +5V power using a few discrete components. 
Therefore, a system can be implemented using only two primary power supplies: +5V and 
-12V. The INS8900 also uses three power supplies: +12V. +5V and -8V. 

PACE/INS8900 
POWER SU PPL Y 

EXECUTION 
SPEED 

The INS8900 uses a 500 nanosecond clock to provide typical instruction execution times in the range of 8 to 20 
microseconds. PACE (tPC-16A/520D) uses a 750 nanosecond clock to provide typical instruction execution times in 
the range of 12 to 30 microseconds. 
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Before making direct comparisons of these instruction execution times with those of other devices. however. note 
carefully that because of the 16-bit architecture of PACE and the INS8900. it may take many instructions on another 
microcomputer to perform the same operations as a single INS8900/PACE instruction. 

MOS level signals are input and output by PACE. TTL level signals are input and output by the PACE/INS8900 
INS8900. LOGIC LEVEL 

P-channel silicon gate. MOS/lSI technology is used with PACE. N-channel MOS technology is 
used by the INS8900. 

PACE AND INS8900 MICROCOMPUTER SYSTEM OVERVIEWS 
Figure 1-1 conceptually illustrates a PACE system. Figure 1-2 conceptually illustrates an INS8900 system. 

As with any mini- or microcomputer system, the CPU outputs data, address, and control signals. In the case of 
PACE and the INS8900, the data and address signals use the same bus lines; therefore, they are said to be 
multiplexed. 

Timing signals needed by PACE are generated by the System Timing Element (STE). SYSTEM TIMING 
PACE signals are all MOS level; the STE therefore generates two sets of timing signals; ELEMENT (STE) 
one set are MOS level for PACE, the other set are TTL level for external logic. BIDIRECTIONAL 

Since PACE signals are MOS level, Bidirectional Transceiver Elements (BTEs) must be TRANSCEIVER 
present to translate outgoing signals from MOS to TTL levels, and to translate incoming ELEMENT (BTE) 
signals from TTL to MOS levels. BTEs are quite indiscriminating in the signals they translate: 
in either direction. any signal arriving at an input pin is faithfully reproduced at the corres-
ponding output pin. Control signal options allow a BTE to operate bidirectionally. to drive output Signals only. or to 
place both the MOS and TTL outputs in a high-impedance mode. Since the BTE is 8 bits wide. two BTEs operating 
bidirectionally provide buffering for the 16-bit Address/Data Bus. A third BTE. operating in the drive-only mode. pro­
vides buffering for the PACE control signals (NADS. ODS. IDS. and Flags). 

A complete TTL level bus is created by combining BTE outputs with the TTL level timing 
signals output by the STE. Remember. though. that the 16 address/data lines are multiplexed. 
External logic that can demultiplex these lines and that can respond to the PACE timing and con­
trol signal logic can connect directly to the TTL level address/data lines. For example. National Semiconductor provides 
ROM and RAM devices with on-chip address latches: these devices can interface directly to the TTL level bus. 

If memory devices or I/O ports are used that cannot demultiplex the address/data lines. you must 
provide separate logic to perform this function. No special PACE family devices are available for 
this purpose: however. standard logic devices can be used. For example. two hex flip-flop devices 
and a quad flip-flop device would provide a latched 16-bit Address Bus. Two 8212 I/O ports could 
also be used to latch the 16 bits of address information. The PACE Address Data Strobe (NADS) 

ADDRESS 
LATCHES 
AND 
DECODERS 

signal can be used as the ClK input to the flip-flops or as the STB input to the 8212s. The PACE Address Data Strobe 
(NADS) signal can be used as the ClK input to the flip-flops. In many systems this is the most effective approach since 
a latched Address Bus allows you to use simpler address decoding techniques to generate memory chip enable and I/O 
port select Signals. 

Figure 1-2 illustrates an INS8900 microcomputer system. logic is quite elementary - and equivalent to that 
which you would expect with any other microcomputer. Control Bus. Data Bus. and Address Bus lines are buffered 
using INS8208 bidirectional buffers. These are National Semiconductor standard catalog devices. recommended by 
National Semiconductor and illustrated in their literature: however. any other buffer would do equally well. The 
Data/Address Bus is shown being demultiplexed by 8212s to create separate Data and Address Busses. This again is 
straightforward logic. 
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Figure 1-1. A National Semiconductor PACE Microcomputer System 
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INS8900 

74C04 
INVERTER 

TWO 
INS8208s 

SENSE LINES IN 

CONTROL BUS 

nnOi 
TWO 

INS8212s 

ROM RAM PERIPHERAL 

Figure 1-2. A National Semiconductor INS8900 Microcomputer System 

INS8900 PROGRAMMABLE REGISTERS 
The INS8900 (and PACE) has four 16-bit Accumulators and a 16-bit Program Counter; these registers may be il­
lustrated as follows: 

ACO 
AC1 
AC2 

AC3 

PC 

Primary Accumulator 

Secondary Accumulator 

Secondary Accumulators 

and Index Registers 

Program Counter 

Accumulator ACO may be likened to a primary Accumulator as described for our hypothetical microcomputer in 
Volume 1. 

Accumulator AC1 is a secondary Accumulator. 

Accumulators AC2 and AC3 are equivalent to a combination of secondary Accumulators and Index registers. 

Recall from Volume 1, Chapter 6 that an Index register differs from a Data Counter in that the Index register contents 
are added to a displacement (which is provided by a memory reference instruction) in order to determine the effective 
memory address. 

The Program Counter serves the same function in an INS8900 system as it does in our hypothetical microcom­
puter described in Volume 1. 

Figure 1-3 illustrates that part of our general microcomputer system logic which has been implemented in the 
INS8900 microprocessor. 
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Interface Logic 

Programmable 
Timers 

INS8900 STACK 

Clock Logic 

Read Only 
Memory 

Interface Logic 

I/O Ports 

Figure 1-3. Logic of the INS8900 Microprocessor 

A Stack is provided on the INS8900 (and PACE) chip. The Stack is 16 bits wide and 10 words deep. The Stack is 
not a cascade stack. as described in Volume 1. Chapter 6; rather. chip logic maintains its own Stack Pointer to identify 
the next free Stack word. The Stack Pointer is automatically incremented and decremented in response to Push and 
Pull operations. Stack Push and Pull operations are initiated by CPU logic during execution of Jump-to-Subroutine 
(JSR) and Return-from-Subroutine (RTS) instructions. and during interrupt processing. to automatically save and 
restore the Program Counter. 

In addition. the Stack can be used for temporary storage of data or status information. There are instructions 
which allow you to transfer words between the Stack and any Accumulator. or the Status and Control Flag register. 
This capability can significantly reduce the number of memory accesses required (thus increasing system speed) and 
can also reduce read/write memory requirements since intermediate values can be stored on trh-.e.S .. t.a-.c .. k ___ .. 

Whenever the Stack becomes completely filled or emptied. an Interrupt Request is INS8900 AND 
generated on the INS8900 chip. If you have enabled Stack Interrupts. program execution will PACE STACK 
be suspended. allowing you to deal with the situation. A Stack Fu II condition will indicate that INTERRUPTS 
it is time to dump data accumulated on the Stack out to read/write memory. 
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INS8900 AND PACE ADDRESSING MODES 
Most INS8900 (and PACE) memory reference instructions use either direct or direct, indexed addressing. A few 
instructions also offer indirect addressing and pre-indexed, indirect addressing. Refer to Volume 1, Chapter 6 for a 
description of these addressing modes. 

All memory reference instructions have the following object code format: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ~ Bit No. 

I I I I I f IxlRf I I I I I f I I 
'~ .... ~.~,. ........ ~~r-~-y~~~ .... ___ .. ~~ ...... ~/ - l -

'--------- Address displacement 

{ Addressing mode selection 

J 00 = Base Page address ---------------<t 01 = Program relative address 
10 = Indexed (AC2-relative) 

11 = Indexed (AC3-relative) 

'-------------------- Instruction operation code 

The 2-bit XR field lets you specify with each instruction the type of direct addressing you want used: base page, pro­
gram relative or indexed (AC2- or AC3-relative). Since the address displacement is an 8-bit field in the instruction word, 
direct addresses are paged and each page consists of 256 words. Indexed and paged addressing variations have been 
described in Volume 1, Chapter 6. 

In addition, the INS8900 (and PACE) offers a variation of base page addressing, which is 
not described in Volume 1, Chapter 6. There is a control input signal (BPS) which allows 
the base page to be split between the top and bottom 128 words of memory, as follows: 

Normal Base Page MEMORY Split Base Page 

1_ p,.el ~. } Displacement = 00 through 7F 
- 007F

16 

a i 

~
• • FF80 } Displacement = 80 through FF 

Base Page 16 Frequently these addresses are 

FFFF 16 reserved for external devices 

. {OOOO Displacement = 00 

through FF16 DOFF 

BPS high splits the base page; BPS low keeps the base page as the bottom 256 words of 
memory. 

INS8900 AND 
PACE SPLIT 
BASE PAGE 

Depending on how an INS8900 system has been configured, the base page may be permanently defined as split or as 
normal; or the base page may be varied between the two options under program control. There are a number of output 
control flags (which are described next) that may be set or reset under program control. If one of these flags is con­
nected to the base page select pin, then setting or resetting this flag determines which base page option will be in 
effect: 

0..., Pi" 2SIBPS} OJ Pi" 221Fl4} 
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Splitting the base page between the top and bottom of memory is useful in an INS8900 microcomputer system 
because it simplifies external device addressing. If we reserve all memory addresses in the range FF8016 - FFFF16 for 
external devices. then external logic merely has to AND the top nine bits of an address and thus determine if an exter­
nal device (rather than a memory location) is being addressed: 

15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0 "'4..,-- Bit No. 

1111111111111111111xlxlxlxlxlxlxI 

~ 1 '------------8 or higher 

- If these nine bits are all 1. then an 

external device is addressed 

Splitting the base page also makes it easy to implement half of the base page in ROM. leaving the other half in RAM. 

To a programmer, this scheme provides an easy way of generating 128 external device 
addresses. If the split base page option is in effect. then base page. direct addressing can be 
interpreted as external device addressing. so long as the high-order bit of the displacement is 
1: 

INS8900/PACE 
SPLIT BASE 
PAGE TO 
ADDRESS I/O 

.I,.-------------------Memorv Reference instruction code 

~ r~-__ ,.,l,. .... -_-_~~~~~,---- Displacement 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 ____ Bit No; 

I I IxlRI I I I I I I 

T 4""-___________ Becomes I/O instruction if there is a 1 here and 

split base page is being used to address I/O 

'----------------00 specifies 

Base Page addressing 

The base page and program relative options do not apply when the displacement is part of a 
direct. indexed address. When indexed addressing is specified, the INS8900 adds the con­
tents of the displacement, as a signed binary number, to the contents of the identified 
Index register (AC2 or AC3)' The sum becomes the effective address. Here are some ex­
amples: 

Index Register 

Contents 

Displacement 

Value Effective 

4C'6 213A 

~004C 
,/ 2186 

Propagated Sign Bit 

'-...... 213A 

C4'6 ~FFC4 
20FE 

INS8900/PACE 
DIRECT INDEXED 
ADDRESSING 

Observe that the high-order bit of the displacement. being a sign bit. is propagated through the missing high-order dis· 
placement byte. 

Instructions that allow indirect addressing simply superimpose indirect addressing logic on the preceding direct 
address generation logic. For example. if indirect addressing without indexing is specified. then a base page or pro­
gram relative direct. address will be computed in the normal way. but the effective address is contained in the memory 
location identified by the direct address. 
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This illustration shows base page. indirect addressing; arbitrary memory addresses are used to make the illustration 
easier to understand: 

Memory --.... ~ mn I ~ I 
Address 0001 · . i : · . 

0043 

0044 

DISP =45,. ., 0045 217A Base page word addressed directly 

0046 

0047 

I i ) i 

2178 
2179 

Effective • 217A 
) 

This word addressed indirectly 
Memory 2178 

Address 217C 

This illustration shows program relative. indirect addressing. again using arbitrary memory addresses: 

MEMORY 

Memory ., OFDC 
Address OFOO 

OFOE 

OFOF 217A p rogram relative. direct addressed word 
OFEO · . : ; 

DlSP = 90,. ( = -63,.) 
1040 
1041 

1042 
Program Counter 1043 

I = : : 
2178 

2179 This word addressed indirectly 
Effective .. 217A 
Memory 2178 
Address 
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If indirect addressing with indexing is specified, then a direct address is first computed by adding the displacement. as 
a signed binary number, to the contents of the specified Index register; the direct indexed address thus computed pro­
vides the memory location where the indirect address will be found. This is illustrated as follows: 

MEMORY 

Memory .. OFDC 
Address OFDD 

OFDE 

AC2 = 1042'6 .. OFDF 217A Direct, indexed addressed word 

DISP =90'6 OFEO 
1042 + FF9D = OFDF 

extended sign bit 
· . · } i · • : ! 

2178 

2179 J 
Effective ~ 217A 

, 
This word addressed indirectly 

Memory 217B 

Address 217C 

INS8900 AND PACE STATUS AND CONTROL FLAGS 
The INS8900 has a 16-bit Status and Control Flag register. This register is on the CPU chip and is illustrated as 
follows: 

Fourteen of the 16 register bits are used. Three of the 14 bits are status flags as we define a status flag. These 
three flags are: 

Overflow (OVF), which is a typical Overflow status. 

Carry (CRY)' which is set and reset by arithmetic operations, as described for a typical Carry status. 

Link (LINK), which is set and reset by Shift and Rotate instructions, as described for the hypothetical microcom-
puter's Carry status in Volume 1, Chapter 7. 

The separation of Carry into two statuses, one for shift and rotate operations, and the other for arithmetic 
operations, isa fairly common minicomputer feature; the advantage of separating these two statuses is that the 
results of arithmetic operations can be preserved across subsequent Shift and Rotate instructions. 

BYTE causes data to be accessed in 8-bit lengths when this status is set to 1, or in 16-bit lengths when this status is 
set to O. 

Five bits (lE1 through IES) are reserved for interrupt processing. These five bits selectively enable and disable five 
interrupt lines. One of these lines OE1) is reserved for the Stack Overflow interrupt the other four lines are available for 
external device interrupt requests. There is also a master interrupt enable and disable bit (INT EN). 

Bits F11, F12, F13 and F14 are control flags which are output directly to INS8900 and PACE device pins; they can 
be used in any way to control external devices. One use, to select normal or split base page addressing, has already 
been described. 

Only the three status flags OVF, CRY and LINK are automatically set or reset in the course of instruction execu­
tion. The remaining 11 bits of the Status and Control Flags register are set and reset by instructions or instruction se­
quences that read data into, or write data out of, the Status and Control Flags register. 
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INS8900 AND PACE CPU PINS AND SIGNALS 
Pins and signals are illustrated in Figure 1-4 for the INS8900 and PACE devices. There 
are some small differences between the two sets of pin outs. These differences are 
shaded in Figure 1-4. Within the shaded areas. the INS8900 signal is shown closest to the ar­
row. The PACE signal is shown in brackets further out. Here is a summary of pins that differ: 

Pin INS8900 PACE 
Number Signal Signal 

20 GND VSS (+5V) 
23 VBB (-8V) VBB (+8V) 
24 ClKX NClK 
25 VCC (+5V) ClK 
29 VDD (+12V) VGG (-12V) 

INS8900 
AND PACE 
SIGNAL 
DIFFERENCES 

The pin out differences between PACE and the INS8900 are not surprising. Since PACE uses P-channel MOS tech­
nology. while the INS8900 uses N-channel MOS technology. we would expect power supply differences. Also. the 
INS8900. being a newer product. requires just one clock signal input (ClKXl. compared to the two required by PACE 
(ClK and NClK). 

Let us examine the pins and signals in detail. 

D04 

003 
D02 

DOl 

DOO 

IDS 

ODS 

NADS 

NHALT 

CONTIN 

JC14 

JC15 

JC13 

NIR5 

NIR4 

NIR3 

NIR2 

Fll 

F12 

Vss + 5v))VSSGND 

PIN NAME 

CLKX (ClK. NClK) 

-DOO - 015 

-IDS 

-ODS 

"NADS 

-EXTEND 

-NINIT 

-NHAlT 

-CONTIN 

-BPS 

-JC13 - JC15 

-Fll - F14 

-NIR2 - NIR5 

-
-
-

VBe. VGG. VSS. VCC 
-JC13 - JC15 

1 40 

2 39 

3 38 

4 37 

5 36 

6 35 

7 34 

8 33 

9 32 

10 INS8900 31 

11 CPU 30 

12 29 

13 28 

14 27 

15 26 

16 25 

17 24 

18 23 

19 22 

20 21 

DESCRIPTION 

Clock Lines 

Datal Address Lines 

Input Data Strobe 

Output Data Strobe 

Address Data Strobe 

Clock Delay 

CPU Initialize 

Stop CPU 

Continue Jump Condition 

Base Page Select 

Control Flags 

Control Flags 

Interrupt Requests 

Power and Ground Lines 

Jump Conditions 

-These signals connect to the System Bus. 

--

-
--- -

-
-.. 

D05 
D06 

D07 
D08 

D09 

Dl0 

Dll 

D12 

D13 

D14 

D15 

VGG (-12V) 

BPS 

EXTEND 

NINIT 

VCC (+ 5v) (CLK) 

ClKX (NClK) 

VBB (-8v) (VBB ( + 8v)) 
F14 

F13 

TYPE 

Input 

Tristate. Bidirectional 

Output 

Output 

Output 

Input 

Input 

Bidirectional 

Bidirectional 

Input 

Output 

Output 

Input 

Input 

Input 

Figure 1-4. INS8900 and PACE CPU Signals and Pin Assignments 
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There are 16 data and address lines (DO - 015), which are multiplexed for data input, data output and address 
output. Two control lines. ODS and NAOS, identify output on the data and address lines as either data (ODS) or 
addresses (NAOS)' A further control line, IDS. is used to strobe data input. 

The EXTEND control input is used by slow memories or external devices to lengthen an instruction's execution 
time by increasing the duration of a data input/output cycle: this extends the time available for memories or external 
devices to capture data output. or to present input data. 

The NINIT input control initializes PACE; the Program Counter is set to O. The Stack Pointer, the Stack and the Status 
and Control Flags register are cleared. 

BPS has already been described; it is used to select either normal or split base page, for base page direct ad­
dressing. 

NHAL T is a bidirectional control signal used by interrupt and halt logic. As an input. NHALT can induce a Halt state, 
or in conjunction with CaNTIN, it can generate a level 0 (highest priority) interrupt request. When the CPU executes a 
Halt instruction, NHAL T is output high to identify the Halt state. The various uses of NHAL T and its interaction with 
CaNTIN are described in detail later in this chapter. 

The CONTIN signal is used to terminate a Halt condition and is also used as an output interrupt acknowledge 
signal. When CaNTIN is properly sequenced with the NHAL T signal. it initiates a high priority interrupt. as we men­
tioned in the preceding paragraph. CONTIN can also be used as a Jump condition input in the same way as JC 13, 14 
and 15, which are described next. 

JC13, 14 and 15 provide an interesting capability found in very few microcomputers discussed in this book: the con­
dition of these three inputs can be tested by a Branch-on-Condition (BOC) instruction, thus allowing external con­
trol signals to directly manipulate PACE program instruction sequences. 

F11, 12, 13 and 14 are the outputs for the corresponding flag bits in the Status and Control Flags register. 

NIR2, 3, 4 and 5 are the external interrupt request lines. Interrupt priority arbitration logic is included on the 
INS8900 (and PACE) chip. NIR2 has the highest priority of the external interrupt lines, and NIR5 has the lowest priority. 

INS8900 AND PACE TIMING AND INSTRUCTION EXECUTION 
PACE uses a combination of two clock signal inputs to time events internally within the 
microprocessor CPU. The clock signals and the resultant internal clock phases can be illus­
trated as follows: 

~ One Machine Cycle 

PACE 
CLOCK 
SIGNALS 

.. 
One Clock Period One Clock Period One Clock Period One Clock Period 

Internal Clock 

Phase 

I 

T1 

CLK-U 
I 

NCLKJ I 
I 
I 

1 
I 

\ 

T2 T3 I T4 

I 
I 

U 
I \ 
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T5 I T6 T7 I TS 

I I 
I 

U 
I 

LJ 
I 

\ 
I 

I \ I I \ r I 
I 



The INSS900 clock logic has been simplified. A single. uniform clock signal generates all timing as follows: 

One Machine Cycle ---
One Clock Period One Clock Period One Clock Period One Clock Period 

T1 I T2 T3 I T4 T5 I T6 T7 I TS 

I I I I 
1 __ - ...... ' 

CLKX J/ ) I rl l~--f' I , I 

Several points should be noted regarding INS8900 and PACE timing. The internal clock phases 
(T1 through TS) are meaningless to external logic since they are not accessible. nor are they 
needed for any external synchronization purposes. We have shown them merely because they 
will simplify later discussions of data input/output operations. Four clock periods constitute a 
single machine cycle. Most instructions require between four and seven machine cycles for ex­
ecution. 

So far as external logic is concerned. there are only three types of machine cycles which can 
occur during execution of an instruction: 

1) A data input operation (read) during which external logic must present a word of data to the 
CPU. 

2) A data output operation (write) during which the CPU transmits a word of data to external 
logic. 

3) An internal operation during which no CPU-initiated activity occurs on the System Bus. 

INSS900 
AND PACE 
MACHINE 
CYCLE 

INSS900 
AND PACE 
MACHINE 
CYCLE 
TYPES 

All instructions include one or more data input machine cycles. and two or more internal operation machine cy­
cles. Only a few instructions include data output machine cycles. The first machine cycle of any instruction's execution 
must. of course. be an instruction fetch operation - which to external logic is simply a data input cycle. Let us 
therefore begin by examining the data input machine cycle. 

Figure 1-5 illustrates timing for a standard data input machine cycle. Notice that the address INSS900 AND 
is only present on the data lines for the first portion of the machine cycle. The NADS signal is sent PACE DATA 
out approximately in the center of the time interval during which the address data is valid; INPUT CYCLE 
therefore. either the leading edge or trailing edge of NADS can be used to clock the address data. 
The IDS signal is sent out at about the same time as the address information is taken off the data lines - well before 
the time when input data is expected by the CPU. This gives external logic time to prepare the input data. The input 
data needs to be valid only for a short time interval later in the machine cycle. Exact timing is given in the data sheets 
at the end of this chapter. 

Internal Clock Tl T2 T3 T4 T5 T6 T7 Ta Tl T2 
Phase 

DOO - 015 

I I 

NADS L.J 
I I 
I I ) 1 " IDS I 

I I 
I 

Figure 1-5. INS8900 and PACE Data Input Timing 
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Figure 1-6 illustrates timing for a standard data output cycle. The address-output portion of 
the cycle is identical to that of the data input cycle just described: the ODS signal is sent out at 
the same part of the cycle as IDS was. At approximately the same time that ODS is sent out. the 
output data word is placed on the data lines. The output data remains valid beyond the end of the 
ODS signal so that the trailing edge of ODS can be used as the clock for external data latches. 

Internal Clock 

Phase 

000 - 015 

NADS 

ODS 

ddress Data Output Valid Output Data Valid 

LJJ 
I I 
I I 

I 
1,._-.... -00+--.. 
I 1\ 
I I 

Figure 1-6. INS8900 and PACE Data Output Timing 

The data input/output cycles just described allow approximately two clock periods for ex­
ternallogic to respond. If this time interval is too short, the EXTEND signal input to the CPU 
can be used to lengthen the I/O cycle by multiples of the clock period (one clock period equals 
two internal clock phases). The EXTEND signal can be placed high during address time or im­
mediately after the start of IDS or ODS, but it must be high before the end of internal clock 
phase 6 as shown in Figure 1-7. 

I 
DOO - 015 I 

(For Input Cycle) I 
I 

000 - 015 I 
(For Output Cycle) , 

I 

T2 I 
I 

I 
I 

T3 T4 T5 

Address Data Out 

Address Data Out 

One Clock One Clock 

Period 

T~I:~i'::1 1~T7 T6 

I I Input Data 

I I Valid I 
I I 

I Output Data Valid 

I 

NAOS; W: I 

T1 

INS8900 AND 
PACE DATA 
OUTPUT 
CYCLE 

INS8900 AND 
PACE EXTEND 
SIGNAL FOR 
SLOW I/O 
OPERATIONS 

T2 

I 

[ 
I 

[ 

I I I I I 

IDS/ODS : .... _ ..... ___ .. : --..,..--..,1~-~--""'--""'--""--"'\"'i __ ""1"" __ ..... 

I I I I I ...................... -
EXTEND I t: I 

Figure 1-7. Using the EXTEND Signal to Lengthen I/O Cycles 

The timing shown in Figure 1-7 provides the minimum I/O cycle extension of one clock period. 
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The maximum extension permitted by PACE is 2 microseconds; so with a clock period of 750 nanoseconds. this 
means that only two clock period extensions can be added to an input/output cycle. The second clock period extension 
is achieved by holding the EXTEND signal high for one additional clock period beyond the timing shown in Figure 1-7. 
The INS8900 has no maximum permitted extension. 

Notice that the EXTEND signa I does just what its name implies; it simply extends the duration of the data transfer por­
tion of an I/O machine cycle. The trailing edge of the IDS or ODS signal is delayed and. for data input. the time until 
valid input data must be present is delayed. On data output cycles. the valid data is simply maintained on the data lines 
by the CPU for an extended period of time. 

The EXTEND signal can also be used to suspend CPU input activity. This use of EXTEND will be described later 
under the heading of Direct Memory Access. 

THE INITIALIZATION OPERATION 
A NINIT low signal input to the CPU initializes the microprocessor. The NINIT signal is the equivalent of the Reset 
signal described for other microcomputers in this book. While NINIT is held low. CPU operations are suspended; IDS 
and ODS are reset low. NINIT must be held low for a minimum of eight clock periods to give the CPU time to respond. 
After NINIT goes high again. this is what happens: 

1) The internal Stack Pointer is cleared. 

2) All flags and interrupt enables are set low (except Level 0 Interrupt Enable which is set high). 

3) The Accumulators contain arbitrary values. 

4) The Program Counter is set to zero. 

5) 16 to 24 clock periods after NINIT returns high. the NADS signal is output high. The first instruction is thus fetched 
from memory location zero (000016), 

Figure 1-8 illustrates the timing for the initialization operation. Note that the NINIT signal is shown going low after 
power and clocks are both stable. The NINIT signal must be applied wher)ever the CPU is powered-up; if NINIT is held 
low before clocks and/or power have stabilized. the NADS and NHALT output signals may have undefined states for 
eight clock pulses after the trailing edge of NINIT. 

POWER 
AND CLOCKS 

NINIT 

NADS 

IDS/ODS 

Power and Clocks Stabilized 

8 Clock Periods 

~Minim;.:ti, 
J ' ..... 4f---16 to 24 Clock Periods ~ I 

~ Z 
7 

Begin to fetch instruction from 

memory address 0000
16 

Figure 1-8. INS8900 and PACE Initialization Timing 

THE HALT STATE AND PROCESSOR STALL OPERATIONS 
Most microprocessors described in this book have a Hold state, which typically describes a CPU condition dur­
ing which there is no CPU-initiated activity on the System Busses; external logic can then perform Direct 
Memory Access operations. The INS8900 and PACE CPUs have an equivalent state that can be initiated under pro­
gram control or by external logic. When this state is initiated under program control (by executing a Halt instruc­
tion) INS8900 and PACE literature calls it the Halt state; when initiated by external logic. it is called a Pro­
cessor Stall. 

During normal program execution. the CPU NHAL T control line provides a high output. When a 
Halt instruction is executed. the NHAL T output is driven low to indicate that CPU activity is sus­
pended. While in the Halt state. the NHAL T output has a 7/8 duty cycle; that is. every eighth clock 
phase. the NHAL T output goes high. If the NHAL T output is merely used to drive an indicator on a 
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control panel. this 7/8 duty cycle is of little concern; but. if the NHAL T signa I is used as a logic signal. the 7/8 duty cy­
cle must be accounted for. The Halt state is terminated by setting the CONTIN input signal high for a minimum of 
16 clock cycles, and then resetting it low for at least four clock cycles, as shown in Figure 1-9. CPU operation 
then resumes by executing the next instruction. that is. the instruction that follows the Halt instruction. 

CPU operation resumes ~ 

~
~. Halt instruction executed 

NHALT f\ n .. r-
(Output) '1 ~f ... _...J ~---.... (~ ~H 

I 1 Machine I 
I cycle 4 Clock 

CONTIN 
I If Cycles' 

~. {~16 Clock CYcieS'Minimum----=\:::jr I 
(Input) 

~Indefinite Duration~ , 

I I I 

Figure 1-9. Terminating INS8900 or PACE Halt State 

As we have just seen. the PACE NHAL T and CONTIN signals are interrelated. We men- NHAL T AND CONTIN 
tioned earlier that these signals are also multifunctional. We will describe separately SIGNALS ARE 
each of the functions that can be implemented with NHALT and CaNTIN. Do not use MULTIFUNCTIONAL 
these signals to implement more than one function unless your application absolutely 
requires the additional functions. Critical and complicated timing relationships are required by the CPU to differenti­
ate between various functions. For PACE. but not the INS8900. timing is further complicated by some circuit problems 
in the CPU's interrupt system. which we will describe later. 

The INS8900 and PACE CPU can be forced into the Halt state by external logic. INS8900 
and PACE literature defines this operation as a Processor Stall. A Processor Stall uses both 
NHAL T and CONTIN as control signal inputs. Figure 1-10 shows the timing sequence re­
quired. The NHAL T input must be driven low by external logic to initiate the sequence. CPU 
operation is then suspended after execution of the current instruction is completed. The minimum 

INS8900 
AND PACE 
PROCESSOR 
STALL 

response time is five clock cycles. The maximum response time is equal to the longest instruction execution time (refer 
to Table 1-2 ). There is no maximum time limit for a Processor Stall. The CPU simply remains in the Halt state until it is 
terminated by the CaNTIN input signal. which must be properly sequenced with the removal of the NHAL T input. as 
shown in Figure 1-10. 

Let us take another look at the beginning of the Processor Stall timing sequence. Notice 
that when the CPU has completed the current instruction and recognized the stall re­
quest, the CONTIN output signal is briefly driven low by the CPU. This pulse is referred 
to as ACK INT (Acknowledge Interrupt) and can be used to let external logic know that the 
CPU is responding to the stall request. It may seem inappropriate for the CPU to provide an 

PROCESSOR STALL 
AND LEVEL 0 
INTERRUPT 
SIMILARITIES 

Acknowledge Interrupt response when we are initiating a Processor Stall. However. as we shall see later in this chapter. 
a Level 0 Interrupt request begins with exactly the same timing sequence as a Processor Stall; in fact. the reac­
tion of the CPU is the same for both operations until that point in the sequence where NHAL T goes high. 
Therefore. the initial response of ACK INT is always sent out after NHAL T is driven low. 

DIRECT MEMORY ACCESS OPERATIONS 
At the beginning of our Halt state and Processor Stall discussion we mentioned that these are the equivalent of Hold 
states provided by other microprocessors. But there are some significant differences between the INS8900 and 
PACE Halt state. and the Hold state described for other microprocessors in this book. Because of these 
differences. Direc1 Memory Access operations with PACE or the INS8900 are not straightforward. 

The INS8900 and PACE CPUs never float their Data or Control Busses. But remember that the FLOATING 
design of any realistic INS8900 or PACE system is going to require buffer/drivers for the data lines INS8900 
and control signals. The BTE. which is part of the PACE microcomputer family. performs this AND PACE 
buffering function. SYSTEM 

Any bidirectional three-state buffer can be used to float INS8900 bus lines. In Figure 1-2. BUSSES 
INS8208 devices are shown performing this function. Thus it is the control signals input to the 
BTE by PACE or to the INS8208 by the INS8900 that actually float bus lines at the proper time. in order to allow DMA 
operations. 
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EXECUTION SUSPENDED ~ APPROX. 4 CYCLES 

EXECUTION 
PROCESSOR STALL ® DURATION I RESUME NORMAL OPN 

..... f----.......... --> 11 + ta CYCLES 

-:_ ~~f ~I--~mm~ 
",: .. _.--- DRIVEN LOW EXTERNALLY .. ~ .. ""'" NHAL T 
... _____________ ....J DRIVEN HIGH EXTERNALLY 

....I 

....I 

~ 

1-----:::: 3 ClK CYCLES 

(OR USING INTL. PULLUP) 

o 
~ 5+te 

CYCLES 2: 4 CYCLES 

CONTINUE DRIVEN 

EXTERNALLY 
..... f--......... --CONTINUE DRIVEN BY PACE -----__ ........ ----~ 

CONTINUE 
DRIVEN 

EXTERNAUY 

~: 

(EXTERNAL CIRCUITS HIGH IMPEDANCE) 

1. EXTERNAU Y GENERATED TTL INPUTS 

OVERRIDE PACE MOS OUTPUTS. 

2, ~ CROSSHATCH INDICATES "DON'T 

~ CARE" INPUT STATE. 

3. te = DURATION OF EXTEND DURING 

PACE I/O CYCLES. TIMING ASSUMES 

NO OTHER EXTENDS AND NO SUSPENDS. 

Figure 1-10. Timing Diagram for Processor Stall USing 
NHALT and CONTIN Signals 

CO NT 

But we must have a way of determining whether the CPU is going to be using the System Busses. There are 
several methods of making this determination; we will conceptually examine each of them within the context of three 
different DMA schemes: 

1) DMA block data transfers initiated by the CPU 

2) DMA block data transfers initiated by external logic 

3) Cycle-stealing DMA transfers 

From a hardware point of view, the simplest method of implementing DMA in a PACE or 
INS8900 system is to have the CPU initiate block transfers of data. Consider the following 
approach. The CPU will treat an external DMA controller as a peripheral device and will estab­
lish initial conditions such as starting address, word count. and direction (memory read or 
write). This information can be passed to the controller by treating its registers as memory 

CPU 
INITIATED 
DMA BLOCK 
DATA TRANSFERS 

locations and using Store instructions to write into the registers. When the required information has been passed, the 
CPU simply executes a Halt instruction. As we described earlier, when a Halt instruction is executed, the NHAL T 
control output line from the CPU is driven low (7/8 duty cycle). This signal could thus be used by the DMA con­
troller as an indication that the CPU will not be using the System Bus and the DMA transfer can begin. When the 
transfer is completed, the DMA controller will use the CONTIN input to the CPU, as shown in Figure 1-9 , to 
terminate the Halt instruction. Normal CPU operation will then resume. 
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Most microprocessor.s have a Bus Request input signal that can be used by external logic to re­
quest access to the System Busses. In a PACE or INS8900 system. the NHAL T input signal 
can be used to force the CPU into a Processor Stall. as described earlier. and thus free 
the System Busses for DMA operations. The Acknowledge Interrupt (ACK INT) pulse on 
the CONTIN output line shown in Figure 1-10 is then equivalent to a Bus Grant signal. 
and the DMA controller may begin the data transfer. When the transfer is complete. the 
CONTIN line is used as a control input line to the CPU to terminate the Processor Stall. 

Cycle-stealing DMA operations typically transfer a single word via the System Busses during a 
brief interval when the CPU is not using the busses. With this method. CPU operations need 
not be stopped; instead. they are only slowed down slightly. or in some cases not affected at 
all. In order to implement cycle-stealing DMA. external logic must have a way of detect­

DMA BLOCK 
DATA TRANSFERS 
INITIATED BY 
EXTERNAL LOGIC 
IN PACE AND 
INS8900 
SYSTEMS 

CYCLE-STEALING 
DMA IN PACE 
AND INS8900 
SYSTEMS 

ing those time intervals when the CPU will not be using the System Busses. There are' '--------... 
two ways that this can be accomplished with the INS8900 or PACE CPU. The first method involves the use of the EX­
TEND input signal to the CPU to suppress or suspend input/output operations; the second method uses a special tech­
nique to sense when the CPU is beginning an internal (non-I/O) machine cycle. 

Earlier we described how to use the EXTEND input signal to lengthen the CPU input/output cy­
cles. The EXTEND signal can also be used to prevent the CPU from beginning an I/O cycle. and 
thus ensure that the System Busses will be available to external devices for DMA operations. 

Figure 1-11 illustrates both uses of the EXTEND signal. The CPU looks at the EXTEND input sig­
nal at internal clock phases T1 and T6. Notice that during I/O cycles the IDS or ODS signal goes 
high at the beginning of T6 and low at the beginning of T1. If EXTEND is high during T6. then ex­
tra clock cycles are inserted after T8; this is the method that would be used to lengthen an I/O cy-

EXTEND USED 
TO SUSPEND 
INS8900 AND 
PACE I/O 
DURING DMA 
OPERATIONS 

cle. If EXTEND is high during T1. then extra clock cycles are inserted between T3 and T4; this is the method we would 
use for DMA operations. 

The trailing edge of IDS/ODS indicates that the CPU has just completed an I/O cycle and is therefore not using the 
System Busses at this instant. By setting EXTEND high at this time. we suppress the beginning of another I/O cycle 
while we use the busses for a DMA transfer. 

Notice that we are merely lengthening the beginning of the machine cycle. and thus delaying that part of the machine 
cycle where the CPU might begin I/O activity. We do not know whether the current machine cycle will be an internal 
machine cycle or an I/O cycle. and we do not care. We have merely stolen the busses by slowing down the CPU. 

750 nsec 1.5 j1.sec 

Internal I . I ~ ~ I I .. ~I I 
Clock Phase :T1 T2 T3 T4 T5 T6 T7 T8 EEl T1 T2 T3 E E T4 T5 T6 T7 T81T1 T2 T3 E E E E T4 T5 T61 

, I I I 
IDS/ODS I j...---"" 

CPU I/O CYCLE CPU I/O CYCLE CPU I/O CYCLE 
EXTENDED ONE CLOCK DELAYED ONE CLOCK DELAYED TWO CLOCK 

PERIOD PERIOD PERIODS 

BUS 
I ! .. .1 C .l AVAILABLE 

1.5 j1.sec 2.25 j1.Sec 

Figure 1-11. Using PACE EXTEND Signal for Cycle-Stealing DMA 
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There are two draw\Jacks inherent in the EXTEND method of cycle-stealing DMA. First. whenever we use the System 
Busses for a DMA transfer. we slow down the operation of the CPU. Second. we must wait until the CPU has just com­
pleted an input/output cycle before we can perform the cycle steal. Since only about one-third of the CPU machine cy­
cles are used for 110. this means that bus access for DMA will be quite limited. Both of these drawbacks can be elimi­
nated if we can find some technique for determining when the CPU is performing an internal (non-I/O) machine cycle. 
We could then use the System Busses any time that the CPU is not using them (which is more than 60% of the 
time) and we could perform the 'DMA transfer without slowing down CPU operations. We shall now describe 
just such a technique. 

We stated earlier in this chapter that the internal clock phases (T1 through T8) are not availa­
ble to external logic. However. National Semiconductor data sheets include a figure that shows 
circuits for internal drivers and receivers. A detailed examination of this figure reveals a very 
interesting and useful fact: the JC13 (Jump Condition 13) pin on the CPU is intended as an in­
put signal: but because of the way in which the receiver for this signal is designed. it also pro­
duces an output pulse on the JC13 pin during every machine cycle. The output pulse occurs 
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during T4 of each machine cycle. and we can use this fact to design a very efficient cycle-stealing DMA arrangement. 

~~-------------------------------------------------- BUS REQUEST 
(From DMA Device) 

NADS D Q ~----------------------~~~BUsGRANT 
(To DMA Device) 

CLR 

CLK 

DIVIDE-BY -FOUR 

CLR 

NINIT -----------------1 ........ -------------' 
TCLK--------------------------------------------------~ 

(From STE) 

Figure 1-12. Idealized Circuit for Cycle-Stealing DMA During INS8900 and 
PACE Internal Machine Cycles 

Figure 1-12 shows a circuit that uses the output pulse provided by JC13 to implement cycle-stealing DMA. Recall 
that the CPU sends out a negative-going NADS pu Ise at T4 of every input/output cycle. This NADS signal is ANDed in 
our circuit with an external device's DMA Bus Request and applied to the D input of a flip-flop. The JC13 output pulse. 
which also occurs at T4. is inverted via a transistor and applied to the clock input of the flip-flop. Thus. if NADS is high 
at T 4 (indicating that the current CPU machine cycle is not an I/O cycle) the flip-flop will be set if there is a Bus Request 
present. The output of this flip-flop is then used by external logic as a Bus Grant signal and the DMA transfer can be in-
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itiated. Since we do not know whether or not the next cycle will be a CPU I/O cycle. we must terminate DMA activity on 
the bus prior to the next T4 time. In Figure 1-12. this is accomplished using a divide-by-four counter. 

The ClK input to the counter is a combination of the Bus Grant signal and the TClK signal which is available from the 
PACE STE. This results in the timing shown in Figure 1-13. Notice that this scheme makes the bus available for about 
7/8 of a machine cycle. or approximately 2.25 microseconds. If you refer back to Figure 14-10 you will notice that this 
is about the same length of time as was obtained by using the maximum du ration of EXTEND. So. we have not in­
creased the maximum time available for a DMA transfer. But. we have made two significant gains: DMA transfers can 
occur more frequently. and these transfers do not slow down CPU operations. 

We must add a final note of caution to the description of this otherwise straightforward DMA technique. There are 
several critical timing paths in the idealized circuit shown in Figure 1-12. Both the JC 13 pulse and the NADS signal 
occur at T4. although the trailing edge of NADS does occur slightly after the trailing edge of JC13. Therefore. the com­
ponents used to provide ClK and D inputs to the flip-flop must be selected carefully to ensure that there is not a race 
condition. Additionally. we have shown the Bus Grant signal being reset at the end of T3. Since the leading edge of 
NADS occurs at T4. this timing relationship can be critical. However. if external devices such as address latches and 
decoders use the trailing edge of NADS. this timing should present no problems. 

T3 T4 T5 T6 T7 TB T1 T2 T3 T4 T5 T6 T7 TB T1 T2 T3 T4 T5 

NClK 

(TClK*) 

ClK 

(TClK) 

JC13 ~~ ____________ ~r-\~ ____________________ __ 

T1 

NADS 

BUS REO 

BUS GRANT 

~ 2.25 fLsec for DMA Transfer 

Figure 1-13. Timing for Cycle-Stealing DMA During INS8900 and PACE Internal Machine Cycle 

THE INS8900 AND PACE INTERRUPT SYSTEM 
The INS8900 and PACE CPUs have complete on-chip interrupt systems. Six separate levels of interrupts are 
provided: one internal and five external interrupt request inputs. including a non-maskable input. Priority logic is 
provided on the CPU. and all interrupts are vectored. thus eliminating any polling requirements. Because of the 
various ways in which interrupts can be initiated. and also because of a few problems that exist in the PACE in­
terrupt system. we will divide our description of the system into three parts: 

1) Low priority external interrupts 

2) Internal (Stack) interrupts 

3) Non-maskable (Level 0) interrupts 

But first. let us take an overview of the INS8900 and PACE interrupt system. 

1-19 



IRO 

INT 
ENABLE 

lEN 

INTERRUPT 
LEVEL 0 (TO CPU'S INTERNAL 
INTERRUPT CONTROL CIRCUIT) 

" REQUEST .-. 
(lRO) 

NHALT J "" 

STACK FULL OR 
EMPTY INT REQ , 
(INTERNAL TO PACE) 

s 

f-IR1 t-H 

R 
i'"" 

~ 

IE1 4 

~ 

NIR2 )-[>0- S j INTERRUPT 
IR2 PRIORITY . f POINTEA ..... R ENCODER 

ADDRESS .- ~ .... ~ 
IE2 ~ .... -

) 

( NIR3 }[>0- S 
IR3 

i'"" R 

IE3 

)-£>0-NIR4 S 
IR4 

.... R 

IE4 

)-1>0-( NIR5 S 
IR5 

i'"" 
R 

IE5 

Figure 1-14. Internal View of INS8900 and PACE Interrupt System 
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Figu re 1-14 depicts the interrupt log ic that is contained on the CPU. The highest priority in-· 
terrupt request is the non-maskable Level 0 interrupt request, which is initiated using 
the NHALT control input to the CPU. The lowest priority interrupt request is NIR5. 

The Stack Interrupt and each of the four lower-priority external interrupt requests can be 
individually enabled or disabled by setting or clearing associated bits (lE1 - IE5) in the 
Status and Control Flag register. Notice in Figure 1-14 that these bits are shown as provid­
ing the 'R' input to a latch. The'S' input to each of these latches is the actual interrupt request 
line. The significance of this is rather subtle. It means that an interrupt request need not supply 
a continuous low level until it is acknowledged. Instead, any pulse exceeding one PACE clock 
period will set the associated interrupt request latch: this allows narrow timing or control 
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pulses to be used as interrupt request inputs. Note, however, that the 'R' input to the latches overrides the'S' input. 
Therefore, if the individual Interrupt Enable flag is reset. it not only prevents the latch from being set by interrupt re­
quests, it will also clear a previously latched request that mayor may not have been serviced. If this logic is not clear to 
you, you shou Id study the characteristics of the RS flip-flop. 

A master interrupt enable (lEN) flag is also provided in the Status and Control Flag register. lEN must be set true 
to allow any of the latched interrupt requests to be recognized by the CPU. 

The CPU checks for interrupts at the beginning of every instruction fetch. If an interrupt request is 
present (and enabled!. the instruction fetch is aborted, the contents of the Program Counter are 
pushed onto the Stack, and the master interrupt enable (lEN) is set low. The CPU then loads the 
Program Counter with the address vector for your interrupt service routine and executes the in­
struction contained at that address. (We'll describe the address vectors in the next paragraph.) 

INS8900 AND 
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The interrupt request just described requires a total of 28 clock cycles from the time the interrupt is recognized by the 
CPU until the time when the first instruction of your interrupt service routine begins execution. 

Memory locations 000216 through 000816 are used as pointer locations or address vectors. 
You load each of these locations with the starting address of the interrupt service routine for each 
interrupt as follows: 

MEMORY LOCATION 

2 
3 
4 
5 
6 
7 
8 

INTERRUPT POINTER FOR 

Stack Interrupt 
NIR2 
NIR3 
NIR4 
NIR5 
Level 0 Program Counter Pointer l 
Level 0 Interrupt Origin r 

Special 
case 

INS8900 
AND PACE 
INTERRUPT 
POINTERS 

The level 0 interrupt is a special case which we will describe on its own. But first let us look at interrupts in 
general. 

When the CPU responds to an interrupt. it loads the Program Counter with the contents of memory locations 2 through 
6, depending on the specific level of interrupt that is being acknowledged. Control is thus vectored to the proper ser­
vice routine. Suppose, for example, memory location 4 contains the value 2A3016. If an interrupt request occurring at 
pin NIR3 is acknowledged, then during the acknowledge process the contents of the Program Counter are saved on the 
Stack, following which the value 2A3016 is loaded into the Program Counter. Had the value 472816 been in memory 
location 4, then 472816 would have been loaded into the Program Counter instead of 2A3016. Thus. whatever memo­
ry address is stored in the memory location associated with the interrupt being acknowledged. this address will be 
loaded into the Program Counter, becoming the starting address for the specific interrupt service routine to be ex­
ecuted. 

As part of the interrupt response we've just described. the CPU sends out a low-going pulse on 
the CONTIN line. Refer back to Figure 1-10 and associated text for a description of the ACK 
INT pulse. The last instruction executed by your interrupt service routine must be a Return­
from-Interrupt (RT!) instruction. This instruction sets lEN high to re-enable interrupts. then 
pulls the top of the Stack into the Program Counter. This returns program control to the point 
where it was interrupted. The RTI instruction does not clear the internal Interrupt Request 
latch; therefore your interrupt service routine must reset the latch (using a Pulse Flag instruc­
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tion), or the same interrupt request will still be present after the RTI instruction has been executed. Once the latch has 
been cleared. it can then be re-enabled for subsequent interrupt requests. 
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The interrupt sequence does not save the contents of any registers except the Program Counter. If 
the program that was interrupted requires that the contents of CPU registers be saved and then 
restored. your interrupt service routine must perform these operations. 

SAVING 
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DURING 
INTERRUPTS 

The CPU's response to a Stack interrupt is as described for external interrupts. However. the inter­
rupt request is generated internally by the CPU chip; it can be caused either by a Stack Full or a 
Stack Empty condition. Remember that the 10-word Stack is part of the CPU chip. It consists of an 
internal RAM and a pointer that can address Stack words 0 through 9. A Stack Empty interrupt re- INS8900 AND 
quest is generated whenever the pointer is at 0 and a Pull instruction is executed. A Stack Full in- PACE STACK 
terrupt request occurs when the pointer is at 7 (eight entries on the Stack) and a Push instruction INTERRUPTS 
is executed to fill the ninth word. The tenth word of the Stack will then be used as part of the in-
terrupt response to store the Program Counter contents. Unless you intend to extend the Stack out 
into main memory. your application program will not require a Stack Empty or Full interrupt. These interrupts become 
error conditions and can be avoided by careful programming. 

If your program is treating the Stack Empty and Stack Fu II interrupts as error conditions. then you can disable Stack in­
terrupts. in which case the full ten words of the Stack are available for nested interrupts and subroutines. Of course. 
this means that a Stack Full or Empty condition. should it occur. will become an undetected error. with unpredictable 
consequences. 

When using PACE. but not the INS8900. there is an additional reason for not using the Stack in­
terrupt capability unless you really need it. PACE has an internal circuit problem that can cause 
improper interrupt response. If a Stack interrupt request occurs at the same time as an NIR3 
or NIR5 interrupt request, the Stack interrupt address vector will be incorrectly accessed 
from location 0 instead of location 2. The solution recommended in PACE literature is to load 
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both of these locations with the Stack interrupt vector. This apparently straightforward solution is complicated by the 
fact that location 0 also happens to be the initialization address; whenever the CPU is initialized. the first instruction ex­
ecuted is the one that is contained in location O. Thus. the word in location 0 must serve a dual purpose: 

1) It serves as an instruction whenever the CPU is initialized. 

2) It serves as an address vector if a Stack interrupt occurs at the same time as NIR3 or NIR4. 

Here's an example. The object code for a Copy Flags to Register (CFR) instruction is 040016. So. if locations 0 and 2 
both contain a value of 040016 the problem is solved. Your Stack interrupt service routine would have to begin at 
memory address 040016. but you would be correctly vectored to that address regardless of whether or not the inter­
rupt error we've just described occurs. On initialization. the first instruction executed would be the CFR instruction: this 
is not a very useful initialization instruction. but at least no damage is done. 

For a fuller discussion of this interrupt problem and the solution. refer to PACE literature. Also keep in mind that 
the problem has been fixed in the INS8900. 

The non-maskable (Level 0) interrupt cannot be disabled and differs from the other interrupt levels both in the 
way it is initiated and in the way the CPU responds to it. 

The Level 0 interrupt request is initiated using the NHAL T control input signal in com­
bination with the CONTIN input line. Figure 1-15 shows the timing relationships bet­
ween NHAL T and CONTIN that are required to initiate the non-maskable interrupt. If you 
compare this figure with Figure 1-10. you will notice that the Level 0 interrupt request and 
the Processor Stall begin in exactly the same way; NHAL T is driven low by external logic and 
held low for some time after a low-going pulse (ACK INT) has been sent out on the CONTIN 
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line. The only difference between the two operations is towards the end of the timing sequence. For a Processor Stall. 
NHAL T is allowed to return high whi.le CONTIN is still high; for a Level 0 interrupt. the CONTIN line must be driven low 
by external logic before the NHAL T line is allowed to go high. This critical timing sequence is the only way that the CPU 
has to differentiate between a Processor Stall and a Level 0 interrupt. Notice that this Level 0 interrupt timing sequence 
never requires external logic to drive CONTIN high. Therefore. if you're using the CONTIN line for any of its other multi­
ple functions (including the ACK INT output pulse) you can merely tie CONTIN to ground and Use NHALT to initiate the 
Level 0 interrupt. 

The response of the CPU to the Level 0 interrupt is subtly different from its response to 
other interrupts. These subtle differences are related to the slightly different purpose of a non­
maskable interrupt versus a normal program interrupt request. A non-maskable interrupt is 
typically used only when there is a catastrophic error or failure (such as loss of power) or to imple­
ment a control panel for program development or debug purposes. Both of these uses require that 
an asynchronous. unplanned program termination have a minimum effect upon system status; 
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that is. you want to leave behind a picture of the system as it looked immediately before the program termination oc­
curred. 
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Remember that other levels of interrupts store the contents of the Program Counter or the Stack and reset the lEN flag 
in the Status and Control Flag register. This sequence obviously alters the "picture" of the CPU, since both Stack con­
tents and Status and Control Flag register contents are changed. To avoid this, the Level 0 interrupt response by the 
CPU uses an external memory location to store the contents of the Program Counter. Memory location 000716 holds 
the address of the memory word where the Program Counter will be stored. The contents of the Status and Control Flag 
register are unaltered. CPU internal circuitry resets an "IRO INT ENABLE flag to prevent another interrupt from being 
recognized (refer to Figure 1-16). but this is not discernible to you. After the Program Counter has been saved in the 
designated memory location, the instruction contained in memory location 000816 is executed: this is the first instruc­
tion of your Level 0 interrupt service routine. Suppose, for example, that memory location 000716 contains the value 
FF0016. Following a Level 0 interrupt request. the Program Counter contents will be stored in location FFO016. Follow­
ing the Level 0 interrupt acknowledge, the actual instruction stored in memory location 000816 is executed. 

Note that the Level 0 interrupt acknowledge sequence has not altered anything within the CPU that is discernible to 
you or to a program: the Stack, Accumulators, and Status and Control Flag register are all unchanged. Additionally, 
avoiding use of the Stack ensures that there will not be a Stack overflow - and in consequence a Stack interrupt will 
not be generated by this interrupt response sequence. 

The normal Return-from-Interrupt (RTIl instruction that must be executed at the end of your inter- RETURN FROM 
rupt service routine causes the Program Counter to be restored from the Stack Since the Level 0 PACE LEVEL 0 
interrupt sequence does not utilize the Stack to store the Program Counter, a different tech- INTERRUPT 
nique must be used to return control to the interrupted program. First you must execute a Set 
Flag (SFLG) or Pulse Flag (PFLG) instruction, referencing bit 15 in the Status and Control Flag register. This bit always 
appears to be set to a '1', but must be referenced in this case to enable lower levels of interrupts. Next you must ex-
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ecute a Jump Indirect (JMP@) through the location pointed to by the contents of memory location 000716 to restore 
the original Program Counter contents. 

PACE. but not the INS8900. has some Level 0 interrupt circuit problems. 

If a Level 0 interrupt occurs within the 12-clock-cycle period following the recognition of 
any other interrupt, PACE will either perform a Processor Stall (which we described earlier) 
or PACE will execute the Level 0 interrupt - but using the wrong pointer address. In short. 
you don't know what might happen under these circumstances. There is a solution for this prob-
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lem. It requires that external logic allow NHALT to be applied to the PACE CPU only while the NADS signal is present. 
provided no Acknowledge Interrupt (ACK INT) has occurred since the last NADS pulse. ACK INT is accompanied by a 
negative-going pulse on the CONTIN line. Sound complicated? It is. 

The circuit shown in Figure 1-16 is reproduced from PACE literature and solves the problem we've just described. We 
won't attempt to describe here how this circuit solves the problem. Note that this circuit only takes care of Level 0 in­
terrupt problems; if you also want to use NHAL T and CONTIN to cause a Processor Stall. you must design additional ex­
ternal logic. 

Once again, we must advise that these interrupt system problems exist in PACE CPU chips. The INS8900 has 
none of these problems. 

THE INS8900 AND PACE INSTRUCTION SET 
Table 1-1 summarizes the INS8900 and PACE instruction set. 

The primary memory reference instructions have typical minicomputer addressing modes. These instructions will also 
be used as I/O instructions. since external devices are identified via selected memory addresses . .... _____ '" 

In Table 1-1 . "direct addressing options" means the instruction can reference memory using any 
of the direct or direct indexed addressing options described earlier. 

"Indirect addressing options" similarly specifies any of the indirect addressing options described 
earlier. 

Both Branch and Skip instructions are provided. and each differs significantly from the philoso­
phies described in Volume 1, Chapter 6. 
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There are 16 conditions that can cause a Branch, as shown in Table 1-3 . Notice that three of the conditions are deter­
mined by external inputs JC 13. 14. and 15. If a Branch-on-Condition is true. then the displacement which is added to 
the Program Counter is an 8-bit signed binary number as described in Volume 1. Chapter 6. 

There are three varieties of Skip-on-Condition instructions. SKNE. SKG and SKAZ compare the contents of an Ac­
cumulator to a memory location which is addressed using direct or direct indexed addressing. Based on the results of 
the comparison. the instruction following the Skip mayor may not be executed. These three instructions are therefore 
combined Skip and Memory Reference instructions. 

ISZ and DSZ identify a memory location using direct or direct indexed addressing; the contents of the addressed 
memory location are incremented (ISZ) or decremented (for DSZ); if after the increment or decrement operation the 
memory location contains a 0 value. then the Skip is performed. 

The AISZ instruction adds an 8-bit. signed binary number to the contents of an Accumulator; if the result is 0, a Skip is 
performed. 

These Skip instructions will be very familiar to minicomputer programmers. and on most microcomputers are 
equivalent to a secondary Memory Reference or Immediate Operate instruction. followed by a Branch-on-Condition in­
struction. 
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The following symbols are used in Table 1-1 : 

ACO Accumulator 0 

C Carry status 

CC 4-bit Condition Code described in Table 15-3 

D Any Destination register 

DATA8 8-bit binary data unit 

DISP(X) Direct or indexed addressing operands as explained in the text. 

@DISP(X) Indirect addressing operands as explained in the text. 

EA The effective address generated by the specified operands. 

f 4-bit quantity selecting a bit in the Flag Word. 

FW Flag Word described in the text. 

lEN Interrupt Enable status 

I A 1-bit unit determining whether LINK is included in the shift/rotate. 

L Link status 

n Seven bits determining how many single bit shift/rotates are performed. 

o Overflow status 

PC Program Counter 

Any register of the Accumu lator: ACO. AC 1. AC2 or AC3 

S Any Source register 

ST Top word of on-chip Stack. 

x < y.z > Bits y through z of the quantity x. For example. r< 7.0> is the low-order byte of the specified register. 

[ ] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the brackets. 
then the contents of the addressed memory location are specified. 

£[ ]] Implied memory addressing; the contents of the memory location designated by the contents of a register. 

A Logical AND 

V Logical OR 

.:v- Logical Exclusive-OR 

Data is transferred in the direction of the arrow. 

Data is exchanged between the two locations designated on either side of the arrow. 

Under the heading of STATUSES in Table 1-1 . an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X. it means that the status maintains the value it had before the instruction was ex­
ecuted. 
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Table 1-1. INS8900 and PACE Instruction Set Summary 

STATUSES 
TYPE MNEMONIC OPERAND(SI BYTES OPERA nON PERFORMED 

c 0 L 

LD r.DISP(X) 2 [rl-[EA] 

w Load any Accumulator, direct addressing options. 
0 LD O,@DISP(X) 2 [ACO]-[EA] z w Load Primary Accumulator, indirect addressing options. > II: 

II: W 0 ST r,DISP(X) 2 [EA]-[rl 
c( ~ --
::; ~ ;; Store any Accumulator. direct addressing options. 
ii: > Z 
Q. II: c( 

ST O,@IDISP(X) 2 [ EA]-[ACO] 
0 Store Primary Accumulator, indirect addressing options. 
:!: 
W LSEX O,DISP(X) 2 [ACO]-[ EA](sign extended) 
:!: Load a signed byte into Primary Accumulator; extend sign bit into high order byte. Direct 

addressing options. 

N 
-..J 

ADD r.DISP(X) 2 X X [r]-[r]+[EA] 
w _ Add to any Accumulator. direct addressing options. o W 

[ACO]-[ ACO]-:-l EA]-.- [C) z I- DEC A O,DISP(X) 2 X X > W c( 
Add decimal with Carry to any Accumulator, direct addressing options. II: II: II: 

c( ~ ~ SUBB O,DISP(X) 2 X X [ACO]-[ACO] - [EA].+lC] o W 0 
Z II: > Subtract from Primary Accumulator with borrow, direct addressing options. o > II: o II: 0 AND O,DISP(X) 2 [ACO]-[ACO]/\ [EA] 

~ ~ ! AND with Primary Accumulator, direct addressing options. 
w:!: 
:!:- OR O,DISP(X) 2 [ACO]-[ ACO] V [EA] 

OR with Primary Accumulator, direct addressing options. 

_LI r,DATA8 2 [r< 7,0>]- DATA8 (sign extended) 

W Load immediate into any Accumulator. DATA8 is an 8-bit signed binary value. The sign bit 
I- is propagated through 8 high order bits. e( 

C JMP DISP(X) 2 [PC]-EA 
W 

Jump by loading the effective difect address into the Program Counter. :!: 
~ JMP @DISP(X) 2 [PC]-EA 

Jump by loading the effective indirect address into the Program Counter. 

... -_._-- ------ --------- ------_._---



Table 1-1. INS8900 and PACE Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(SI BYTES OPERATION PERFORMED 

C 0 L 

JSR DISP(XI 2 [STl-[ PCl 

I&IQ 
[PC]-EA 

1-1&1 Jump to subroutine direct. As JMP direct. but push old Program Counter contents onto 

~i Stack. 

~~ JSR @OISP(X) 2 [STJ-[ PC] 

~O [PC]-EA 
-g 

Jump to subroutine indirect. As JMP indirect. but push old Program Counter contents onto 
Stack. 

1&1 CAl r.DATAB 2 [rl-[ r] +DATAB (sign extended) 
1-1&1 c( ..... Complement contents of any register. then add immediate data. 

~ 
co 

Q~ 
1&11&1 
~o. 
~O 

Zz SOC CC.DISP 2 If CC true: then [PCJ- EA 
00 Branch on CC true. as defined in Table 14-3. 

iSE 
ZQ 
c(Z 
a:0 
II:IU 

1&1 
SKNE r.DISP(X) 2 If [rl " [EA]: then [PC]-[ PC] + 1 U 

Z 
Skip if any Accumulator not equal. 1&1 

a:o.i= SKG O.DISP(X) 2 If [ACO] > [EA]: then [PC]-[PC]+ 1 ~i2~ 
~U) ..... Skip if Primary Accumulator greater. 
>01&1 SKAZ O.DISP(X) 2 If ([ ACO] /\ (EA]) = 0: then [PC]-[ PC] + 1 a:ZI&I 
Oc(5!l Skip if AND with Primary Accumulator is zero. 
~ 
1&1 

~ 
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RXCH 

RADD 

RADC 

RAND 

RXOR 

SHL 
SHR 
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OPERAND(S) 

DISP(X) 

DISP(X) 

r.DATA8 

S.D 

S.D 

S.D 

S.D 

S.D 

S.D 

r.n.1 
r.n.1 

r.n.' 
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Table 1-1. 'INS8900 and PACE Instruction Set Summary (Continued) 

BYTES 

2 

2 

2 
2 

2 

C 

x 

x 

STATUSES 

o 

x 

x 

L 

x 
X 
X 
X 

OPERATION PERFORMED 

[EA]-[ EA]+, 
If [EA] = 0; then [PC]-[ PC]+ 1 

Increment memory. skip if zero. 
[EA]-[ EA] - , 

If [EA] = 0; then [PC]-[ PC] + 1 

Decrement memory. skip if zero. 

[rl-[ r]+DATA8 
If [r] =0; then [PC]-[PC]+l 

Add immediate to any Accumulator. Skip if zero. DATA8 is an 8·bit signed binary immedi­

ate data value. 

[D]-[S] 

Move contents of any Accumulator (S) to any Accumulator (D). 
[D]--[S] 

Exchange contents of any Accumulators. 

[D]-[S]+[D] 

Binary add any Accumulator to any Accumulator. 
[D]-[S1+[D]+[C] 

Binary add with Carry any Accumulator to any Accumulator. 
[D]-[S] 1\ [D) 

AND any Accumulator with any Accumulator. 
[D]-[S] ¥[D] 

Exclusive-OR any Accumulator with any Accumulator. 

Shift any Accumulator left n bits. Simple if 1 = 0; through Link if 1 = 1. 

Shift any Accumulator left n bits. Simple if 1 = O. through Link if , = 1. 

As SHL. but rotate. 
As SHR. but rotate. 



Table 1-1. INS8900 and PACE Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

C 0 L 

PUSH r 2 [ST]-[r] 

Push any Accumulator contents onto Stack. 
PUSHF 2 [ST1-[FW] 

Push flags onto Stack. 

PULL r 2 [r1-[ST] 

~ Pull top of Stack into any Accumulator. u 
~ PULLF 2 X X X [FW]-[ST1 
en Pull top of Stack into flags. 

XCHRS r 2 [ST1--[r] 

Exchange contents of any Accumulator with top of Stack. 
RTS DISP 2 [PC]-[ ST1 + DISP .... 

iN 
o 

Return from subroutine. Move sum of DISP and top of Stack to PC. DISP is an a-bit signed 
binary number. 

I-
RTI DISP 2 [PC]-[ ST]+ DISP ~ 

:I 
[IEN]-1 II: 

II: 
Return from interrupt. Like RTS. but enable interrupts. w 

I-
~ 

CFR r 2 [r1-[FWI 

Copy flags to any Accumulator. 
CRF r 2 X X X [FW]-Er1 

en 
Move any Accumulator contents to flags. :::I 

I- SFLG f 2 [FW<f>1-1 c( 
I-

Set flag I to 1. (f= 0 to 15). en 
PFLG f 2 [ FW < f>]- 1 for lour clock periods 

Pulse flag f (invert flag status for four clock periods). (f = 0 to 15). 

HALT 2 Halt 



The following symbols are used in Table 1-2: 

aa Two bits choosing the destination register. 

bb Two bits choosing the Index register 

cccc Four bits choosing the Condition Code. See Table 1-3. 

ee Two bits choosing the source register. 

ffff Four bits selecting a bit in the Flag Word. 

One bit determining whether Link is included in a shift or rotate. 

nnnnnnn 
pp 

00 
x 

xx 

Seven bits determining how many single bit shifts or rotates are performed. 

8-bit signed displacement 

Eight bits of immediate data 

A "don't care" bit 

A "don't care" byte 

Table 1-2. INS8900 and PACE Instruction Set Object Codes 

MACHINE CYCLES 
INSTRUCTION OBJECT CODE BYTES 

TOTAL INTERNAL INPUT OUTPUT 

ADD r,DISP(X) 1110aabb 2 4 2 2 
pp 

AISZ r,DATA8 0111"108a 2 5/6 4/5 1 
GG 

AND O,DISP(X) 101010bb 2 4 2 2 
pp 

BOC CC,DISP 0100cccc 2 5/6 4/5 1 
pp 

CAl r,DATA8 011100aa 2 5 4 1 

GO 
CFR f 000001aa 2 4 3 1 

XX 

CRF f 000010aa 2 4 3 1 

XX 

DECA O,DISP(X) 100010bb 2 7 5 2 
pp 

DSZ DISP(X) 101011bb 2 7/8 4/5 2 1 
pp 

HALT ()()()()()()xx 2 - 1 

XX 

ISZ DISP(X) 100011bb 2 7/8 4/5 2 1 
pp 

JMP DISP(X) 000110bb 2 4 3 1 
pp 

JMP ((/lOISP(X) 100110bb 2 4 2 2 
pp 

JSR DISP(X) 000101bb 2 5 4 1 
pp 

JSR ~IJOISP(X) 100101bb 2 5 3 2 
pp 

LD r,DISP(X) 1tOOaabb 2 4 2 2 
pp 

LD O,OOISP(X) 101000bb 2 5 2 3 
pp 

LI r,DATA8 010100aa 2 4 3 1 

00 
LSEX O,DISP(X) 101111bb 2 4 2 2 

pp 

OR O,DISP(X) 10100tbb 2 4 2 2 
pp 
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Table 1-2. INS8900 and PACE Instruction Set Object Codes (Continued) 

MACHINE CYCLES 
INSTRUCTION OBJECT CODE BYTES 

TOTAL INTERNAL INf:»UT OUTPUT 

PFLG f oollffff 2 6 5 1 

Oxxxxxxx 

PULL r 01100laa 2 4 3 1 

XX 

PULLF 000looxx 2 4 3 1 

XX 

PUSH r 011000aa 2 4 3 1 

XX 

PUSHF 0000llxx 2 4 3 1 

XX 

RADC S,D 0011101aa 2 4 3 1 

eexxxxxx 

RADD S,D 011010aa 2 4 3 1 

eexxxxxx 

RAND S,D 010101aa 2 4 3 1 

eexxxxxx 

RCPY S,D 010111aa 2 4 3 1 

eexxxxxx 

ROL r,n,1 ool000aa 2 5+3n 4+3n 1 

nnnnnnni 

ROR r,n,1 00loolaa 2 5 + 3n 4+3n 1 

nnnnnnni 

RTI 011111xx 2 6 5 1 
pp 

RTS 100000xx 2 5 4 1 

PP 

RXCH S,D 011011aa 2 6 5 1 

eexxxxxx 

RXOR S,D 010110aa 2 4 3 1 

eexxxxxx 

SFLG f oollffff 2 5 4 1 

1xxxxxxx 

SHL r,n,1 oo1010aa 2 5+ 3n 4+3n 1 

nnnnnnni 

SHR r,n,1 oo1011aa 2 5+3n 4+3n 1 

nnnnnnni 

SKAZ O,DISP(X) 101110bb 2 5/6 3/4 2 

PP 

SKG O,DISP(X) 100lllbb 2 7/8 5/6 2 
pp 

" 

SKNE r,DISP(X) 1111aabb 2 5/6 3/4 2 
PP 

ST r,DISP(X) 1101aabb 2 4 2 1 1 

PP 

ST O,@\DISP (X) 101100bb 2 4 1 2 1 
pp 

SUBB O,DISP(X) 1ool00bb 2 4 2 2 
PP 

XCHRS r 000lllaa 2 6 5 1 

XX 

·AII instructions may take additional cycles if Extend Read and Extend Write are implemented. 
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Table 1-3. Branch Conditions for INS8900 and PACE BOC Instruction 

Condition Mnemonic Condition 
Code (CC) 

0000 STFL Stack Full (contains nine or more words). 
0001 REOO (ACO) equal to zero (see Note 1). 
0010 PSIGN (ACO) has positive sign (see Note 2). 
0011 BITO Bit 0 of ACO true. 
0100 BIT1 Bit 1 of ACO true. 
0101 NREOO (ACO) is nonzero (see Note 1). 
0110 BIT2 Bit 2 of ACO is true. 
0111 CONTIN CONTIN (continue) input is true. 
1000 LINK LINK is true. 
1001 lEN lEN is true. 
1010 CARRY CARRY is true. 
1011 NSIGN (ACO) has negative sign (see Note 2). 
1100 OVF OVF is true. 
1101 JC13 JC 13 input is true (see Note 3). 
1110 JC14 JC 14 input is true. 
1111 JC15 JC15 input is true. 

NOTES: 

1. If selected data length is 8 bits, only bits 0 through 7 of ACO are tested. 

2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits. 

3. JC13 is used by INS8900 and PACE Microprocessor Development System and is not accessible 
during prototyping. 

THE BENCHMARK PROGRAM 
For PACE, our standard benchmark program adopts this modified form: 

LOOP 

LD 
LD 
RCPY 
LD 
ST 
AISZ 
AISZ 
DSZ 
JMP 
RCPY 
ST 

2,IOBUF 
O,@TABLE 
0,3 
0,0(2) 
0,0(3) 
2,1 
3,1 
10CNT 
LOOP 
3,0 
O,@TABLE 

LOAD I/O BUFFER ADDRESS INTO AC2 
LOAD ADDRESS OF FIRST FREE TABLE BYTE 
MOVE TO AC3 
LOAD NEXT BYTE FROM I/O BUFFER 
STORE IN NEXT TABLE BYTE 
INCREMENT AC2 
INCREMENT AC3 
DECREMENT I/O BUFFER LENGTH. SKIP IF ZERO 
RETURN FOR MORE BYTES 
MOVE AC3 CONTENTS TO ACO 
RESTORE ADDRESS OF FIRST FREE TABLE BYTE 

In order to take advantage of INS8900 and PACE indirect addressing, three memory locations are reserved on page 0 as 
follows: 

10BUF holds the beginning address of the I/O buffer. 

TABLE holds the address of the first free byte in the permanent data table. 

10CNT holds the number of data words in the I/O buffer. 

1-33 



Memory, as organized for the benchmark program will look like this: 

Memory -; : ::~ I~;; I} Data on Base Page 
IOCNT ---.. ~ 0012 

0013 

0014 = i 
; I 
I • ''''''' S-Start of I/O ..... 

I • 

~Start of Data Table 

I I 

YYYV ~"'t .......... of Data T_ 
Suppose the benchmark program rules arbitrarily require that a displacement be stored in the first word of the data ta­
ble, and that this displacement be added to the address of the first word of the data table in order to compute the ad­
dress of the first free data table word: 

Now the instructions: 

LD 
RCPY 

O,@TABLE 
0,3 

DISP 

~ Fnt data table wom . 

~ Rm .... data tab~ won! 

LOAD ADDRESS OF FIRST FREE TABLE BYTE 
MOVE TO AC3 

must be replaced by these instructions: 

LD 
LD 
RADD 

3,TABLE 
0,0(3) 
0,3 

LOAD BEGINNING ADDRESS OF DATA TABLE 
LOAD DISPLACEMENT TO FIRST FREE TABLE WORD 
ADD DISPLACEMENT TO AC3 

The new displacement must be restored to the first data table word. The instructions: 

RCPY 
ST 

3,0 
O,@TABLE 

MOVE AC3 CONTENTS TO ACO 
RESTORE ADDRESS OF FIRST FREE TABLE BYTE 
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must be replaced by these instructions: 

LD 
CAl 
RADD 
RCPY 
LD 
ST 

O,TABLE 
0,1 
0,3 
3,0 
3,TABLE 
0,0(3) 

LOAD BEGINNING ADDRESS OF DATA TABLE IN ACO 
FORM TWOS COMPLEMENT 
SUBTRACT ACO FROM AC3 TO FORM DISPLACEMENT 
MOVE DISPLACEMENT TO ACO 
LOAD BEGINNING ADDRESS OF DATA TABLE IN AC3 
SAVE DISPLACEMENT IN FIRST FREE TABLE WORD 

Forcing an INS8900/PACE programmer to conform to programming logic suited to some other microcomputer's in­
struction set only proves that the two microcomputers have different instruction sets. 

THE PACE DP8302 SYSTEM TIMING ELEMENT (STE) 

The STE is a very elementary clock device used with PACE, but not with the INS8900; it accepts inputs from an 
external crystal and generates the MOS clock signals for PACE, plus a pair of TTL-level clock outputs that can 
be used for synchronizing system operations. Figure 1-17 illustrates the pin assignments of the STE. 

Xl 

X2 

EXTC 

TCLK 

TCLK* 

GND 

PIN NAME 

Xl. X2 
CLK. NCLK 

CK.NCK 

TCLK. TCLK* 

EXTC 

LCK. LCK* 

VCC·VGG 

-
-

1 16 

2 15 

3 14 
4 STE 13 

5 DP8302 12 

6 11 

7 10 

8 9 

DESCRIPTION 

External crystal connections 

Damped MOS clocks to PACE 

Undamped MOS clocks to PACE 

-

VCC 
CK 

CLK 

NCLK 

VGG 
NCK 

LCK 

LCK* 

TYPE 

Input 

Output 

Output 

TTL clocks to microcomputer system Output 

Extemal oscillator option Input 

Non-overlap capacitor connection 

Power and Ground 

Figure 1-17. DP8302 System Timing Element (STE) Pins and Signals 

The frequency of the MOS clocks output by the STE is one-half the input crystal frequency. The 
STE is designed to operate with a 2.6667 MHz crystal. The MOS clock frequency is thus 1.3333 
MHz which results in a clock period (tp) of 750 nanoseconds (tp = 1/f); this is the optimal clock 
period for the PACE CPU. 

Two pairs of MOS clock outputs are generated by the STE; NCLK/NCLK* and NCK/NCK*. The first pair of outputs 
contain a 25 n series of damping resistor; typically, these outputs will be used in circuit board layouts where the STE­
to-PACE interconnect lines are less than two inches. The other MOS outputs, NCK and NCK*, are undamped. and you 
can select some other value of series damping resistors that might be better suited for your particular board layout. 

In addition to the +5V and -12V power supplies typically needed with MOS devices, the GENERATING 
PACE CPU has a third power supply requirement: a substrate bias voltage (Vaa) of +8V THE PACE 
must be applied to the CPU chip. Since it is unlikely that any other devices in your microcom- SuaSTRATE 
puter system would require this voltage level. the need for a third external system power source BIAS 
can be eliminated by providing a voltage converter circuit. Figure 1-18 shows a circuit that VOLTAGE 
generates the required Vaa voltage level; the circuit requires only a few components and uses 
one of the STE's TTL clock outputs as a 'charge pump' for the circuit. 
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PACE 

(+8V) 23 
STE VBB 

O.lf1-F lN914 
7 I .... TCLK- .. r. 

10

'"' 

-:::~ lN914 t:; ~ LM103 

3V 

-. 
C) 

+5V 

Figure 1-18. Circuit to Generate Substrate Bias Voltage (VBB) for PACE CPU 

THE PACE BIDIRECTIONAL TRANSCEIVER ELEMENT (BTE) 

The DP8300 BTE is an 8-bit device that provides an interface between the PACE MOS-Ievel signals and the 
TTL-level signals required by other devices in a microcomputer system (the BTE is not used in INS8900 
systems). If you refer to Figure 1-1 at the beginning of this chapter. you will see that a typical PACE microcomputer 
system requires three BTEs: two are used to buffer the CPU's 16 address/data lines. and the third is used as a TTL 
driver for the CPU's control signal outputs (NADS. ODS. IDS. F11 - F14). 

Figure 1-19 shows the pin assignments for the BTE. 

MBI/O 00 

MBI/O 01 

MBI/O 02 

MBI/O 03 
MBI/004 

MBI/O 05 

MBI/O 06 

MBI/O 07 

WBO­

GNO 

PIN NAME 

MBIIO 00 - 07 

BOI/O 00 - 07 

CE1. CE2-. 

STR-. WBO-

VCC·GNO 

.. 

.. 

1 

2 

3 

4 

5 

6 

7 
BTE 

8 

9 

10 

11 

12 

DESCRIPTION 

MOS Bus Data Lines 

TTL Bus Data Lines 

Mode Control Signals 

24 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

+ 5V Power. and Ground 

- -
.. 

-- -
--'" 

-
--

VCC 
BOI/O 00 

BOI/O 01 

BOI/O 02 

BOI/O 03 

BOI/O 04 

BOI/O 05 

BOI/0 06 

BOI/O 07 

CEl 

CE2-

STR-

TYPE 

Input/Output 

Input/Output 

Input 

Figure 1-19 BTE Signals and Pin Assignments 
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Table 1-4 summarizes the operating modes of the BTE. BTE MODE 

WBD* is the main mode control signal; when this signal is low, the other control signals are ig- ~~~T:~L 
nored and the BTE simply converts the MOS signals from the CPU into TTL-level output signals. 
The TTL outputs have a high fan-out capability and can service up to thirty 50 milliampere loads. 
The BTE used to buffer the PACE control signals normally operates continuously in this 'drive-only' mode (Mode 
1) and is kept in this mode by simply connecting the WBD* signal to ground. 

The BTEs used to buffer bidirectional (address/data) lines must be switched back and forth between Modes 1 
and 2; Mode 1 is used for CPU data output and Mode 2 for CPU data input. The simplest way of accomplishing this 
is to continuously enable the CE1, CE2*, and STR* controls by connecting them to appropriate logic levels (+5V or 
ground) and then use the WBD* signal for directional control. For example, in a PACE system, the IDS signal from the 
CPU could be used as the input to WBD*. During a PACE data input cycle, IDS will go high at the appropriate portion of 
the cycle and place the BTE in Mode 2; IDS is low at all other times and the BTE will operate in Mode 1. 

Table 1-4. PACE BTE Truth Table 

MODE CONTROL INPUTS 
MODE DESCRIPTION 

# CE1 CE2* STR* WBD* 

1 X X X 0 
Receive MOS signals and 
drive TTL signals 

2 1 0 0 1 
Receive TTL signals and 
drive MOS signals 

0 0 0 1 
Outputs in 

3 0 1 0 1 high-impedance 
state 

1 1 0 1 

On positive-edge transition 

4 X X 1 1 
of STR*, latch into Mode 2 
or 3 as determined by state 
of CE1 and CE2* 

X = don't care 

+5V 

15 
CEl t---... 

BTE 

105-----"' 

13 BUS GRANT ___ ... ____ ~l-4_t CE2* STR* t---~ 

--
Figure 1-20. Signal Connections to Control BTE in a DMA System 
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In a DMA or multiprocessor we will need to use BTE Mode 3 to place the BTE outputs in a high-impedance state 
and thus free the System Busses for use by other devices. In such a system an externally generated Bus Grant sig­
nal could be used to place the BTE in Mode 3. Figure 1-20 illustrates one method of doing this: whenever the BUS 
GRANT signal is high. the BTE is in Mode 3. At other times the IDS signal operates as we've just described to switch the 
BTE back and forth between Modes 1 and 2. 

The fourth BTE mode uses a negative-to-positive transition on the STR* input to latch the state of CE1 and 
CE2*, and then places the BTE in either Mode 2 or Mode 3. This latch mode function might be useful when the BTE 
is used as a simple input buffer. For example. in a system with multiplexed address/data lines (such as PACE). address 
outputs could be applied to CEl and CE2*. and an address strobe signal (such as NADS) connected to STR*. Then. 
when the BTE is selected by the appropriate address bits. the trailing edge of the strobe signal will gate TTL data 
through the BTE and apply the data to the MOS lines of the CPU. When the BTE is not selected (addressed). its outputs 
will be in the high impedance state (Mode 3). 

USING OTHER MICROCOMPUTER SUPPORT DEVICES 
WITH THE PACE AND INS8900 

The INS8900 CPU has numerous control signals which allow general purpose microcomputer support devices to 
be included in an INS8900system. 

Let us see how 8080A support devices might be used with the INS8900 CPU. First, we'll take an overview of 
the general CPU-to-device interface that all the 8080A family of devices expect. 

All of the 8080A family devices require that address information (or enabling/select signals derived from the ad­
dress lines) be valid during the data transfer (read/write) portion of an input/output cycle. Recall that the INS8900 
data lines are multiplexed: at the beginning of an input/output cycle. the data lines are used to output address informa­
tion; the address information is then removed and the data lines are used for the actual input or output of data during 
the latter portion of the I/O cycle. 

Thus, the first thing we must do to interface the INS8900 to an 8080A family device is 
to demultiplex the INS8900 address/data lines. There are several different approaches 
that we can use to accomplish the required demultiplexing. 

The most obvious way is to use D-type flip-flops or data registers with the INS8900 

DEMULTIPLEXING 
THEINS8900 
ADDRESS/DATA 
LINES 

NADS signal as the clock pulse. Here are some of the standard 7400 family devices that might be used: 

·7475 Double 2-Bit Gated Latches with Q and Q Outputs 

·7477 Double 2-Bit Gated Latches with Q Output Only 

• 74100 Double 4-Bit Gated Latches 

·74166 Dual 4-Bit Gated Latches with Clear 

·74174 Hex D-Type Flip-Flops with Common Clock and Clear 

·74175 Quad D-Type Flip-Flops with Common Clock and Clear 

Some of these devices require that the NADS signal be inverted to provide the necessary clocking Signal. Remember. 
though. that PACE address information is valid during both the leading edge (high-to-Iow transition) and trailing edge 
(Iow-to-high transition) of NADS; this generally simplifies the demultiplexing operation. 

In many systems you will not need to latch all16 bits of address information since it would be an unusual applica­
tion that required all of the 64K of address space that this provides. There will usually be some tradeoff between system 
address requirements (how many system devices require a latched Address Bus) and the type and amount of address 
decoding required. When a fully latched Address Bus is provided. then simpler nonlatched address decoders can be 
used. In fact. often address bits can then be used directly as device select signals. or simple AND/OR gate combina­
tions can perform the decoding. 

The alternative method of demultiplexing the address/data lines is to use address decoding devices that are 
clocked by the NADS signal and provide latched outputs. These latched outputs can then be used as the 
device/chip select Signals during I/O cycles. 

Many systems will use some combination of a fully latched Address Bus and simple or latched address 
decoders. In the discussions that follow, we will not generally describe in detail the method used to obtain the 
required addressing or select/enabling signals, since the method used is so dependent on the particular system 
that you are designing. 
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Once the INS8900 address/data lines have been demultiplexed, the only major con- INS8900 CONTROL 
siderations we are left with are to ensure that the input/output control signals are of SIGNAL POLARITY 
the proper polarity, and to verify that there are no timing problems. We will see that CONSIDERATIONS 
generally the INS8900 I/O control signals must be inverted to operate with the 8080A 
family of devices. although the 8212 offers us a choice of using the IDS and ODS signals. in either their original or in­
verted form. 
Now we will provide a few specific examples of how devices from the 8080A family can be used with the 
INS8900 CPU. 

In our first example the 8212 I/O Port is used as a simple input port by the INS8900 CPU. 
The interconnections required are shown in the following figure: 

THE 8212 USED 
AS A SIMPLE 
INPUT PORT IN 
AN INS8900 
SYSTEM 

Data to 

INS8900 CPU 

(System Bus) 

Derived from ----.. a 
Address Lines 

10S----......... 

(from INS89(0) 

NADS 

(from INS89(0) 

DOO 

D07 

Ds1 

DS2 

STB 

cur 

NINIT-------~ 

DIO 

Data from 

external logic 

DI7 

8212 

Tie MD to Ground. Now STB clocks 

latches and DSi. DS2 enable buffers. 

MD 

--
Here, the INS8900 Address Strobe signal (NADS) is inverted and used as the STB input to the 8212. Since MD 
is tied to ground, the STB signal clocks the data into the 8212: this will occur every time the INS8900 performs 
an input/output cycle, but the latched data will only be placed on the System Bus when the 8212 is selected. 
We accomplish device selection by applying a negative-true decoded address signal to the OS 1 input and then 
using the INS8900 IDS strobe signal as the DS2 input. Now, whenever the proper address is decoded, the IDS 
signal will cause the data that was previously latched by NADS to be placed on the System Bus for input to the 
INS8900. The timing would look like this: 

NADS 

STB 

DIO - DI7 

OS2 (IDS) 

000- 007 

r----, 

Latched data output 

onto System Bus 
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Notice that the data from external logic will be latched whenever NADS occurs. The actual selection of the 8212 and 
input of the latched data to the INS8900 might not occur for quite some time. Frequently, this arrangement will be 
completely acceptable. If not. then an input-with-handshaking arrangement. which we will describe next. might pro­
vide a better solution. 

Before we proceed to our next example. let us make one more general comment about interfacing devices to 
the INS8900 CPU. 

The INS8900 is a 16-bit microcomputer: it can transfer 16 bits of parallel data in a single input or output cycle. 
All of the other devices that we will be discussing are 8-bit devices. Frequently. you may not need the full 
width of the 16-bit Data Bus when transferring data between the CPU and external logic. In these cases, you 
can simply connect the data lines to/from the support device to the less significant data lines (DO - 07) of the 
INS8900 System Bus, as we have shown in our first example. Masking of the unused, more significant data bits 
would then be handled under program control. 

When you are going to utilize the full 16 bits of the Data Bus. you merely connect two 8-bit devices in parallel. 
as described in more detail for the CP1600 in Chapter 2. One device would be connected as we've already de­
scribed; the data lines of the other device would then be connected to the more significant bits (08 - 015) of 
the System Bus. All other connections to the two devices (device select signals. strobe signals. etc.) would be 
identical. 

In this example. we will use the 8212 interrupt request signal INT to establish an input 
port with handshaking. The connection diagram is very similar to our first exam.ple: 

THE 8212 USED 
IN AN INS8900 
SYSTEM FOR 
INPUT WITH 
HANDSHAKING 

Data to 
INS8900 CPU 

(System Bus) 

Derived from 

Address Lines 

IDS 

(from INS8900) 

toINS8900 
Interrupt or 

Jump Condition 

Input Pin 

-'" 
,... -

000 

007 

Dsi 8212 

OS2 

INT 

010 

· · · 017 

STB 

MO 

Tie MO to 

0 ata from 

xternal logic e 

E 

d 

xternal logic strobes 

ata into latches 

Ground. Now STB clocks 

'i5s'l OS2 enable buffers latches and 

1 

Here. the device select signals are the same as in our first example. However, instead of using the INS8900 
NADS signal to clock data into the latches, we will require external logic to input the STB signal when it has 
data ready. When the data has been latched. the 8212 will output the INT signal. which will be used as the in­
put to one of the INS8900 CPU interrupt request lines (NIR2 - NIR5) or Jump Condition inputs (JC13 - JC15). 
The CPU,will then execute a service routine program that will include an instruction to read the data from the input 
port. This instruction will send out the input port's address, thus generating the DS 1 signal. and then gate the latched 
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data onto the System Bus when the IDS signal is generated. When the latched data is read out of the 8212. the INT sig­
nal returns high to complete the transaction. This sequence is summarized by the following timing diagram 

010 - 017 

STB ----' 

OS2 (lOSl 

DOO - 007 

Data latched by 

external logic 

.. ------------.. --------.. ~~ .... , ........ --.... ~~--.. ~ .......... -
Interrupt request or 

Jump condition input 

to INS8900 CPU 

onto System Bus 

Using the 8212 as an output port in an INS8900 system requires a simple reversal of the 
connections we have described in the two preceding examples. and we will now use the 
ODS (Output Data Strobe) signal from the INS8900 instead of the IDS signal. 

010 000 
Data from Data to external 

INS8900 CPU logic 
(System Busl 

017 007 

THE 8212 USED 
AS AN OUTPUT 
PORT IN AN 
INS8900 SYSTEM 

8212 DsT Select signals generated 

ODS by external logic 

(from INS8900) 
STB OS2 

Select Signal MO M To external logic 
derived from • • Address Lines • - : - • 

to INS8900 
~ ______ J 

interrupt lines 

or JC inputs 
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When the output port's address is sent out and decoded from the Address Bus, one input to the AND gate is enabled. 
The ODS signal then goes high to generate the STB signal and latch the contents of the system Data Bus into the 8212. 
This will cause the INT signal to go low and inform external logic that data has been loaded into the output port. The 
external logic will then generate the DS1 and DS2 signals to gate the data out of the latches. When the data has been 
gated out. the TNT signal will return high. This low-to-high transition could be used as an interrupt request or jump con­
dition input to an INS8900 to enable output of new data. Notice that if we continuously enable the 8212 outputs 
by tying CST to ground and DS2 to +5V, then whenever the INS8900 loads a new data word into the latch, it 
will be immediately output to external logic. This approach may be more advantageous in some applications. 

Although the 8255 Programmable Peripheral Interface (PPl) is a more complicated 
device than the 8212, interfacing the 8255 to an INS8900 CPU is no more complicated 
(from a hardware point of view) than the INS8900-to-8212 interfaces we've described. 
This is due to the programmability of the 8255; mode control is performed by your pro­
gram instead of by hardwired signals. Let us look at an example to illustrate this point: 

To/From 

INS8900 CPU 

(System Bus) 

Decoded Select -----... .,..;;.11 
signal derived 

from Address Bus 

From latched { 

Address Bus ------1 

From 

INS8900 

CPU liDS 

ODS 

NINIT 

DO 

07 

CS 

8255 

AO 

A1 

AD 

WR 
RESET 

8255 PPI 
DEVICES 
USED IN 
AN INS8900 
SYSTEM 

To/From 

Extemal Logic 

The CS signal selects the 8255 and this signal would typically be the output of an address decoder. The AO and 
A 1 inputs select one of the three I/O ports (A, B or C) or the 8255 Control registers. The RD and WR control sig­
nals are obtained by simply inverting the IDS and ODS signals from PACE. A generalized timing diagram for in­
put/output operations would look like this: 

NADS ~ 

CS·AO·A1 _____ .. Select Device and Port Select 

IDS (ODS) __________ ~ 

m~ ~ ? 
Data transferred 
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If two· 8255s are used in parallel to provide 16-bit I/O ports. there is one special con­
sideration beyond the general rules that we discussed earlier. Recall that mode control of 
the 8255 is accomplished by writing data into one 8-bit Control register within the 
device. When wired in parallel. one 8255 would be connected to bits 0 - 7 of the system 
Data Bus. and the other 8255 would be connected to bits 8 - 15. Therefore. when we 
send out a 16-bit control word from the INS8900 CPU to establish the desired mode of 
operation. the upper and lower bytes of the word must be identical. 

From a hardware point of view. interfacing either of these devices to an INS8900 CPU is 
no different than interfacing an 8255 PPI to the INS8900. All we need to do is invert the 
IDS and ODS signals from the CPU to obtain RD and WR (or lOR and lOW) signals. and 
provide chip select and latched address bits for input to the devices. All other interfacing 
and usage considerations are software functions and are described in Chapter 4. We will 
not describe them here since those portions of the device descriptions apply regardless 
of the CPUbeilig used. 

We will conclude our discussion of the use of 8080A devices in INS8900 systems by 
comparing INS8900 System Bus signals with those of 8080A systems. This comparison 
will be a useful guide for interfacing any 8080A device to an INS8900 system. Table 
1-5 is a summary of INS8900 System Bus signals and the corresponding signals availa­
ble in 8080A systems. Two separate columns are provided for 8080A signals: the first ap­

TWO 8255 
DEVICES USED 
FOR 16-BIT 
I/O PORTS 
WITH INS8900 

THE 8251 
USART AND 8253 
PROGRAMMABLE 
COUNTERITIMER 
USED IN INS8900 
SYSTEMS 

INS8900 AND 
8080A SYSTEM 
BUSSES 
COMPARED 

plies strictly to the 8080A CPU; the right-hand column refers to the Signals present in a typical three-chip 8080A 
system consisting of the CPU, a~ 8228 System Controller, and an 8224 Clock Generator and Driver. 

Since we have already discussed these signals in preceding paragraphs, we won't perform an item-by-item analysis of 
the table. Nonetheless, there are a few signals in this table that do need additional explanation. 

We have included the INS8900 BPS signal in the I/O Control Signal group although it is not the type of signal you 
would normally classify within this group. However. you will recall that when the BPS input is high. the INS8900 
operates in a Base-Page-Split mode; base page then consists of the top 128 words of memory and the bottom 128 
words of memory. In our earlier discussion of the BPS Signal. we described how this mode can be used to simplify ad­
dressing of I/O devices. If you refer back to that discussion, you will see that by doing a little address decoding we 
can come up with a signal that will tell us when the INS8900 is addressing an I/O device (as opposed to memory). 
Let us call this decoded signal '1/0 Device' (100). Now, we can combine this decoded signal with IDS and ODS as 
shown below to generate signals equivalent to the 8080A liaR and tlow signals. 

IDS -----------~--"" 

~--------------------VOR 

1/00 ----------_ 

K>----------------------I/OW 
OOS----------------~---L __ ~ 

And if we invert the 1/00 signal we can generate the 8080A MEMR.and MEMW signals. 

10S-...;....---------,.--"""" 

K>-----------------------~ 

1/00---..... 

~---------------MEMW 
OOS~-----------------_1L-__ ~ 
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One other portion of Table 1-5 requires some explanation. Notice that we have not drawn a line to separate the 
I/O control signals from the DMA-Related Signals. We've done this intentionally because there is some overlap­
ping of functions with some of these signal,. For example, the INS8900 EXTEND 'signal can be used either to extend 
I/O cycles or to suspend I/O to allow DMA operations. We've also compared the INS8900 NHAl T output signal to the 
8080A WAIT signal. This comparison is valid if limited to the CPU Halt state initiated in either system by a Halt instruc­
tion. However, in 8080A systems the WAIT signal is also an acknowledgement to the READY or RDYIN input signals. 
There is no comparable EXTEND acknowledgement signal in PACE systems. 

The 6800 family includes many devices that might be useful in INS8900 systems, Unfor­
tunately. all of these devices have one common requirement which effectively makes them 
incompatible for use in an INS8900 system. That requirement is enabling input signal E which 
should more accurately be described as a synchronizing signal. In 6800 systems. E is usually 
generated by ANDing one of the primary system clock signals (<1>2) with the Valid Memory 

6800 SUPPORT 
DEVICES NOT 
COMPATIBLE 
WITH INS8900 

Address signal (VMA) from the 6800 CPU. The clock period of the resulting E signal can be no less than one microse­
cond. The clock signals (ClK and NClK) used in PACE systems. however. cannot have a clock period greater than 850 
nanoseconds. and therefore cannot be used to simulate the 6800 <I> 2 signal. Therefore. we cannot recommend using 
6800 family devices in an INS8900 system. 

Table 1-5. Comparing INS8900 System Busses to 8080A System Busses 

INS8900 8080A 8080A SYSTEM 
SYSTEM BUS SYSTEM CPU (CPU. 8228. 8224) 

SIGNALS SIGNALS SIGNALS 

Bidirectional 000 - 015 00- 07 DBO - DB7 
Data Bus (16 Bits) (8 Bits) (8 Bits) 

Address Bus 000 - 015 AO-A15 AO-A15 
Address information 
must be demultiplexed 
from Data Bus 

Control Bus 

NADS 
Strobe signal used 
by external logic - -to demultiplex 

I/O add'ress from 

Control Data Bus 

Signals IDS DBIN MEMR and 1I0R 

ODS WR M"EMW 'and iiOw 
BPS. -
EXTEND READY RDYIN 

NHAL T (output) WAIT WAIT 

NHALT and HOLD HOLD 
DMA- CONTIN il"lputs 
Related CONTIN HLDA HLDA 
Signals tACi<: INT o~tput) 

- - BUS EN 
NIR2 - NIR5 INT INT. 
CONTIN DO and SYNC 
(ACK INT output) INTA 

Interrupt - INTE INTE 

Signals Non-maskable 
Interrupt - -
(CONTIN and 
NHAL T inputs) 

Initialize NINIT RESET RESIN 

Jump Condition JC13-JC15 - -
Inputs 

Control Flag F11 - F14 - -
Outputs 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

PACE CPU 
INS8900 
PACE STE 
PACE BTE 
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PACE CPU 
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FI1-Fl. 

FIGURE 4. PACE Driver and Receiver Equivalent Circuits 

external clock timing 

PACE requires non·overlapping true and complemented 
clock inputs as shown in Figure 5. Refer to Electrical 
Characteristics for timing specifications. 

where: 

tp' CLOCK PERIOD 

'NOVA' 'NOVB' CLOCK NONOVERLAP 

'WCLK • 'WNCLK = CLOCK WIDTH 

FIGURE 5. External Clock Timing 

We reprint data sheets on pages 1-02 through 1-017 by permission of National Semiconductor Corporation. 
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PACE CPU 

For systems utilizing memories with access times greater 
than 2 clock periods it may be desirable to use the 
EXTEND input to lengthen the I/O cycle by multiples 
of the clock period. Timing for this is shown in Figure 9. 
In the case of either input or output operations. the 
extend. should be brought true prior to the end of 
internal phase 6. The timing shown in Figure 9 will 
provide the minimum extend of one clock period. Hold­
ing EXTEND true for n additional clock periods 
longer will cause an extension of n + 1 clock periods. 

In DMA or multiprocessor systems it may be desirable 
to prevent I/O operations by PACE when the bus is in 
use by another device. This may be done by using the 
EXTEND signal immediately following an IDS or ODS 
as shown in Figure 10. Alternatively. the extend timing 
of Figure 9 may be used. as the extend function occurs 
independent of whether there is an I/O operation. that 
is. whenever the internal clock phase 6 occurs. 

00:: ~POWE".OCLOC'SST"LE CLOC .. ~ ____________________ _ 

.'.IT~~ 
~'~l _____ ll~.========~,,~cL~o~c'~'E~R,~oo~s========~.1 

•• os~ L 
~~~'~2---------------------

.OOREa 
DATA 

FIGURE 6. Initialization Timing 

~~ ,~~ 

'ACE _____ ....;O!.!!uT!!:.u!!!TS!.!.~CT~'VE~ ____ ~F=t~~oDiiuy;TPuiiTTSS;HiiG'GHiH 'Mi"'~EO~ •• ~CE~=======ti.=_ 
OUTPUT 1_1DC --.+1 I-toc 

TRA::~:: TRANSISTOR Off TRANSISTOR ON TRANSISTOR OFF 
-h. __ 1;:1 

I::;! _-'-IN'UT'UffEADISA'LED~MOA'AVAll~ ~~...d?@&J 
-i ~'oo -41 I~ 

'os ... ,,'-.... _ .... ,"" .... _............ 1@J"'f:J:J...+,1=.0..,..--------
1 ...... cI .. ,... ..... ""' .... ,.,trtftCl •• 1y.tMy".nDlftlllai .... IIf ... Hy 

AOOR£SS 
OATA 

·vl ......... ·V.-2.lSVlttlmt .... d'IIIIC"''',nput 

Figure 7. Address Output and Data Input Timing 

:-100 au::;! ~:~ ..... _________ ~ OATAVAlIO--~~----

OOS V'UO --<!i"!§J~1-.:....;:'0:..0 ______ ---.:-IJ~®>:11-_.00 _______ _ 

FIGURE 8. Data Output Timing 
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PACE CPU 
EXTRA CLOCK 
CYCLEISIOUE 

INTERNAL I TO EXTEND I 

ClOCKP:;lS:~~~ 

ClK_~~~~\-

ADOO"::: -+_.......JI%1t:.:1 

HADS 

PACE 
ACTIVE E%t HIGH IMPEDANCE a OUTPUTS 

PACE PUllU' 
OFF 1.:21 ON ~ TRANSISTOR 

INPUT 
DISAIIlED DATA DATA 

VALID 

OUTPUT 
I?I DATA VALID t::a. DATA 

ODS/IDS I?I 1%1-
~ I-IEH ---j __ tes 

EXTEND ~~ 

-I-'ES 
FIGURE 9. Extend I/O Signal Timing 

absolute maximum ratings 
All Input or Output Voltages with 

Respect to Most Positive Supply 
Voltage (VaB) 

+0.3V to -21.5V Storage Temperature Range 
Lead Temperature (Soldering, 10 

seconds) 

_65°C to +150°C 
300°C 

Operating Temperature Range 

electrical characteristics (TA = o°c to +70°C, vss = +5V ±5%, vGG = -12V ±5%, vaa = vss + 3V ±0.5V) 

PARAMETER I CONDITIONS I MIN I MAX I UNITS 

OUTPUT SPECIFICATIONS 

000-015, F11-F14, OOS, lOS, NAOS (These are 
open drain outputs which may be used to drive 
OS3608 sense amplifiers, or may be used with pull-
down resistors to provide a voltage output.) 

Logic "1" Output Current (Except F11-F14) VOUT = 204V -1.0 -5.0 rnA 
Logic "1" Output Current, F11-F14 (Note 7) VOUT = 204V -0.7 -5.0 rnA 
Logic "0" Output Current VGG"';; VOUT:« VSS ±10 p.A 

NHAL T, CONTIN (Low Power TTL Output.) 
Logic "1" Output Voltage lOUT = -650p.A 2.4 V 
Logic "0" Output Voltage lOUT = 300p.A 004 V 

INPUT SPECIFICATIONS 

000-015, NIR2-NIR5, EXTENO, JC13-JC15, 
CONTIN, NINIT, NHAL T (These are TTL 
compatible inputs.) (Note 2) 

Logic "1" Input Voltage VSS-1 VSS+0.3 V 
Logic "0" Input Voltage VSS-7 VSS-4 V 
Pullup Transistor "ON" Resistance VIN = VSS-1V 7 kD 
(000-015) (Note 3) 
Pullup Transistor "ON" Resistance VIN = VSS-1V 5 kD 
(all others) 
Logic "0" Input Current (000-015) VIN=Oo4 -1.8 rnA 
Logic "0" Input Current (NHAL T, CONTIN) VIN=Oo4 -12 rnA 
Logic "0" Input Current (all others) VIN=Oo4 -3.6 rnA 
Capacitance, Input and Output (except clocks) VIN = VSS, fT = 500 kHz 20 pF 

BPS (This is a MOS Level Input.) (Note 4) 
Logic "1" Input Voltage VSS-1 VSS+0.3 V 
Logic "0" Input Voltage VGG VSS-7 V 
Logic "1" Input Current VIN = VSS-1V 100 JJ.A 

CLK, NCLK (These are MOS Clock Inputs) 
Clock "1" Voltage (Note 5) VSS-1 VSS+0.3 V 
Clock "0" Voltage VGG VGG+1 V 
Input Capacitance (Note 6) 30 150 pF 

Bias Supply Current VBB = VSS +3.0V 100 JJ.A 
VGG Supply Current tp = .65p.s, T A = 25°C 40 rnA 
VSS Supply Current tp = .65p.s, T A = 25°C 85 rnA 
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PACE CPU 

INTERNAL 
CLOCK PHASE 

EXTRA CLOCK 
CYCLE!SIDUE 

l--~ , , 

FIGURE 10. Suspend I/O Signal Timing 

TIMING SPECIFICATIONS (See Figures 5 to 10 for additional timing information.) 

ClK, NClK (See Figure 5) (Referenced to 
10% and 90% Amplitude) 

Rise and Fall Time (tr, tf) 10 
Clock Width (tw ClK tw NClK) 300 
Clock Non-Overlap (tNOVA, tNOVS) 5 
Clock Period (tp) .65 

EXTEND 
Individual Extend Duration 
Extend Setup Time (tES) (Note 10) 
Extend Hold Time (tEH) (Note 13) 

Propagation Delay (tOO) 
NHAl T, CONTIN (Note 9) 

NADS, IDS, ODS, 000-015 (Note 8) 
000-015 

Input Setup Time (tOS) (Note 11) 
Hold Time (tOH) (Note 12) 
Turn-on or Turn-off Time of Pullup 
Transistor (toe) (Note 13) 

Cl = 20 pF 
VOUT= 2.4V 

100 
20 

200 
o 

150 

50 
375 

.8 

2 

200 
100 

Fll-F14 Pulse Flag (PFlG) Pulse Width 
NINIT Initialization Pulse Width 
NIR2-NIR5 Input Pulse Width to Set latch 

4tp -300 4tp +300 
8 
1 

ns 
ns 
ns 
ps 

ps 
ns 
ns 

ns 
ns 

ns 
ns 
ns 

ns 
clock periods 
clock periods 

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended 
and should be limited to those conditions specified under de electrical characteristics. 
Note 2: Pullup transistor provided on chip (See Figure 4.) 
Note 3: Pullup transistors on JC13, JC14, JC15 are turned on one out of 8 clock intervals. Pullup transistors on 000-015 are turned on 
during last clock period of Input Data Strobe (IDS). Other pullup transistors are on continuously when in data input mode. 
Note 4: Pulldown transistor provided on chip. 
Note 5: Clamp diodes and series damping resistors may be required to prevent clock overshoot. 
Note 6: Capacitance is not constant and varies with clock voltage and internal state of processor. 
Note 7: For VSS ;;. VOUT ;;. 2.0V output current is a linear function of VOUT. 
Note 8: Delay measured from valid logic level on clock edge initiating change to valid current output level 
Note 9: Delay measured from valid logic leilel on clock edge initiating change to valid voltage output level. 
Note 10: With respect to rising edge of NClK. (See Figure 9 and 10.) 
Note 11: With respect to falling edge of elK. (See Figure 7.) 
Note 12: With respect to the valid "0" level on the falling edge of Input Data Strobe (IDS). (See Figure 7.) 
Note 13: With respect to valid logic level of appropriate clock. 
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INS8900 

Absolute Maximwn Ratings 
Voltage at Any Pin with Resepct to 
Most Negative Supply (VSS) ................ -0.3 V to +20V 
Operating Temperature Range ................ O°C to +70°C 
Storage Temperature Range ................ -65°C to +150°C 
Lead Temperature (soldering, 10 seconds) ............ +300°C 

Electrical Characteristics 
(TA = o°c to +70°C, VSS= ov, Voo = +12V ± 5%, VCC = +5V ± 5%, VSS = -8V ± 5%) 

Symbol Parameter Conditions Min Max Units 

OUTPUT SPECIFICATIONS 

000-015, Fll-F14, OOS, IDS, NAOS 
(These are low-power Schottky·compatible push-pull outputs.) 

VOH Logic "1" Output Voltage lOUT = -500}JA 2.4 V 

VOL Logic "0" Output Voltage lOUT = 900}JA 0.4 V 

NHAL T, CONTIN (low-power Schottky outputs) 

VOH Logic "1" Output Voltage lOUT = -250}JA 2.4 V 

VOL Logic "0" Output Voltage lOUT = 600}JA 0.4 V 

INPUT SPECIFICATIONS 

000-015, NIR2-NIR5, EXTENO, JC13-JC15, NINIT, 
CaNTIN, NHAL T (low-power Schottky inputs) 

VIH Logic ''1'' Input Voltage 2.4 VCC+ 1 V 

VIL Logic "0" Input Voltage -1.0 +0.8 V. 

IL Input Leakage Current (except NHAL T, CaNTIN, JC13-JC15) VSS ~ VIN ~ VCC + 1 40 }JA 

IlL Logic "0" Input Current, NHAL T, CONTIN (Note 2) VIN=0.4V -7.0 mA 

IlL Logic "0" Input Current, JC13-JC15 (Note 2) VIN = 0.4V -3.0 mA 

SPS (This is an MOS level input.) 

VIH Logic "1" Input Voltage VOO-l VOO+ 1 V 

VIL Logic "0" Input Voltage -1.0 +0.8 V 

IIH Logic "1" Input Current (Note 3) VIN = 13.6V 750 }JA 

CLKX (This is an MaS level input.) 

VCIL Clock "0" Voltage -1.0 +0.8 V 

VCIH Clock "1" Voltage VOO-l VOO+ 1 V 

CIN Input Capacitance 20 pF 

100 Average Supply Current (VOO) (Note 4) tp = 500 ns, T A = 25°C 100 mA 

ICC Average Supply Current (Vec) (Note 4) tp = 500 ns, T A = 25°C 10 mA 

IBB Average Supply Current (VBB) VSB=-8V -200 }JA 
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INS8900 

Tining Specifications 

Symbol Parameter Conditions Min Max 

CLKX 

t r, tf Rise and Fall Times (Note 5) 5 30 
(Referenced to 10% and 90% amplitude) 

tp Clock Period 500 650 

tCLK, tNCLK Pulse Width (Referenced to 50% amplitude) tp/2 - 5% tp/2 + 5% 

EXTENO 

Individual Extend Duration 2 

tES Extend Setup Time (Note 6) 70 

tEH Extend Hold Time (Note 6) 120 

Propagation Oelay 

tOOl NHAL T, CONTIN (Note 7) CL = 40pF, 200 
1 low-power Schottky load 

tD02 NAOS, IDS, ODS, 000-015 (Note 7) CL=40pF,1INS820810ad 200 

000-015 

tDS Input Setup Time (Note 6) 50 

tOH Hold Time (Note 8) 0 

tFW Fll-F14 Pulse Flag (PFLG) Pulse Width 4tp - 300 4tp + 300 

tNW NINIT Initialization Pulse Width 8 

tlRW NIR2-NIR5 Input Pulse Width to Set Latch 1 

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not 
intended and should be limited to those conditions specified under DC electrical characteristics. 

Note 2: NHAL T, CONTIN, and JC13-JC15 logic "0" input currents specified when the internal chip loads are putting out a logic "1." 

Note 3: Pull-down transistor provided on chip. 

Note 4: Supply currents measured with 40 pF and I NS8208 loads. 

Note 5: Clamp diode and series damping resistor may be required to prevent clock overshoot. 

Note 6: Measured with respect to appropriate valid logic level of CLKX. 

Note 7: Delay measured from valid logic level on CLKX edge initiating change to valid output voltage level. 

Note 8: With respect to the valid "0" level on the falling edge of Input Data Strobe (I DS>' 

Note 9: Typical load circuit: 

INS8900 

_ VREF 

RL = 3.6k (3.3k for testing) 

CL=40pF 

VREF = 1.72V 

Note 10: Typical output delay versus load capacitance CL 
for load circuit in Note 9: 

Note 11: Typical VDD supply current versus temperature. 
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Tming Waveforms 

POWER 
AID 

CLDCICS 

~ J jJ:tNCLK:f.!l-tCLK-! 
ttl- -ltrl-

Figure 1. External Clock Timing (CLKXI 

POWER AND CLDCK$STABLE 

IIIIT I- INW I 
• CLOCK PE'1!,DS MINIMUM~ 

I- 16-24 CLOCK PERIODS 
~--u 

IADS~ L 
~: ~~~-----------------------------------------------

Figure 2. Initialization Timing 

IITERIAL 
CLOCKPNASE 

CLKX 

ADDIIE. 
DATA 

IADI 
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'ACE _________ ~o~u~~~U~n~A~~~IV!E·~ ________ ~~::::::::::::~~~~~~~;:::::::::::=t~ __ ~ __ __ DUTPUT 
II '= _IIPur IUFFER DIUILED 

~~7-_t~DD~ ________________ ~~ 
IDI ______________________________ ~ .. 

·VII MUST IE AT THE CORRECT LOGIC LEVEL AT THIS TIME. 
10TE: .. IOU ARE REFEREICED TO VALID LOGIC LEVELS ON CLOCK IIPUT. IITERNAL CLOCK PHASES ARE SHOWW 

FOR REFEREICE OILY; THEY ARE lOT AVAILAILE EXTERIALL Y. 

Figure 3. Add .... Output and Data Input Timing 
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INS8900 

lining Wavefonns (continued) 

INTERNAL 
CLOCK PHASE 

M':~ ~~~_\'-----'_I ~t~ I \ ~ \---1 
NADS t§j ~@J ----++-~~-tDD ---++--11 -----t-F -

OU~!~! ~~ ~~ ______________________ -J§ __ f.::::::::::::::::~DruAUTiAVVAlAL~ID~::::::::::::::=ta~~~ ____ _ 

VALID -Ii I-toD ~ I-tDD 
ODS _____________ ....I:l§Jo;:.] m 

INTERNAL 
CLOCK PHASE 

CLKX 

ADDRESS 
DATA-1 ___ ~ 

NADS 

Figure 4. Data Output Timing 

PACE 
OUTPUTS -I __________ .....;.;:AC:.;T.;.;IV.;.E _________ ....:.:JI 

i
EXTRA CLOCK, 
CYCLES DUE 
TO EXTEND 

E E 

INPUT_~-----~~~L------~~~~~~~~~~~~~~~~~~~~~~--DATA DISABLED 

OUTPUT 
DATA -1_----------------------....... .:4 

ODS/IDS _1-_____________________ ....... .:4 

INTERNAL 
CLOCK PHASE 

CLKX 

DATA 

NADS 

IDS/ODS 

Figure 5. Extend I/O Signal Timing 

EXTEND __ ~~~~~~~~~ri~~~~~~~~-------------------------

Figure 6. Suspend I/O Signal Timing 
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INS8900 

Tming Wavefonns (continued) 

r->II+leCYCLES~1 

NHALT 1-----DR1V�EN LOW EXTERNALL Y ------11-- ,,:,.;':;~.~,::,"n:::.:.'<";;',,: ... 'n::.:-::L.~: •• 

.. 3 CLK I 
CYCLES =1 1- I--- .. 15 + 2 Ie CYCLES~ 

5 CLOCK CYCLES MIN I--- ~ 
INTERRUPT RE5I' TIME 

CONTIN 

NOTES: 
1. EXTERNAllY GENERATED TIL INPUTS OVERRIDE PACE OUTPUTS. 

2. III CROSSHATCH INDICATES "DON'T CARE"INPUT STATE. 
@Ie' DURATION OF EXTEND DURING PACE 110 CYCLES TIMING ASSUMES NO OTHER EXTENDS AND NO SUSPENDS. 

Figure 7. Relative Timing for Level-O Interrupt Generation 

I EXECUTION -I--EXECUTION SUSPENDED --t-PROCESSOR STAll DURATIDN-l- RESUME NORMAL OPN-
> 11 + Ie CYCLES-=----l ~ I---- APPROX 4 CYCLES @ . 

NHALT L.. __________ ::::::::::::::~t--- D(~I:~~I:~~N~~~t~~~~~ 
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CONTIN 

@ 

~ I --1 !--APPRDX 2% + Ie CLOCK CYCLES I I 
CONTINUE DRIVEN ....... _---- CONTINUE DRIVEN BY PACE ______ -CDNTINUE DRIVEN_ 

EXTERNAll Y (EXTERNAL CIRCUITS HIGH IMPEDANCE) , EXTERNALL Y 

NOTES: 
1. EXTERNAllY GENERATED TIL INPUTS OVERRIDE PACE OUTPUTS. 
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Figure 8. Relative Timing for Processor Stall 

The architecture of the INS8900 (shown in Figure 9) 
features a number of resources to minimize system pro­
gram and read/write storage, increase throughput, and 
reduce the amount and cost of external support hard­
ware. Principal resources that allow these efficiencies to 
be achieved include: 

Four 16-bit general purpose working registers available 
to the user reduce the number of memory load and store 
operations associated with saving temporary and inter­
mediate results in system memory. 

An independent 16-bit status and control flag register 
automatically and continuously preserves system status. 
The user may operate on its contents as data, allowing 
masking, testing, and modification of several bit fields 
simultaneously. 

A ten-word U6-bid last-in, first-out (LIFO) stack 
inherently decreases response time to interrupts while 
eliminating both program and read/write system storage 
overhead associated with storing stack information 
outside the microprocessor chip. 

Stack full/stack empty interrupts are provided to facili­
tate off-chip stack storage in those applications where 
additional stack capacity is desirable. 

A six-level vectored priority interrupt system internal to 
the chip provides automatic interrupt identification, 
eliminating both program storage overhead and the time 
normally required to poll peripherals in order to identify 
the interrupting device. 

Three sense inputs and four control flag outputs allow 
the user to respond directly to specific combinations of 
status present in the microprocessor-based system, thus 
eliminating costly hardware, program overhead, and 
throughput associated with implementing these func­
tions over the system data bus. 

A comprehensive set of input/output control signals 
provided by the internal control logic simplifies inter­
faces to memory and peripherals and allows flexible 
control of I NS8900 operations. 

Single-phase 2.0 MHz clock input is easily generated with 
a minimum of external components. 
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PACE STE 

timing diagram 

TClKO 

TClK 

NClK 
OR 

NCK 

ClK 
OR 
CK 

recommended crystal specifications 

• AT -cut crystal 

• 2.6667 MHz ± 0.1%, fundamental 
mode 

• 5 mW maximum 

• 150 n maximum series resistance 

tTDz 

tPll 

-tPHZ 

911% 

90% 911% 

-tpw 

TIMES FOR NCLK, NCK, ClK, AND CK MEASURED AT 111% AND 911% 

Figure 2. 
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PACE STE 
absolute maximum ratings [1] operating conditions 
Supply Voltage (Vee) ................... 7.0 V 

(VGG) ................. -15.0 V 

Input Voltage ......................... 5.5 V 

Storage Temperature ............ -65°C to +150°C 

lead Temperature (soldering, 10 seconds) ..... 300°C 

Min. Max. Units 

Supply Voltage (Vee! 4.75 5.25 V 
(VGG) -11.40 -12.6 V 

Temperature 0 +70 °c 

dc electrical characteristics (Notes 2 and 3) 

Parameter Conditions Min. Typ. Max. Units 

OUTPUT SPECIFICATIONS: 

T ClK, T ClK* (TTL Clocks) 

VOH logic "1" Output Voltage Vee =4.75V IOH=-1mA 3.65 4.25 V 

VOL logic "0" Output Voltage Vee = 4.75V 10L = 32mA 0.25 0.4 V 

los Output Short Circuit Current (Note 4), Vee = 5.25 V, Vo = 0 -10 -33 -55 mA 

CK, NCK, ClK, NClK 

VOH logic "1" Output Voltage IOH = -100~A Vee - 0.9 4.5 V 

Vee= 4.75V I 10L = 100~ VGG + 0.1 VGG+ 0.25 V 
VOL logic "0" Output Voltage 

VGG=-11.4V I 10L = 5mA VGG + 0.2 VGG + 0.5 V 

INPUT SPECIFICATIONS: 

EXTC 

VIH logic "1" Input Voltage 2.0 V 

I VIN=2.4V 40 ~ 
IIH logic "1" Input Current Vee = 5.25V 

I VIN = 5.5V 1.0 mA 

V IL logic "0" Input Voltage 0.8 V 

IlL logic "0" I nput Current Vee = 5.25V VIL = 0.4V -0.9 -1.6 mA 

VeLAMP Input Clamp Diode Vee = 4.75V IlL = -12mA -0.8 -1.5 V 

POWER SUPPLY CURRENT 

lee Supply Current from Vee Vee = 5.25V 20 30 mA 

IGG Supply Current from VGG VGG = -12.6V -40 -55 mA 

ac electrical characteristics Crystal Freauency at 2.6667 MHz I A = O°C to +70°C, Vec - VGG = +17V ± 5% 

Limits Test Symbol Parameter Units 
Min. Typ. Max. Conditions 

tNOV1' tNov2 Non-Overlap Time 5 12 ns See Note 5 

tpw MOS Clocks Pulse Width (NClK, ClK, NCK, CK) 300 320 ns See Note 5 

tR MOS Clocks Rise Time (NClK, ClK, NCK, CK) 40 ns See Note 5 

tF MOS Clocks Fall Time (NCLK, ClK, NCK, CK) 40 ns See Note 5 

tPH1' tPH2 TTL Clocks to MOS Clocks High Level Delay -40 40 ns See Note 5 

tPL1' tPL2 TTL Clocks to MOS Clocks Low Level Delay 80 ns See Note 5 

tTD1' tTD2 TTL Clock to TTL Clock Delay -25 25 ns See Note 5 

tSTART Time Delay from Last Power Applied to MOS Clocks Stabilized 100 ms See Figure 7 

Not .. : 
1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply 

that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 
2. Unless otherwise specified, minImax limits apply across the O°C to +70°C temperature range and VCC = 4.75 V to 5.25 V, VGG = -11.4 V 

to -12.6 V power supply range. All typical, are given for Vce = 5.0V, VGG = -12V, and TA = +25°C. 
3. All currents into device pins are shown as positive; currents out of davice pins are shown as negative. All voltages are references to ground 

unless otherwise noted. 
4. Only one output at a time should be shorted. 
5. The test conditions for measuring AC parameters are shown in Figures 2 and 3, with C1 = C2 = 60 pF, C3 = 80 pF, CNOV = 60 pF. Load 

conditions for MOS clocks and TTL clocks are shown in Figures 4 and 5. Including probe and jig capacitance, CL 1 = 20 to 80 pF, and 
CL2 =40pF. 
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PACE STE 
test conditions 

Cl = C2 = 60pF, C3 = 80pF, CNOV = 60pF* 
* ALL CAPACITD RS ARE ±5% 

Figure 3. 

typical characteristics 

80 

0 

0 

0 

0 

0 

TYPICAL NON·OVERLAP TIME VS. 
NON-OVERLAP CAPACITOR 

VC~=5 J 
VGG=-12V 
CLI = 80pF 
TA=25° ./V 

/ 
l/ 

V 
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V 
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CNOV(Pf) 
NDN·OVERLAP CAPACITANCE 

Figure 6. 

NCLK, NCK, CLK, CK LOAD 

VCC 

VGG 

NCLK, 
CLK, 
NCK, 

OR CK 

OUTPUT UNDER 
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L". 
r'u" 

Figure 4. 

TCLK*, TCLK LOAD 

OUTPUT 
UNDER 
TEST 

VCC 

RL = 390n 

Figure 5. 

..--ISTART_ 

Figure 7. 

1-013 



PACE BTE/S 
absolute maximum ratings (Note 1) recommended operating conditions 
Supply Voltage 7V MIN MAX UNITS 
Input Voltage (All Inputs Except MBIIO Input Active) 5.5V Supply Voltage (VCC) 4.75 5.25 V 
Output Voltage 5.5V 
MaS Bus Input Current ±10mA Temperature (T A) 0 +70 °c 

Storage Temperature --65°C to +150°C 
Lead Temperature (Soldering, 10 seconds) 300°C 

dc electrical characteristics (Notes 2 and 3) 

PARAMETER I CONDITIONS I MIN I TYP I MAX I UNITS 

TTL BUS PORT (BDI/O 00-07) 

VIH Logical "1" Input Voltage 2.0 V 

VIL Logical "0" Input Voltage O.S V 

VOH Logical "1" Output Voltage WBO* = O.SV, 10H=-1 mA VCC-l.l VCc-O·S V 

MBI/O = 0.5 mA 10H = -5.2 mA 2.4 3.7 V 

VOL Logical "0" Output Voltage WBO* = O.BV, 10l = 20 mA 0.25 0.4 V 

MBI/O = 100pA 10L = 50 mA 0.4 0.5 V 

lOS Output Short Circuit Current WBO* = O.BV, MBI/O = 0.5 mA, -10 -35 -75 mA 

VOUT = OV, VCC = 5.25V, (Note 4) 

IIH Logical "1" Input Current WBO* = 2V, VIH = 2.4V SO pA 

II Input Current at Maximum WBO* = 2V, VIH = 5.5V, 1 mA 

Input Voltage VCC = 5.25V 

IlL Logical "0" Input Current WBO* = 2V, VIL = 0.4V -10 -250 /J.A 

VCLAMP Input Clamp Voltage WBO* = 2V, liN = -12 mA --0.2 -1.5 V 

100 Outputllnput Bus Oisable Current WBO* = STR* = 2V, BOliO = 0.4V -BO SO /J.A 

to 4V, VCC = 5.25V 

MOS BUS PORT (MBI/O 00-07) 

10 Logical "0" Input Current WBO* = O.BV, 10L(TTL) = 50 rnA, -5.0 0.10 mA 

VOL::; 0.5V, (Note 5) 

11 Logical "1" Input Current WBO* = O.BV, 10H(TTL) = -1 rnA, 0.50 5.0 mA 

VOH ~VCC-l.1V, (Notes 5 and 6) 

Vo Logical "0" Input Voltage WBO* = O.BV, 10L(TTL) = 50 rnA, O.S V 

VOL ::;0.5V 

Vl Logical "1" Input Voltage WBO* = O.BV, 10H(TTL) = -1 rnA, 2.0 1.5 V 

VOH ~ VCC - 1.1V 

VOH Logical "1" Output Voltage WBO* = CEl = BOliO = 2V, 2.4 3.3 V 

IOH(MOS) = -1 mA, CE2* = 

STR* = O.BV 

VOL Logical "0" Output Voltage WBO* = CEl = 2V, 10L(MOS) = 0.2B 0.5 V 

5 rnA, CE2* = STR* = BOliO = O.BV 

lOS Output Short Circuit Current WBO* = CEl = BOliO = 2V, -7 -15 -45 mA 

VCC = 5.25V, VOUT = OV, 

STR* = CE2* = O.BV, (Note 4) 

VCLAMP Input Clamp Voltage liN = -12 rnA -1.5 V 

100 Outputllnput Bus Oisable Current MBI/O = O.4V to 4V, VCC = 5.25V -BO BO /J.A 

CONTROL INPUTS (WBD*, CE1, CE2*, STR*) 

VIH Logical "1" Input Voltage 2.0 V 

VIL Logical "0" Input Voltage O.S V 

IIH logical "1" Input Current VIN = 2.4V 20 pA 

11 Input Current at Maximum VIN = 5.5V 1.0 mA 

Input Voltage 
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PACE BTE/S 
r --

dc electrical characteristics (Continued) (Notes 2 and 3) 

PARAMETER I CONDITIONS I MIN I TYP I MAX I UNITS 

CONTROL INPUTS (WBD*, CE1, CE2*, STR*) (continued) 

IlL Logical "0" Input Current V,N = O.4V -250 -400 JiA 

VCLAMP Input Clamp Voltage liN = -12 rnA --0.85 -1.5 V 

POWER SUPPLY CURRENT 

ICC Power Supply Current VCC = 5.25V 70 110 rnA 

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to 
imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. 
Note 2: Unless otherwise specified, minImax limits apply across the O°C to +70°C temperature range and the 4.75V to 5.25V power supply range. 
All typicals are given for VCC = 5V and T A = 25°C. 
Note 3: All currents into device pins are shown as positive, out of device pins are negative. All voltages are referenced to ground unless otherwise 
noted. 
Note 4: Only one output at a time should be shorted. 
Note 5: The MBI/O Input Characteristic Graph illustrates this parameter and defines the regions of guaranteed logical "0" and logical ", .. out-
puts. See equivalent input structure for clarification. When the MBI/O input is loaded with a high impedance source (open), the TTL output will 
be in the logic "0" state. 
Note 6: The maximum MOS bus positive input current specification is intended to define the upper limit on guaranteed input clamp operation. 
At higher input currents (up to the absolute maximum rating) clamp operation is not guaranteed but TTL bus logic state is valid and no device 
damage will occur. 
Note 7: In most applications the MOS bus data lines are higher impedance and more sensitive to noise coupling than TTL bus lines. Conservative 
design practice would dictate routing MOS bus lines away from high speed, low impedance TTL lines and MOS clock lines or providing a ground 
shield when they are adjacent. 

ac electrical cha racteristics VCC = 5V ±5%, T A = o°c to +70°C 

PARAMETER CONDITIONS MIN TYP MAX UNITS 

DATA TRANSFER SPECIFICATIONS 

Receiving Mode (BOliO Bus to MBIIO Bus) WBD* = 3V, CL = 15 pF, tpdO 17 40 ns 

R L = 1 kn, (Figures 4 and 6) tpd1 20 40 ns 

Driving Mode (MBI/O Bus to WBD* = CEl = OV, tpdO 40 60 ns 

BOliO Bus) STR* = CE2* = 3V, tpd1 40 60 ns 

CL = 50 pF, R L = 100 n, 
(Figures 3 and 5) 

TRANSCEIVE~ MODE SPECIFICATIONS 

Select Bus 

tDS Chip Enable Data Set-Up (Figure 1) 45 23 ns 

tDH Chip Enable Data Hold (Figure 1) 0 ns 

tES Set-Up (Figure 1) 0 ns 

TTL Data Bus (BOlIO 00-07) 

tBO 00 Bus Data Output Disable CL = 5 pF, RL = 100 n, (Figure 1) 5 20 50 ns 

tBO OE Bus Data Output Enable CL = 50 pF, RL = 100 n, (Figure 1) 25 80 ns 

tBO IE Bus Data Input Enable (Figure 1) 30 ns 

tBO 10 Bus Data Input Disable (Figure 1) 30 ns 

MOS Data Bus (MBI/O 00-07) 

tMB 00 MOS Bus Output Disable CL = 15 pF, RL = 1 kn. (Figure 1) 15 50 100 ns 

tMB OE MOS Bus Output Enable CL = 15 pF. RL = 1 kn. (Figure 1) 50 100 ns 

tMB 10 MOS Bus Input Disable (Figure 1) 55 ns 

tMB IE MOS Bus Input Enable (Figure 1) 20 ns 

Select Bus 

tCLR Clear Previous Chip Enable I (Figure 2) I I 25 I 50 I ns 
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PACE STE/S 
switching' time waveforms and ac test circuits 

STR* 

CEZ·-----....... 

CEI-------' 

WID' 

TTL DATA 
IUS --------------+-

.MOS DATA 
BUS 

CEZ' 3V 

FIGURE 1 

STR'~1I% 
CEIOV----------------~-----------------------------------------

WID' 

TTL DATA 
BUS 

t.L.:---1 

----------+~ 

MUS OATA 
BUS 

----------~ 
FIGURE 2 

INPUTIOV~ 
WAVEFORM SV SV 

(NOTE I) OV 

~
PdltpdO 

VOH 
OUTPUT 1.5V I.SV 

VOL 

INPUT 

FIGURE 3. BOlIO Bus 

VCC=SV 

O.'PF

T OUTPUT 

100 

ALL DIODES 
ARE IN31114 

*This input network simulates the actual drive characteristic of the PACE outputs 

FIGURE 5. MBIIO to BOlIO ac Loads 

INPUT3V~ 
WAVEFORM 1.5V I.SV 

(NOTE 1) OV 

~
'tpdO 

VOH 

~UTPUT 1.5V I.SV 

VOL 

FIGURE 4. MBIIO Bus 

ALL DIODES 
ARE IN3064 

VCC =sv 

FIGURE 6. BOlIO to MBIIO ae Loads 
Note 1: Freq = 1 MHz, duty cycle = 50%, tR = tF :s:. 10 ns (refer to Figures 5 and 6). 
Note 2: All capacitance values include probe and jig capacitance (refer to Figures 5 and 6). 
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PACE BTE/S 
typical performance characteristics 
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Chapter 2 
THE GENERAL INSTRUMENT CP1600 

The CP1600 and the TMS 9900 were the first two NMOS 16-bit microprocessors commercially available. Even 
a superficial inspection of the CP1600 shows it to be more powerful than the National Semiconductor PACE (or 8900). 
yet the CP1600 is not widely used. This is because General Instrument does not support the CP1600 tothe extent 
that National Semiconductor originally supported PACE. or most manufacturers support their 8-bit microprocessors. 

General Instrument's marketing philosophy has been to seek out very high-volume customers; General Instru­
ment supports low-volume customers only to the extent that this support would not require substantial investment on 
the part of General Instrument. 

From the viewpoint of the low-volume microprocessor user. General Instrument's marketing philosophy is unfortunate. 
The CP1600 is an ideal microprocessor for the more sophisticated video games that are appearing. and its rich instruc­
tion set and capable architecture make it an ideal choice for data processing terminals and home computer systems. 
However. due to its limited support. potential low-volume CP1600 customers are likely to choose another equally capa­
ble product. 

Three CP1600 parts are available, differentiated only by the clock speeds for which they have been designed. 

The CP1600 requires a 3.3 MHz. two-phase clock and generates a 600 nanosecond machine cycle time. 

The CP1600 requires a 4 MHz. two-phase clock and generates a 500 nanosecond machine cycle time. 

The CP161 0 requires a 2 MHz. two-phase clock and generates a 1 microsecond cycle time. 

In addition to the CP1600 microprocessors themselves, the CP1680 Input/Output Buffer (lOB) is described in 
this chapter. Additional support devices for the CP1600 may be found in An Introduction to Microcomputers: 
Volume 3 - Some Real Support Devices. 

The sole sou rce for the CP 1600 is: 

GENERAL INSTRUMENT 
Microelectronics Division 
600 West John Street 
Hicksville. New York 11802 

There is no second source for the CP1600. General Instrument has a policy of discouraging second sources for its 
product line. 

The CP1600 is fabricated using NMOS ion implant LSI technology; the device is packaged as a 40-pin DIP. 

Three power supplies are required: +12V. +5V and -3V. 

THE CP1600 MICROCOMPUTER SYSTEM OVERVIEW 
Logic of our general microcomputer system which has been implemented by the CP1600 CPU is illustrated in 
Figure 2-1. 

Observe that the CP1600 requires external logic to create its various timing and clock signals. 

Some bus interface logic is shown as absent because a number of devices must surround the CP1600; these in­
clude: 

1) An address buffer. since data and addresses are multiplexed on a single 16-bit bus. 

2) Buffer amplifiers to provide the power required by the type of memory and I/O devices that will normally be con­
nected to a CP1600 CPU. 

3) A one-of-eight decoder chip to create eight individual control Signals out of three controls output by the CP 1600. 

4) A one-of-sixteen multiplex chip to funnel sixteen external status Signals into the CP1600 if using external 
branches. 
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Were you to compare Figure 2-1 with an equivalent figure for a low-end microprocessor such as the SC/MP (which is 
described in Chapter 3 of the Osborne 4 & 8-Bit Microprocessor Handbook{Osborne/McGraw-Hill, 1980), the CP1600 
might appear to offer fewer logic functions; but within the functions it does provide, the CP1600 provides considerably 
more logic and program execution capabilities. Where low-end microprocessors choose to condense, onto a single 
chip, simple implementations of different logic functions, high-end products such as the CP1600 choose to provide 
more devices - with greater capabilities on each device. 

Interface Logic 

Programmable 
Timers 

Clock Logic CP 1600 CPU 

o CP1680 I/O Buffer 

I/O Ports 

Figure 2 -1. Logic of the CP 1600 CPU and CP 1680 1/0 Buffer 
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CP1600 PROGRAMMABLE REGISTERS 
The CP1600 has eight 16-bit programmable registers. which may be illustrated as follows: 

RO 
R1 

} Deta Counters R2 
R3 
R4 } Data Counters with 

General Purpose registers 

R5 auto-increment 

R6 Stack Pointer 

R7 Program Counter 

The way in which the registers illustrated above are used is unusual when compared to other microcomputers de­
scribed in this book. All eight 16-bit registers can be addressed as though they were general purpose registers; 
however. only Register RO has no other assigned function. We may therefore look upon Register RO as the Primary Ac­
cumulator for this CPU. 

Registers R1. R2. and R3 serve as general purpose registers. but may also be used as Data Counters. 

In addition to serving as general purpose registers. R4 and R5 may be used as auto-incrementing Data Counters. 
Memory reference instructions that identify Register R4 or R5 as holding the implied memory address will cause the 
contents of Register R4 or R5 to be incremented - after the memory reference instructions have completed execution. 

Registers R6 and R7. in addition to being accessible as general purpose registers. also serve as a Stack Pointer and a 
Program Counter. respectively. 

Having the Stack Pointer accessible as a general purpose register makes it quite simple to maintain more than one 
Stack in external memory; also. you can easily address the Stack as data memory using the Stack Pointer as a Data 
Counter. 

Having the Program Counter accessible as a general purpose register can be useful when executing various types of 
conditional branch logic. 

While having the Stack Pointer and the Program Counter accessible as though they were general purpose registers 
may appear strange. this is a feature of the PDP-11 minicomputer - and is a very powerful programming tool. 

CP1600 MEMORY ADDRESSING MODE 
The CP1600 addresses memory and 1/0 devices within a single address space. 

When referencing external memory. you can use direct addressing. implied addressing. or implied addressing 
with auto-increment. 

Direct addressing instructions are all two or more words long. where the second or last CP1600 DIRECT 
word of the instruction object code provides a 16-bit direct address. ADDRESSING 

CP 1600 direct addressing instructions are complicated by the fact that CP 1600 program 
memory is frequently only 10 bits wide. That is to say. even though the CP1600 is a 16-bit microprocessor. its instruc­
tion object codes are only 10 bits wide. If program memory is only 10 bits wide. then direct addresses will only be 10 
bits wide. A 1 O-bit direct address will access the first 1024 words of memory only. 
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Were you to implement a 16-bit wide program memory. then you could directly address up to 65.536 words of memo­
ry; however. six bits of the first object program word for every instruction in program memory would be wasted. This 
may be illustrated as follows: 

Program 
Memory 

15 10-9 o ~ Bit Number 

Three memory 

.... 1------"'"'7"- reference 
instructions 

Six unused 
bits in each· 

of these 
memory locations 

Two single 

that specify 
direct addressing 

word instructions 

Instructions that reference memory using implied addressing identify general purpose 
Register R1, R2, or R3 as containing the implied address. 

A memory reference instruction which identifies Register R4 or R5 as providing the external 
memory address will always cause Register R4 or R5 contents to be incremented following the 
memory access; thus you have implied memory addressing with auto-increment. 

CP1600 
IMPLIED 
ADDRESSING 

Memory reference instructions that specify implied memory addressing via Register 1, 2, 3, 4, or 5 can access 
8-bit memory. An SDBD instruction executed directly before a valid memory reference instruction forces the memory 
reference instruction to access memory one byte at a time. If implied memory addressing via Register 1. 2. or 3 is 
specified. then the same byte of memory will be accessed twice. For an instruction that loads the contents of data 
memory into Register RO. this may be illustrated as follows: 

Memory 

Rol yy } 
SOBD 

MVI R1.RO Program memory 

PPQQ XXYY } Data memory 
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If Register R4 or R5 provides the implied memory address for the instruction which follows an SDBD instruction. then 
the implied memory address is incremented twice. and two sequential low-order bytes of data are accessed. For an in­
struction which loads data into Register RD. this may be illustrated as follows: 

RO 
~--~---... 

R5 I PP 

" 

Memory 

Program memory 

Data memory 

The SDBD instruction may also precede an immediate instruction. Now the immediate data will be fetched from the 
low-order byte of the next two sequential program memory locations. This may be illustrated as follows: 

Memory 

MVII XXYY.RO 

Without the preceding SDBD instruction. an immediate instruction will access the next single program memory word 
to find the required immediate data. Ten or more bits of immediate data will be accessed. depending on the width of 
program memory words. 

The CP1600 has no Stack reference instructions such as a Push or Pull; rather, a variety of CP1600 
memory reference instructions can identify Register R6 as providing the implied address. STACK 
When Register R6 provides the implied address. it is treated as an upward migrating Stack ADDRESSING 
Pointer. When a memory write operation specifies Register R6 as providing the implied memory 
address. Register R6 contents will be incremented following the memory write. A memory read instruction that 
specifies Register R6 as providing the implied memory address will cause the contents of Register R6 to be decre­
mented before the read operation occu rs. 

An unusual feature of the CP1600 is the fact that a variety of secondary memory reference instructions can also 
reference memory via the Stack Pointer. When these instructions are executed. Register R6 contents are decre­
mented before the memory access occurs - as though a Pull operation from the Stack were being executed. 

Logically. Register R6. the Stack Pointer. is being handled as though it were a Data Counter with post-increment and 
pre-decrement. 
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Jump instructions use direct memory addressing. Jump instructions are all three words long. The direct address is 
computed from the second and third memory words as follows: 

98765432 0 

0 0 0 0 0 0 0 1 

x X A A A A A A 

B B 

AAAAAABBBBBBBBBB Jump address (binary) 
yy are enable/disable bits for interrupts 

B B B B B 

xx identify the register where the return address will be stored for JSR 
xx and yy are described in detail in Table 2-4. 

B 

0 0 

y y 

B B 

-- JR or JSR 

-- Word 2 

~ - Word 3 

You can enable or disable interrupts whenever you execute a Jump or Jump-to-Subroutine instruction. 

The only difference between a Jump instruction and a Jump-to-Subroutine instruction is that the Jump-to-Subroutine 
instruction saves the Program Counter contents in Register 4, 5, or 6. The two high-order bits (xx) or the second Jump­
to-Subroutine object code word specifies which of the three registers will be used to hold the return address. 

Jump-to-Subroutine instructions, like the Jump instruction, allow direct memory addressing only. 

CP1600 STATUS AND CONTROL FLAGS 
The CP1600 CPU has four of the standard status flags; in addition, it has some unusual control signals. 

These are the four standard status flags: 

Sign (5), This status is set equal to the high-order bit of any arithmetic operation result. 

Zero (Z). This status is set to 1 when any instruction's execution creates a zero result. The status is set to 0 for a nonzero 
result. 

The Carry (C) and Overflow (0) statuses are standard carry and overflow, as described in Volume 1. 

Four control signals (EBCAO - EVCA3) are output during a Branch-on-External (BEXT) instruction. The'se four sig­
nals are output to reflect the low-order four bits of the SEXT instruction's object code. External logic receives these four 
signals and (depending on their state), mayor may not return a high input via ESC!. If ESC I is returned high, then the 
SEXT instruction will perform a branch: if ESCI is returned low. then the SEXT instruction will cause the next sequential 
instruction to be executed. The four control signals ESCAO - EBCA3 therefore provide the CP1600 with a means of test­
ing 16 external conditions. 

CP1600 CPU PINS AND SIGNALS 
CP1600 CPU pins and signals are illustrated in Figure 2-2. 

DO - 015 is a multiplexed Address and Data Bus. Given a total of 40 pins in a package, CP1600 designers have been 
forced to share 16 pins between addresses and data. Three control signals, BDIR, BC1, and BC2, identify the traffic 
on the Address/Data Bus. External logic (one MSI chip) must decode these three signals to create eight control 
signals, as summarized in Table 2-1. 

Remaining signals may be divided into four groups: timing, status/control, interrupt, and OMA. 

Two timing clock signals are required: <1>1 and <1>2. These are complementary clock signals which may be illustrated 
as follows: 

<1>1 --1 \ I \ I L 
<1>2 \",, __ ~I \ I \~_.,Jr 
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Pin Name 

00-015 

BDIR. BCl. BC2 

cl»1. «112 
MSYNC 
EBCAO - EBCA3 

ESCI 

PCiT 

BDROY 

STPST 
HALT 

iNTR. iNTRM 
TCI 
ijSiiQ 

"BUSAK 

ESCI 

MSYNc' 
BCl 

BC2 

BDIR 

015 

014 

013 

012 

011 

010 

09 

OS 
00 

01 

07 

D6 
06 

04 
03 

VB8.VCC.VOO.GNO 

1 

2 

3 

4 

5 

6 

9 

10 CPl600 

11 CPU 
12 

13 

14 

15 

16 

17 
18 

19 

20 

Description 

Data and Address Bus 

Bus control signals 

Clock signals 

Master Synchronization 

40 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

22 

21 

External branch condition address lines 

External branch condition input 

Program Counter inhibit/software 

interrupt signal 

WAiT 
CPU stop or stan on high-to-Iow transition 

Halt state signal 

Interrupt request lines 

Terminate current interrupt 

Bus request 

External bus control acknowtedge 

Power and Ground 

PCiT 
GNO 

«111 
«112 

YeO 
VBB 

VCC 
BOROY 

STPST 
BUsRQ 
HALT, 

BUSAK 
iNiR 
iNTRM 
TCI 

EBCAO 

EBCAl 

EBCA2 

EBCA3 

02 

Type 

Tristate. Bidirectional 

Output 

Input 

Input 

Output 

Input 

Input 

Input 

Input 

Output 

Input 

Output 

Input 

Output 

Figure 2-2. CP1600 CPU Signals and Pin Assignments 

MiYNC is a somewhat unusual signal. as compared to other microcomputer clock signals in this book. Following 
powerup. MSYNC must be held low for at least 10 milliseconds. On the subsequent riSing edge of MSYNC. logic inter­
nal to the CP1600 CPU will synchronize the <1>1 and <1>2 clock signals to start a new machine cycle. Most of the CPU 
devices we have described in this book use a reset signal. or have internal powerup logic which performs this clock 
synchronization. 

Now consider the status and control signals. 

First of all. there are the four control outputs which we have already described: EBCAO - EBCA3. There is one con­
ditional Branch instruction (BEXT) which will only branch if a high signal is input via EBCI. When the BEXT in­
struction is executed. the low-order four BEXT instruction object code bits are output via EBCAO - EBCA3. External 
logic is supposed to decode these four signals by whatever means are appropriate - and thence determine whether 
ESCI should be input high or low. A high input. as we have just stated. will result in a branch: a lowinput will cause the 
next sequential instruction to be executed. 

In reality. there is no connection within CP1600 CPU logic between the EBCI input and the four EBCAO - EBCA3 out­
puts. So far as external logic is concerned. the execution of a BEXT instruction is identified by signal levels output and 
maintained on the EBCAO - EBCA3 outputs. while the EBCI input determines whether a branch will or will not occur. 
How external logic chooses to determine whether EBCI will be set high or low is entirely up to external logic. The only 
vital function served by ESCAO - EBCA3 is to identify the instant at which a BEXT instruction is executed. 

Another unusual control signal provided by the CP1600 is PCIT; this is a bidirectional Signal. When input low. this 
Signal prevents the Program Counter from being incremented following an instruction fetch. This Signal is also output 
as a low pulse following execution of a software interrupt instruction. Instruction timing separates the active input and 
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active output of this signal: providing external logic adheres to timing requirements, a conflict between input and out­
put logic will never arise. 

BDRDY is equivalent to the WAIT signal we have described for a number of other microcomputers. BDRDY is in­
put low by any external logic which requires more time in order to respond to an 1/0 access. Recall that the CP1600 
uses a single address space to reference memory or I/O devices. The 'SDR]jy signal causes the CPU to enter a Wait 
state for as long as B"i5'RI)V is being input low: however, during the Wait state CPU logic is not refreshed. Thus a Wait 
state cannot last for more than 40 microseconds, or the contents of internal CPU locations will be lost. 

STPST, a Halt/Reset input, is an edge-triggered signal. When external logic inputs a high-to-Iow transition via STPST, 
the CPU will complete execution of any interrupt instruction, then will enter a Halt state and output HALT high. If a 
non-interruptable instruction is being executed, then the Halt state will not being until completion of next interruptable 
instruction's execution. The Halt state will last until external logic inputs another high-to-Iow STPST transition, at 
which time the Halt output will be returned low and normal programming execution will continue. Execution of the 
HL T instruction also causes the CP1600 to enter a Halt state, as described above. 

Let us now look at interrupt signals. 

The CP1600 has two interrupt request inputs -INTR and INTRM. INTR has higher priority than INTRM. INTR can­
not be disabled. Typically, TNiI1 will be used to trigger an interrupt upon power failure or other catastrophes. 

The interrupt acknowledge signal is created by external logic which must decode the BC1, BC2, and BDIR sig­
nals, as shown in Table 2 -1. Observe that there are, in fact. two interrupt acknowledge signals: the first (I NT AK) 
acknowledges the interrupt itself, while the second (DAB) is used as a strobe for external logic to return an interrupt ad­
dress vector. The interrupt sequence is described later in this chapter. 

The CP1600 has two additional interrupt-related signals which are unusual when compared to other microcomputers 
described in this book. 

TCI is output high when an End-of-Interrupt instruction is executed. This signal makes it easy for external log ic to 
generate interrupt priorities which extend across the execution of an interrupt service routine. 

Table 2-1. CP1600 Bus Control Signals 

BC1 BC2 BDIR SIGNAL FUNCTION 

0 0 0 NACT The CPU is inactive and the Datal Address Bus is in a high impe-
dance state. 

0 0 1 BAR A memory address must be input to the CPU via the DatalAddress 
Bus. 

0 1 0 lAB Acknowledged external interrupt requesting logic must place the 
starting address for the interrupt service routine on the Address Bus. 

0 1 1 DWS Data write strobe for external memory. 

1 0 0 ADAR This signal identifies a time interval during which the DatalAddress 
Bus is floated, while data input on the Data Bus is being interpreted 
as the effective memory address during a direct memory addressing 
operation. 

1 0 1 DW The CPU is writing data into external memory. DW will precede 
DWS by one machine cycle. 

1 1 0 DTB This is a read strobe which external memory or I/O logic can use in 
order to place data on the Datal Address Bus. 

1 1 1 INTAK This is an interrupt acknowledge signal. It is followed by lAD which 
is a strobe telling the external logic which is being acknowledged to 
identify itself by placing an address vector on the Datal Address Bus. 
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<1>1 

BC1 

BC2 

BDIR 

MC MC 

T1 T2 T3 T4 T1 T2 T3 T4 

BC 1 ,BC2,BDIR 

OO-D15 ---51~-+-----l~-

T1 T2 

BAR 
MC1 

Undefined Data Data 
state Output Input 
preceding 
data output 

Figure 2-3. CP1600 Machine Cycles and Bus Timing 

T3 T4 T1 

NACT 
MC2 

T2 T3 T4 T1 T2 

DTB 
MC3 

T3 

~ ____ ~ __ ~ __________ -+ ______________ J 

T4 

DO-D15---~ 

Instruction 
address out 

Instruction 
object code in 

Figure 2-4. CP1600 Instruction Fetch Timing 
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INSTRUCTION FETCH 

BAR NACT DTB 
MCl MC M~ 

NACT 

, I I I I I I I I I I I 

Tl: T2 :T3:-T4 Tl: T2 :T3: T4 T1\ T21T3 lT4 Tl\ T2: T3; T4 
I I I I I I " I I I 

Instruction 
address out 

Instruction 
object code in 

BAR 
MCl 

: : ' 
Tl, T21 T31 T4 

I I I 

MEMORY READ 

NACT DTB 
MC2 MC3 

I I I I I I 

I I I I I I 
Tli T2, T3, T4 Tl'T2, T3 ,T4 

, I I '" 

Data address out Data in 

Figure 2-5. CP 1600 Timing for Memory Read I nstruction with Implied Memory Addressing 

CP1600 INSTRUCTION TIMING AND EXECUTION 

CP1600 instructions are executed as a sequence of machine cycles. Each machine cycle has four clock periods, 
as illustrated in Figure 2-3. Machine cycles are identified by their cycle number and by the levels of the BC1. BC2. 
and BDIR signals. Each of the eight level combinations is given a name. taken from Table 2-1. This name becomes the 
name of the machine cycle. Thus in Figure 2-4. and in subsequent instruction timing illustrations. each machine cy­
cle is identified by a signal name from Table 2-1. 

Figure 2-3 shows general case timing for data output or input on the Data/Address Bus. In between data input or out­
put operations the bus is floated. 

CP1600 MEMORY ACCESS TIMING 
Figure 2-4 illustrates instruction fetch timing for a CP1600 instruction's execution. Three machine cycles are re­
quired. During the first mac.hine cycle an address is output. Nothing happens during the second machine cycle: it is a 
"time spacing" machine cycle that routinely separates two CP1600 Bus access machine cycles. The object code for the 
accessed instruction is returned during the third machine cycle. 

Figure 2-5 illustrates timing for the simplest memory read instruction's execution. In this .case the data memory 
address is taken from one of the CPU registers. There is no difference between timing for the three machine cycles of an 
instruction fetch or a data memory read. As illustrated in Figure 2-5. a simple memory read instruction's execution 
consists of two three-machine cycle memory read operations. separated by a spacing no operation machine cycle. 
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BAR 
MCl 

I I , 

INSTRUCTION FETCH 

NACT 
MC2 

DTB 
MC3 

NACT 
BAR 
MCl 

MEMORY WRITE 

NACT 
MC2 

DW 
MC3 

DWS 
MC4 

I I I I, I I 1 I I I. I I I I I I I I I 

Tl :T2:T3:T4 
I ., I I I " I I I I ,I II ,I I I I 

Tli T2,T3.T4 Tl, T2, T3. T4 Tl, T2, T3,T4 Tl,T21 T3 1 T4 Tl, T2, T3, T4 Tl, T2. T3, T4 Tl, T21 T3.T4 
, ,. I I I I I 'I • I I' I I I I I I 

Instruction 
address out 

Instruction 
object code in 

Data address out Data out 

Figure 2-6. CP1600 Timing for Memory Write Instruction with Implied Memory Addressing 

Figure 2-6 illustrates timing for a simple CP1600 memory write instruction execution. Data is output for two 
machine cycles. giving external logic ample time to respond to the data output. External logic uses the DWS machine 
cycle as a write strobe. 

Any memory reference instruction that specifies direct memory addressing will require one three-clock-period machine 
cycle to fetch each word of the instruction object code: an NACT clock period will separate each machine cycle. After 
the first instruction fetch machine cycle. an ADAR-NACT clock period combination will be inserted in the second (and 
third. if present) instruction fetch machine cycle. During an ADAR clock period. BC1 is high. while BC2 and BDIR are 
low. No other control signals are active. Thus. for a two-word memory read or memory write instruction that 
specifies direct addressing, the following clock periods and machine cycles will be required for instruction ex­
ecution: 

Direct Addressing 
Memory Read 
Machine Cycles 

Direct Addressing 
Memory Write 
Machine Cycle 

BAR } Fetch first instruction { BAR 
NACT "~-------object code word ------t.~ NACT 
DTB DTB 

NACT .. 4.-----Spacing machine cycle------... ~NACT 

~~~~} .. '4.----Fetch second instruction------t.~{ ~~~~ 
NACT object code word NACT 
DTB DTB 

NACT ....... -----Spacing machine cycle------.~ NACT 

BAR } Memory read Memory write { BAR 
NACT ..... ---machine cycle machine cycle---__ .~ NACT 
DTB DW 

DWS 
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BAR NACT NACT 

<1>2 

BC1 

-----------------+------------
BC2 

BOIR 

BOROY 

Figure 2-7. CP1600 Wait State Timing 

THE CP1600 WAIT STATE 
The CP1600 has a Wait state equivalent to those described for other microcomputers in this book. External logic that 
requires more time to respond to an access must input BDRDY low before the end of the BAR machine cycle. during 
which an address is output and the device is selected. Timing is illustrated in Figure 2-7. 

If you examine Figures 2-4, 2-5 and 2-6. you will see that an address is output during a BAR machine cycle to initi­
ate any external device access. The BAR machine cycle is always followed by an NACT machine cycle; in the middle of 
T1 during this NACT machine cycle, the CP1600 samples BDRDY. If ~ is low. then a sequence of NACT machine 
cycles occurs. In the middle of T4 for every NACT machine cycle, the CP1600 samples BDRDY again. Upon detecting 
BDRDY high, the CP1600 resumes instruction execution with a DTB machine cycle. 

A Wait state must last for less than 40 microseconds, since the CP1600 is a dynamic device. 

THE CP1600 HALT STATE 
The CP1600 has a Halt state which may follow execution of the Halt instruction, or may be initiated by external 
logic. 

When the Halt instruction is executed. then. following the instruction fetch machine cycle, the HALT signal is output 
high and a sequence of NACT machine cycles is executed. 

External logic initiates a Halt state by making the STPST input undergo a high-to-Iow transition. Following execution of 
the next interruptable instruction. a Halt state begins. The HALT signal is output high and a sequence of NACT 
machine cycles is executed. 

A Halt state, whether it is initiated by execution of a Halt instruction or by a high-to-Iow transition of STPST. must be 
terminated by a high-to-Iow transition of STPST. This will cause the Halt state to end at the conclusion of the next 
NACT machine cycle. Timing for a Halt state which is initiated and terminated by STPST may be illustrated as follows: 

STPST{L-__ l ~ 

HALT ~~-------------------------------------------~~--------
Next interruptable ~ \. y ) 1 

instruction's / \ 
execution HALT STATE Next NACT machine 
ends here cycle ends here 
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The PerF signal as an input inhibits CP1600 Program Counter increment logic. Thus. external 
logic can input PCIT low - in which case the same instruction will be continuously re-executed 
until PC IT goes high again. However. PCIT should only change levels while the CPU has been 
halted. Thus. PCIT and STPST should be used together as follows: 

PCIT REQUEST 

STPST 

PCIT 

CP1600 INITIALIZATION SEQUENCE 

CP1600 
PCIT 
SIGNAL 

The CP1600 is initialized by inputting the MSYNC signal low for a minimum of 10 milliseconds after power is 
first applied to the CPU. ' 

MSYNC must make a low-to-high transition. marking the end of the initialization. on a rising edge of the «1>1 clock sig­
nal. On the next rising edge of «1>1. instruction execution will begin. This may be illustrated as follows: 

I I Ii: 
I T1 : T2 I T3 I T4 I 

<1>, 

MSYNC 

When instruction execution begins. interrupts are disabled. The following sequence of machine cycles is executed: 

NACT 
lAB -4--- Read Datal Address Bus and load into Program Counter 
NACT 
NACT 
NACT 
BAR-4-- Output Program Counter contents to fetch first instruction 
NACT 
DTB 
etc 

During the lAB machine cycle. external logic must supply a 16-bit address at DO - 015. Your external logic must pro­
vide this address. which in the simplest case may be 0000 by grounding the bus. or FFFF16 by tying it to +5V following 
a startup. 

The address which is input at lAB is output at BAR. initiating program execution. 

CP1600 DMA LOGIC 
CP1600 DMA logic is quite standard. When external logic wishes to transfer data under DMA control, it inputs 
BUSRQ low. At the conclusion of the next interruptable instruction's execution, the CPU floats the 
Data/Address Bus and enters a Wait state, during which a sequence of NACT machine cycles is executed. 
BUSAK is output low at the beginning of the first NACT machine cycle. 

The NACT machine cycles that occur during a DMA operation refresh the CPU. NACT machine cycles that occur 
during a'Wait state do not refresh the CPU. This means that any number of NACTmachine cycles can occur during a 
DMA break. while a Wait state must be shorter than 40 microseconds. 

The DMA break ends when external logic inputs BUSRO high again. BUSRO is sampled during T1 of every DMA NACT 
machine cycle. When BUSRO is sampled high. two additional NACT machine cycles are executed. then BUSAK is out­
put high and normal program execution resumes. 

DMA timing is illustrated in Figure 2-8. 
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Figure 2-8. CP1600 DMA Timing 
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Figure 2-9. CP1600 Interrupt Service Routine Initialization 
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Figure 2-10. CP1600Timing for TCllnstruction's Execution 

THE CP1600 INTERRUPT LOGIC 
The CP1600 uses a vectored interrupt processing system. 

External logic requests an interrupt by inputting a low signal at either the INTR or INTRM pins. 

Next instruction 
object code in 

Following the execution of the next interruptable instruction. the CP1600 acknowledges the interrupt by pushing 
Register R7 contents (the Program Counter) onto the Stack; then the CP1600 outputs 111. followed by 010 at BC1. 
BC2. and BOIR. External logic must respond by placing 16 bits of data on the Data/Address Bus. These 16 bits of data 
will be loaded into Register R7. the Program Counter. thus causing program execution to branch to an interrupt service 
routine dedicated to the interrupt. Timing is illustrated in Figure 2-9. 

The PCIT signal is output low following execution of a software interrupt instruction (SIN). This is the only microcom­
puter described in this book which allows external logic to respond to a software interrupt in this fashion. Allowing ex­
ternal logic to respond to a software interrupt only makes sense when you anticipate your product being used in a 
minicomputer-like environment. Typically. the software interrupt will interface to logic of a front panel or console. 
When an SIN instruction is executed. a one-machine cycle low PC IT pulse is output. 

You may. if you wish. end an interrupt service routine by executing a Terminate Current Interrupt (TCI) instruction. in 
which case the TCI signal will be output high. 

Timing for TCI is given in Figure 2-10. 

Following an interrupt acknowledge. the interrupt service routine must execute instructions in order to disable inter­
rupts and save the contents of registers on the Stack. The exception is Register R7. the Program Counter. which is auto­
matically pushed onto the Stack following an interrupt acknowledge. 

External logic is entirely responsible for any type of interrupt priority arbitration which may occur. and for the genera­
tion of the interrupt vector address which must be input following an interrupt acknowledge. 
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It is quite easy to generate signals equ iva lent to other microcomputer system busses from the CP1600 System Bus. 
Therefore, you can use parts described in Volume 3 to handle CP1600 interrupt requirements. 

THE CP1600 INSTRUCTION SET 
The CP1600 instruction set is relatively straightforward. Addressing modes, which we have already described, are sim­
ple, and instructions are typical of those we have seen and described for other microcomputers. Unusual features relat­
ing to addressing modes available with individual instructions are summarized in Table 2-2, which describes the 
CP1600 instruction set. 

If you have never programmed a PDP-11 minicomputer, then you should pay particular attention to program­
ming techniques that result from the Stack Pointer and Program Counter being accessed as general purpose 
registers. 

A wide variety of Register Operate instructions allow you to compute data and load the result directly into Register R7, 
the Program Counter. In effect these become computed Jump instructions. 

The ability to manipulate Register R6, the Stack Pointer, as though it were a general purpose register means that it is 
easy to maintain a number of different Stacks in external read/write memory. 

The Jump-to-Subroutine instruction has a minicomputer flavor to it. Rather than saving the return address on the 
Stack, Register R7 contents are moved to General Purpose Register R4 or R5. A number of minicomputers will save a 
subroutine return address in a general purpose register in this fashion. The problem with this logic is that you must ex­
ecute an additional instruction within the subroutine to save the return address on the Stack if you are going to use 
nesting subroutines. If you are passing subroutine parameters, however, this is an excellent arrangement for the Jump­
to-Subroutine instruction places the address of the parameter list directly in a Data Counter with auto-increment. We 
have described the concept of parameter passing in Volume 1, Chapter 7. 

Note that the CP 1600 instruction set lacks a logical OR. 

In Tables 2-2 and 2-4, instruction length is given in terms of "words" rather than "bytes", as we have done in pre­
vious chapters. Since only the lower 10 bits of the CP1600 object code are presently used, system configurations need 
not have the full 16-bit word size. Hence a "word" may be 10 to 16 bits wide, depending on the implementation. 

The following notation is used in Table 2-2: 

ADDR One word of direct address 

condCondition on which a branch may be taken. Table 1-3 lists all 14 branch conditions. 

DATA One word of immediate data. 

DISP One word displacement. See Table 2-4 for location of sign bit. 

E External branch condition. 

EBCAO-3 The external branch condition address lines: EBCAO, EBCA 1, EBCA2, and EBCA3. 

EBCI The external branch condition input line. 

LABEL A 16-bit direct address, target of a Jump instruction. See Table 2-4 for the bit format. 

PC IT The software interrupt output line. 

RB General Purpose Register R4, R5, or R6. 

RD One of the general purpose registers, used as a destination for operation results. 

RM One of the general purpose registers used as a Data Counter, R4 or R5, if specified, is auto-incremented 
after the memory access. R6 is incremented after a write, and decremented before a read. 

RR General Purpose Register RO, R1, R2, or R3. 

RS One of the general purpose registers, used as the source of an operand. 

Statuses: 

S the Sign status 
C the Carry status 
Z the Zero status 
o the Overflow status 
The following symbols are used in the STATUSES column: 
X the status flag is affected by the operation 

a blank means the status flag is not affected ° the operation clears the status flag 
1 the operation sets the flag 
2 the Overflow flag is affected only on 2-bit shifts or rotates 
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SW The Status Word. whose bits correspond to the condition of the status flags in the following way: 

x<y.Z> 

(.2) 

3 2 1 0 .... Bit No 

I s I z laic I Status Word 

When the status word is copied into a register. it goes to the upper half of each byte: 

[SW] 

When the status word is loaded from a register. it comes from the upper half of the lower byte: 

~11-5----------------8·1-7--~::::rr~-4~3------~ol ~~3~~---o~1 
[RS] [SW] 

Bits y through z of the Register x. For example. R7 < 15.8 > represents the upper byte of the Program 
Counter 

Indicates that the operand ".2" is optional 

A low pulse 

[ ] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the brackets. 
then the contents of the addressed memory location are specified. 

[[ ]] Implied memory addressing: the contents of the memory location designated by the contents of a register. 

A Logical AND 

-¥- Logical Exclusive-OR 

± Addition or subtraction of a displacement. depending on the sign bit in the object code. 

Data is transferred in the direction of the arrow. 
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Table 2-2. CP1600 Instruction Set Summary 

sTAtuses 

TYPE MNEMONIC OPERAND(S) WORDS S Z C 0 
OPERATION PE~FORMED 

MVI ADDR,RD 2 [RD]-[ADDR] 

Load register from memory, using direct addressing. 

O~II.I MVI@ RM,RD 1 [RD]-[[RM)) 
::::0(,) Load register from memory, using implied addressing. 
>~z 

~~ffi MVO RS,ADDR 2 [ADDR]-[RS] 

~Q~ Store register to memory, using direct addressing. 
a::Za:: MVO@ RSJIM 1 [[RM))-[RS] 
ILc( 

Stbre register to memory, using implied addressing. If RS=R4, R5, R6 or R7, then RS=RM Is not 

supported. 

ADD ADDR,RD 2 X X X X [RD]-[RD)+ [ADDR] 

~ .... 
co 

11.1 
Add memory contents to register, using direct addressing. 

(,) ADD@ RM,Rt) 1 X X X X [RD]-[RD]+ [[RM)) 
Z 
11.1 Add memory contents to register, using implied addressing. a:: 
11.1 SUB ADDR,RD 2 X X X X [RD]-[RD] - [ADDR] u. 
11.1 Subtract memory tontents from registEir, using direct addressing. a:: 

> SUB@ RM,RD 1 X X X X [RD]-[RD] - [[RM]] 
a:: Subtract memory contents from register, using implied addressing. 0 
~ CMP ADDR,RS 2 X X X X [RS] - [ADDR] 
11.1 

Compare memory contents with registers, u$ing direct addressing. Only the status flags are :E 
Q affected. 
Z CMP@ 
c( 

RM,RS 1 X X X X [RS] - [(RM)) 

g Compare memory contents with register's, using implied addressing. Only the status flags are 
affected. 

> AND ADDR,RO 2 X X [RD]-[RD] A [AOOR] 
II! 

AND memory contents with those of register, using direct addressing. c( 
Q AND@ RM;RD 1 X X tRD]-[RD) A [[RM)) z 
0 AND memory contents with those of register, using implied addressing. (,) 
w XOR ADDR,RD 2 X X [RD]-[RD]-¥- [ADDR] en 

Exclusive-OR memory contents with those of register, using direct addressing. 
XOR@ RM,RD 1 X X [RD]-[ RO].y. [[ RM)) 

Exclusive-OR memory contents with those of register, using implied addressing. 



Table 2-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

TYPE MNEMONIC OPERAND(S) WORDS S Z C 0 
OPERATION PERFORMED 

w MVII DATA,RD 2 [RD]~DATA ~ 
0( 

Load immediate to specified register. Q 
w MVOI RS,DATA 2 [[R7] + l1~[AS] 
~ 

Store contents of specified register in immediate field of MVOI instruction, This is only possible if ~ I 

program memory is reed/write memory (rather than ROM). 
! 

ADDI DATA,RD 2 
w X X X X [RD]~[RD] + DATA 
~ Add immediate to specified register. 0( 
a: SUBI DATA,RD 2 X X X X [RD]~[RD] - DATA w 
A. Subtract immediate data froni specified register. 0 
w CMPI DATA,RS 2 X X X X [RD]-DATA 
~ 

t;-J 
0( Compare immediate data with contents of specified register. Only the status flags are affected. 
is ANDI DATA,RD 2 X X [RD]~[RD] A DATA w I 
~ AND immediate data with contents of specified register. 
~ XORI DATA,RD 2 X X [RD]~[RDl¥DATA 

CD 

Exclusive-OR immediate data wit., contents of specified register. 

J LABEL 3 [R7]~LABEL 

Jump to given address. 
I 

A. JR AS 1 X X [R7]~[RS] 
:i! 

Jump to address contained in specified register. :;) ..., JSR RB,LABEL 3 [RB]~[R7l; [R7]~LABEL 

Jump to given address, saving Program Counter in A4, R5, or AS. 
B DISP 2 [R71~[R7] + 2±DISP 

Branch relative to Program Counter contents. 

z Z Bcond DISP 2 If cond is true, [A7]~[ A71 + 2±DISP 
o 0 Branch relative on given condition; otherwise, execute next sequential instruction. 

I 

~ E BEXT DISP,E 2 EBCAO-3 ~E; Z Q 
0( Z If EBCI=l, [R7]~[R7]+2±DISP 
a: 0 
III 0 Branch relative if external condition is true. 



Table 2-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

TYPE MNEMONIC OPERAND(S) WORDS S Z C 0 
OPERATION PERFORMED 

MOVR RS,RD 1 X x [RD]-[RS] 

a:'" 
Move contents of source register to destination register. 

",'" ADDR RS,RD 1 X X X X [RD]-[RS]+ [RD] ... C 
Add contents of specified registers. en a: 

-'" c,,1L SUBR RS,RD 1 X X X X [RD]-[ RD] - [RS] 
"'0 
lIFe Subtract contents of source register from those of destination register. 
a:Z CMPR RS,RD 1 X X X X [RD]- [RS] ~C 
!!~ Compera registera' contents. Only the status flags ara affected. 

&!o ANDR RS,RD 1 X X [RD]-[RD] A [RS] 
a::I 

AND contents of specified registers. 
XORR RS,RD 1 X X [RD]-[RD].y.[RS] 

Exclu,ive-OR contents of specified registera. 

II-) 

N o CLRR RD 1 0 1 [RD]-[RD] V [RD] 

Clear specified register. 
TSTR RS 1 X X [RS]-[RS] 

Test contents of specified register. 
INCR RD 1 X X [RD]-[RD]+l 

'" Incremant contents of specified register. 

~ DECR RD 1 X X [RD]-[RD] - 1 

'" Decrement contants of specified ragister. IL 
0 COMR RD 1 X X [RD]-[RD] a: 
'" Complement contents of specified ragister (ones complement). ... en NEGR RD 1 X X X X [RD]-[RD] + 1 C; 

'" Nagate contents of specified register (twOI complement). a: 
ADCR RD 1 X X X X [RD]-[RD]+ [e) 

Add Carry bit to lpecified regilter contentl. 

SLL RR(.2) 1 X X 115 +-- 01+-0 
[RR] 

Shift logical left one or two bitl, clearing bit 0 (and bit 1 if Ihifting twice). 



Table 2-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

TYPE MNEMONIC OPERAND lSi WORDS S Z C 0 
OPERATION PERFORMED 

L(D:(@]H15 - oiJ RLC RRI.2) 1 x X X 2 

[RR] 

Rotate left one bit through Carry, or rotate 2 bits left through Overflow and Carry. 

SLLC RRI.2) 1 X X X 2 ~[[JH15'- 0 .... 0 
[RR] 

Q 
Shift logical left one bit into Carry, clearing bit 0, or shift left two bits into Overflow and Carry, 

w clearing bits 0 and 1. 
:;) 

~ a' 
z SLR RRI.2) 1 x x 

0 ..... 15 i= 
N 

N 
z 
0 [RR] 
9 Shift logical right.one or two bits, clearing bit 15 (and bit 14 if shifting twice) . ..... w 
~ SAR RRI.2) 1 X X dj .0' 00( 
a: 
w 
"- [RR] 
0 
a: Shift arithmetic right one or two bits, copying high order bit. 
w 
~ 

4ciirm~15 .. o~ 
II) 

C; RRC RRI.2) 1 X X X 2 
w 
a: 

[RR] 
Rotate right one bit through Carry, or rotate. two bits right through Overflow and Carry. 

SARC RRI.2) 1 X X X 2 dE oK(2]M:D 
[RR] 

Shift arithmetic 'right one bit into Carry,. or two bits into Overflow and Carry. 

SlNAP RRI.2) 1 X X 11,g D. [RR] 

Swap bytes of register once, or twice. 
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N 
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TYPE 

:.t 
y 
c( 
I-m 
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lL 
::I 
a: 
a: 
w 
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~ 

CI) 
::I 
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c( 
I-m 

MNEMONIC 

PSHR 

PULR 

SIN 

EIS 
DIS 
TCI 

JE 
JD 

JSRE 
JSRD 

GSWD 

RSWD 

CLRC 

SETC 

NOPP 
NOP 
HLT 

SDBD 

OPERAND IS) 

RS 

RD 

(2) 

LABEL 

LABEL 

RB,LABEL 
RB,LABEL 

RD 

RS 

(2) 

Table 2-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

WORDS S Z C 0 
OPERATION PERFORMED 

1 Separate mnemonics for MVO@ RS,R6. 

1 Separate mne~nics for MVI@R6,RD. 

1 PCiT'- lS 
Software interrupt. 

1 Enable interrupt syetem. 
1 Disable interrupt system. 
1 Terminate current interrupt. 
3 Jump to given address and enable interrupt system. 
3 Jump to given address and disable interrupt system. 

3 Jump to given address, saving Program Counter in R4, R5 or R6, and enable interrupt system. 

3 Jump to given address, saving Program Counter in R4, R5 or R6, and disable interrupt system. 

1 [RD<15,12»-[SW); [RD<7.4»-[SW) 

Place Status Word in upper half of each byte of the specified register. RD may be RO, Rl, R2 or 
R3. 

1 X X X X [SW]-[RS<7,4» 

Load Status Word from bits 7 through 4 of the specified register. 

1 0 [C)-O 

Clear Carry. 

1 1 [C)-I 

Set Carry. 

2 No Operation. 
1 
1 Halt after executing next instruction. 

1 Set double byte data mode for next instruction, which must be of one of the following types; 
Primary or sacondary I/O or memory reference 
Immediate or immediate operate 

If implied addressing through R I, R2, or R3 is used, the same byte will be accessad twice; address-
ing through R4, R5, or R7 will give bytes from the addressed location and that addressed after 
auto-increment. Direct addressing and Stack addressing are not allowed in double byte mode. 



Table 2-3. CP1600 Branch Conditions and Corresponding Codes 

OBJECT CODE 
MNEMONIC BRANCH CONDITION DESIGNATION 

C C = 1 0001 
LGT Carry 

(logical greater than) 

NC c=o 1001 
liT No Carry 

(logical less than) 

OV 0= 1 0010 
Overflow 

NOV 0=0 1010 
No overflow 

PI.. s=o 0011 
Plus 

MI 5 = 1 1011 
Minus 

ZE Z = 1 0100 
EO Zero (equal) 

NZE Z =0 1100 
NEQ Nonzero (not equal) 

LT 5VO=1 0101 
Less than 

GE 5 .... 0=0 1101 
Greater than or equal 

LE ZV(5 .... 0) = 1 0110 
Less than or equal 

GT ZV(5 .... 0) =0 1110 
Greater than 

USC C .... S = 1 0111 
Unequal sign and cany 

ESC C .... 5 =0 1111 
Equal sign and cany 

The following notation is used in Table 2-4: 

Where ten digits are shown. they are the ten low-order bits of a 10 to 16-bit word. (Word size depends on the system 
implementation.) Where four digits are shown. they represent the hexadecimal notation for an entire word (10 to 16 
bits). 

bb Two bits indicating one of the first three general purpose registers: 
00 = RO 
01 = R1 
10 = R2 

cccc Four bits giving the branch condition. as shown in Table 2-3. 

ddd Three bits indicating a destination register. RD: 
000 = RO 
001 = R1 
010 = R2 
011 = R3 
100 = R4 
101 = R5 
110 = R6 
111 = R7 

eeee Four bits giving the external branch condition. E. Control signals EBCAO-EBCA3 reflect the state of these four 
bits. 

1111 One word of immediate data (10 or 16 bits) 
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mmm 

m 

p 

P 
rr 

Three bits indicating a Data Counter Register RM: 
000 = RO 
001 = Rl 
010 = R2 
all = R3 
100 = R4 
101 = R5 
110 = R6 
111 = R7 

One bit indicating the number of rotates or shifts: 
a one bit position 
1 two bit positions 

One bit of immediate address 

One hexadecimal digit (4 bits) of immediate address 

Two bits indicating one of the first four general purpose registers: 
00 = RO 
01 = Rl 
10 = R2 
11 = R3 

sss Three bits indicating a source register. RS: 
000 = RO 
001 = Rl 
010 = R2 
011 = R3 
100 = R4 
101 = R5 
110 = R6 
111 = R7 

z Sign of the displacement: 
a add the displacement to PC contents 
1 subtract the displacement from PC contents 

In the "Machine Cycles" column. when two numbers are given with one slash between them (e.g .. 7/9). execution time 
depends on whether or not a branch is taken. When two numbers are given. separated by two slashes (such as 81/11). 
execution time depends on which register contains the implied address. 

THE BENCHMARK PROGRAM 
For the CP1600 our benchmark program may be illustrated as follows: 

MVII IOBUF.R4 LOAD THE I/O BUFFER STARTING ADDRESS INTO R4 
MVII TABLE.Rl LOAD THE TABLE STARTING ADDRESS INTO Rl 
MVI@ Rl.R5 LOAD ADDRESS OF FIRST FREE TABLE WORD INTO R5 
MVII CNT.R2 LOAD WORD COUNT INTO R2 

LOOP MVI@ R4.RO LOAD NEXT DATA WORD FROM 10BUF 
MVO@ RO.R5 STORE IN NEXT TABLE WORD 
DECR R2 DECREMENT WORD COUNT 
BNZE LOOP RETURN IF NOT END 
MVO@ R5.Rl RETURN ADDRESS OF NEXT FREE TABLE BYTE 

This benchmark program makes very few assumptions. The input table IOBUF and the data table TABLE can have any 
length. and can reside anywhere in memory. The address of the first free word in TABLE is stored in the first word of the 
TABLE. 
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Table 2-4. CP1600 Instruction Set Object Codes 

MACHINE MACHINE 
INSTRUCTION OBJECT CODE WORDS CYCLES INSTRUCTION OBJECT CODE WORDS CYCLES 

ADCR RD 000010lddd 1 6 JSRE RB.LABEL 0004 3 12 
ADD ADDR.RD 1011000ddd 2 10 bbppppppOl 

PPPP PPPP 
ADD@ RM.RD 1011mmmddd 1 8/ /11 
ADDI DATA.RD 1011111ddd 2 8 

MOVR RS.RD oo10sssddd 1 6/ /7 
MVI ADDR.RD 10 1 OOOOddd 2 10 

1111 PPPP 
ADDR RS.RD oo11sssddd 1 6 
AND ADDR.RD lll0000ddd 2 10 .. pppp 

MVI', RM.RD 1010mmmddd 1 8/ /11 

MVII DATA.RD 1010111ddd 2 8 

AND@ RM.RD IllOmmmddd 1 8/ /11 
ANDI DATARD 1110111ddd 2 8 

1111 
ANDR RS.RD 0110sssddd 1 6 
B DISP l000z00000 2 7/9 

PPPP 
Beond DISP looozOcccc 2 7/9 

PPPP 
BEXT DISP.E looozleeee 2 7/9 

PPPP 
CLRC 0006 1 4 
CLRR'RD 0111dddddd 1 6 
CMP ADDR.RS 1101000sss 2 10 

PPPP 
CMP@ RM.RS 1101mmmsss 1 8//11 
CMPI DATA.RS 1101111sss 2 8 

1111 
CMPR RS.RD 0101sssddd 1 6 
COMR RD 00000llddd 1 6 
DECR RD 00000IOddd 1 6 
DIS 0003 1 4 
EIS 0002 1 4 
GSWD RR 0000lloorr 1 6 
HLT 0000 1 4 
INCR RD 000000lddd 1 6 
J LABEL 0004 3 12 

llppppppOO 

PPPP 
JD LABEL 0004 3 12 

l1ppppppl0 

PPPP 
JE LABEL 0004 3 12 

l1ppppppOl 

PPPP 
JR RS oo10sss111 1 7 
JSR RB.LABEL 0004 3 12 

bbppppppOO 

PPPP 

1111 
MVO RS.ADDR loolooosss 2 11 

PPPP 
MVO@ RS.RM lOOlmmmsss 1 9 
MVOI RS.DATA lOO1111sss 2 9 

1111 
NEGR RD 0000 1 OOddd 1 6 
NOP (2) 000011010m 1 6 
NOPP l000z0 1 000 2 7 

PPPP 
PSHR RS loolllOsss 1 9 
PULR RD 1010110ddd 1 11 
RLC RRI.2) 0001 0 IOmrr 1 6/8 
RRC RRI.2) ooo1110mrr 1 6/8 
RSWD RS 0000111sss 1 6 
SAR RRI.2) ooo1101mrr 1 6/8. 
SARC RRI.2) ooo1111mrr 1 6/8 
SDBD 0001 1 4 
SETC 0007 1 4 
SIN (2) 000011011m 1 6 
SLL RRI.2) 0001 00 1 mrr 1 6/8 
SLLC RRI.2) ooo1011mrr 1 6/8 
SLR RRI.2) ooollOOmrr 1 6/8 
SUB ADDR.RD l100000ddd 2 10 

PPPP 
SUB@ RM.RD lloommmddd 1 8/ /11 
SUBT DATA.RD lloolllddd 2 8 

1111 
SUBR RS.RD 0100sssddd 1 6 
SWAP RRI.2) ooolOOOnrr 1 6/8 
TCI 0005 1 4 
TSTR RS 00 1 Ossssss 1 6//7 
XOR ADDR.RD llll000ddd 2 10 

PPPP 
XOR@ RM.RD llllmmmddd 1 8/ /11 
XORI DATA.RD l111111ddd 2 8 

1111 
XORR RSiRD 0111sssddd 1 6 

JSRD RB.LABEL 0004 3 12 
bbppppppl0 

PPPP 
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Figure 2-11. CP1600 to 8080A Bus Conversion 
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SUPPORT DEVICES THAT MAY BE USED WITH THE CP1600 

A CP1600 microcomputer system with any significant capabilities will use support devices of some other 
microprocessor. Parallel 110 capability is available with the CP1680, (described next!. but priority interrupt logic, DMA 
logic, and serial I/O logic, to mention just a few common options, may need additional support devices. Fortunately, it 
is quite easy to generate an 8080A-compatible system bus from the CP1600 system bus. Logic is illustrated in 
Figure 2-11. 

The CP1600A is the fastest version of the CP1600 CPU; it runs with a 500 nanosecond machine cycle. The CP1600 
machine cycle is equivalent to an 8080A clock period. Since the standard 8080A clock period is also 500 nanoseconds, 
no speed conflicts will arise. 

The bus-to-bus interface logic illustrated in Figure 2 -11 is self-evident with the exception of bus demultiplexing logic. 
The CP1600 Data/Address Bus is shown buffered by a demultiplexing buffer that is connected to two latched buffers. 
One of the latched buffers accepts the demultiplexer outputs only when a valid address is being output as identified by 
BAR high. The second latched buffer may be a bidirectional latched buffer. or it may be two unidirectional latched 
buffers. Three latching strobes are required: DTS, lAB, and DWS. 

DTB and lAB are data input strobes. DTB strobes data input that is to be interpreted as data, while lAB stroves data in­
put that is to be interpreted as an address. So far as external logic is concerned, both of these signals are simple data in­
put strobes. We could therefor~ generate a single data input strobe as the OR of DTB and lAB. When this data input 
strobe is high, information on the 8080A System Bus side of the latched data buffer must be input to the buffer; this 
data must simultaneously be transmitted to the multiplexer. 

DWS is the data output strobe. When high, this signal must strobe data from the multiplexer to the latched data buffer; 
this latched data must immediately appear at the 8080A System Bus side of the latched data buffer. 

Since the CP1600 uses a 16-bit Data Bus, you will probably have to generate two external device data busses; a high­
order byte bus and a low-order byte bus. All external devices that transmit or receive parallel data must be present in 
duplicate. For example, were 8255 parallel interface devices to be present the following connections would be re­
quired: 

--
--: 

- ~ -- • 
= -= -- -- I, t 

Device 
Select 

60 
Logic .. 07 I' - .. -

PA high - - WR -- - -
PB high 

- - RD - 8255 -- - PPI AO -
A1 -- - -- .. CE --- - -

PC high 
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DO .. 07 , , 
.. 

WR -- 1m - 8255 - AO PPI 

- A1 

- CE 

.. -
-.. 
· ... .. .-· .. --.. 

: · -.--

- .. - -.. - -
- .. - -- .. - -
- --
- .. - -

WR 

AD 
DO 

07 
08 

015 

AO 
A1 
A2 

A15 

PA low 

PBlow 

PC low 



The CP1600 and MC6800 system busses are singularly incompatible. You should not attempt to use MC6800 support 
devices with the CP1600. 

ro 1 40 INTRQ 

IMSKO 2 39 IMSKI 

00 3 38 BC1 

01 4 37 BC2 

02 5 36 BOIR 

03 6 35 CE 
04 7 34 ERROR 

05 8 33 VCC 
06 9 32 GNO 

07 10 CP1680 31 VOD 
CKi 11 lOB 30 PE 

PCLR 12 29 AR 

PDO 13 28 PD15 

PD1 14 27 PD14 

P02 15 26 PD13 

P03 16 25 P012 

P04 17 24 PD11 

PD5 18 23 PD10 

PD6 19 22 PD9 

PD7 20 21 PD8 

Pin Name Description Type 

DO - 07 CPU Data/Address Bus Bidirectional, tristate 
PDO - P015 Peripheral I/O Port Bidirectional 
BOlA. BC 1, BC2 Bus Control signals Input 
CK1 Clock signal Input 

"IT Chip Enable Input 
PE I/O handshake control Output 
AR I/O handshake control Input 
INTRQ Interrupt request Output 
Tel Terminate current interrupt Input 
IMSKI Daisy chain priority Input 
IMSKO Daisy chain priority Output 
ERROR Error interrupt request Input 
PCLR Reset Input 

VCC, VDO' GND Power, Ground 

Figure 2-12. CP1680 lOB Signals and Pin Assignments 
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THE CP1680 INPUT/OUTPUT BUFFER (lOB) 

The CP1680 lOB is a parallel I/O device designed specifically for the CP1600 CPU. This device provides a single 
16-bit parallel I/O port, which may optionally be configured as two 8-bit I/O ports. Primitive handshaking control 
signals are available with the parallel I/O logic. Elementary interval timer and prioritized interrupt logic is also 
provided. 

Figure 2-1 also illustrates that part of our general microcomputer system logic which has been implemented on 
the CP1680 lOB. 

The CP1600 lOB is packaged as a 40-pin DIP. It requires two power supplies. +5V and +12V. All inputs are TTL com­
patible. The device is implemented using N-channel MOS technology. 

Figure 2-13 illustrates a CP1600 microcomputer system with three CP1680 lOB devices in the configuration. 

CP1680 lOB PINS AND SIGNALS 
The CP1680 lOB pins and signals are illustrated in Figure 2-12. We will summarize these signals and the func­
tions they serve before examining device operations in detail. 

Let us begin by looking at the interface between the CP1680 lOB and the CP1600 CPU. 

DO - 07 provide an 8-bitparallel Data/Address Bus via which all communications between the CPU and lOB oc­
cur. This bus must connect to the low-order eight bits of the 16-bit CPU Datal Address Bus. 

The three bus control signals, BC1, BC2, and BDIR, connect the CP1680 to the CP1600 as illustrated in Figure 
2-13. The CP1680 lOB decodes these three bus control signals internally. 

A clock input is required by the CP1680. This clock input (CK1) is used by internal logic to determine when BC1, 
BC2, and BDIR are valid. CK1 must have the following wave form: 

, I I I' I 

T1 I T2 I T3 I T4 T1 I T2 I T3 I T4 
I I' I I I 

CK 1 must be derived from the CP1600 clock signals by external logic. 

Let us now look at the interface between external logic and the CP1680 lOB. 

POO - PD15 provide a 16-bit parallel I/O port which can optionally be configured as CP1600 I/O 
two 8-bit I/O ports. While POO - P015 are in theory bidirectional. these pins are more ac- PORT PIN 
curately described as pseudo-bidirectional. This is because when a zero has been written CHARACTERISTICS 
to one of these pins. the output can sink 1.6 mA for an output voltage of +O.5V. External 
logic will have a hard time overcoming this sink in order to pull the pin high. In contrast. when a 1 is written to one of 
these pins. the output sources just 1 OOJ.J.A at +5V. External logic will have little problem sinking 100J.J.A in order to pull 
a pin low. Therefore. you should output a 1 to any pin that is subsequently to receive input data. External logic will then 
leave the pin high when inputting 1. while pulling the pin low to input O. 

The handshaking control signals which link the CP1680 lOB with external logic are PE and AR. PE is a control signal 
which is output by the CP1680. and AR is a control signal which is input to the CP1680. 

Now consider CP1680 interrupt signals. 

An interrupt request is transmitted to the CP1600 CPU via INTRQ. The CPU acknowledges the interrupt via the 
INTAK combination of BOIR, BC1, and BC2. TCI must be output low by the CPU at the end of the interrupt ser­
vice routine. This signal is required by CP1680 interrupt logic. which uses the low TCI pulse in its priority arbitration. 
as described later in this chapter. 
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Interrupts may be generated by conditions internal to the CP 1680. or by a low input at ERROR. The ERROR input is 
reserved for error conditions detected by external logic. 

IMSKI and IMSKO are interrupt priority input and interrupt priority output signals, respectively. These signals are 
used to generate daisy chain interrupt priorities between CP1680 lOB devices. as illustrated in Figure 2 -13. We will 
describe CP1680 interrupt priorities in more detail later in this chapter. 

'MCLR is the master reset control input for the CP1680. This Signal must be input low for at least 10 milliseconds in 
order to reset the CP1680 lOB. 

CP1680 ADDRESSABLE REGISTERS 
The CP1680 has eight addressable locations, which may be illustrated as follows: 

Control 

Data. low 
PDO - PD15 

Data. high 

DO - 07 
Timer. low 

Timer, high 

I/O interrupt 
vector 

Timer interrupt 
vector 

Error interrupt 
vector 

These eight addressable locations are all 8-bit registers; they are addressed using the first eight addresses in a 256-ad­
dress block. as follows: 

Register 

Control 
Data buffer. low-order byte 
Data buffer. high-order byte 
Timer. low-order byte 
Timer. high-order byte 
I/O interrupt vector 
Timer interrupt vector 
Error interrupt vector 
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o 
1 
2 
3 
4 
5 
6 
7 



The actual 256 addresses will be identified by the eight high-order CP1600 Data/Address Bus lines. which will be used 
to create CP1680 device select logic. This device select logic creates CE(the chip enable signal); it may be illustrated 
as follows: 

----:: ---- ,. I 

XXXXXXXX 

causes CE 
low 

xxxxxxxx 

T 
THE CP1680 CONTROL REGISTER 

--
:. .. 
-. 

,. r 
DO - - - 07 at CP1680 

~ 

OOOOOY Y Y 

D~ 
• 07 

08 · • 015 

Valid CP1680 addresses 

T '"----- May be 000,001,010,011, 100, 101, 110, 111 

{May have any 8-bit pattern that device select logic 
has been designed to create CE low in response to. 

We will summarize the individual bits of the CP1680 control register before describing the operations they control. 

Here are CP1680 Control register bit assignments: 

6 5 4 3 o ~BitNo. 

11111 fT I 1 
r-

j j I j j j J' , { 

{ 

{ 

{ 

{ 

CP 1680 Control register 

0- Parallel I/O active } This is called the 
1 _ Parallel I/O inactive Ready bit. 

PE=Ready 

ERROR input signal level held here 

0- PDO-PD15 configured as two 8-bit ports 
1 - PDO-PD15 configured as one 16-bit port 

o - Disable parallel I/O and Error interrupts 
1 - Enable parallel I/O and Error interrupts 

o - Disable timer interrupts 
1 - Enable timer interrupts 

o - Disable clock logic 
1 - Enable clock logic 

Parity of 08-015 byte} 0 = even parity 

Parity of 00-07 byte 1 = odd parity 
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Bit 0 is always the complement of the PE control output. This bit may be interrogated by the CPU. If parallel data 
transfer interrupts are disabled. this allows the CPU to poll on status when monitoring parallel data transfers. PE signal 
levels are illustrated in Figures 2-14 and 2-15. 

Bit 1 reflects the level of the ERROR input. If parallel data transfer interrupt logic is disabled. then the Error interrupt 
logic is also disabled. thus. the CPU must also examine the Error status bit when polling the CP 1680. 

Bit 2 determines whether PDO - PD15 will act as a single 16-bit I/O port. or as two 8-bit I/O ports. This is only important 
when outputting data. 

Control register bits 3 and 4 are used to enable and disable parallel data transfer and Error interrupt logic. and timer in­
terrupt logic. 

Control register bit 5 is used .to enable and disable CP1680 interval timer logic. If this bit is O. the interval timer will not 
decrement. 

Bits 6 and 7 report the parity of the high-order byte and low-order byte for data that is input or output via PD~ - PD15. 0 
indicates even parity while 1 indicates odd parity. 

All Control register bits may be written into or read. You should be very careful when setting or resetting individual bits 
not to simultaneously modify other Control register bits. This means you should use a three-instruction sequence with 
an AND or OR mask to set or reset any Control register bit. For details see Volume 1. Basic Concepts. 

CP1680 DATA TRANSFER OPERATIONS 
The CPU inputs and outputs data via the CP1680 lOB by executing MVI and MVO instructions, respectively. 

The CPU must access the CP1680 in byte mode. since an 8-bit Data/Address Bus (DO - 07) connects the CPU and the 
CP1680 lOB. Whether the I/O port PD~ - PD15 is configured as a single 16-bit port or as two 8-bit ports has no bearing 
on the fact that the CPU must access the CP1680 in byte mode. 

The most efficient way of accessing the CP1680 is by using the SDBD instruction with implied memory ad­
dressing. Consider data input. If PD~ - PD15 is configured as two 8-bit I/O ports and you wish to access just one of 
these I/O ports. then you can use implied memory addressing via R1. R2. or R3. We may illustrate input from the high­
order byte of I/O Port PD8 - PD15 as follows: 

Register 01 
PDQ - P07 

RO 4F 
DO - 07 

R1 2E 02 

---.--

Register 02 

CP1600 
CPU 

CE 
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If PDO - PD15 are configured as two 8-bit I/O ports or ·as a single 16-bit I/O port. and you want to read both I/O ports. 
then you should use the SDBD instruction with implied memory addressing via R4 or R5. This may be illustrated as 
follows: 

RO 

R4 

CP1600 
CPU 

2E 
generates 

CE=O 

CE 

Control register bit 2 configures PDO - PD15 as a single 16-bit I/O port or as two 8-bit I/O ports. 

PDO - PD7 

Given the fact that MVI and MVO instructions (in byte mode) should be used to access the CP1680. when should these 
accesses occur? 

The answer is that the PE and AR signals control event sequences. 

Consider parallel data input, as illustrated in Figure 2-14. 

PE 

INTAK 

When the CPU is ready to input data in resets the 
Control register READY bit low. This forces the PE 
output high ----________ _. 

Extemal logic uses PE high to trigger data transfer 
to the PD1680. Extemal logic signals the end of 
data input by inputting AR low -----

Figure 2-14. PD1680 Handshaking with Data Input 
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When the CPU is ready to receive data. it resets Control register bit 0 to 0; this forces the PE control signal high. 

When external logic senses PE high. it must transmit data to the PD~ - PD15 I/O port. At this point it makes no 
difference whether pins have been configured as two 8-bit ports or as a single 16-bit port. External logic will pu II to 
ground selected high pins. while leaving other high pins alone. When external logic has completed data input. it sig­
nals the fact by inputting AR low. It is the high-to-Iow transition of the AR control input which indicates the presence of 
new data for the CPU to read. When Ali makes its high-to-Iow transition. PE also makes a high-ta-Iow transition. and 
Control register bit 0 is set to 1. If interrupts have been enabled. then an interrupt is requested via INTRO. Figure 2-14 
assumes that interrupts have been enabled; therefore INTRQ is shown making a high-to-Iow transition. 

The CPU will acknowledge the interrupt request. as described earlier in this chapter. by outputting INTAK via BC1. 
8C2. and BOIR. Logic internal to the CP1680 uses INTAK to reset INTRO high again. 

There are many ways in which external logic can determine when to set AR high again. In Figure 2-14 we show exter­
nal logic using PE to set A11 high. Clearly. when PE makes a low-to-high transition. the CPU must have acknowledged 
AR low; therefore external logic can now set AR high. Now that AR is high again. external logic can input new data. An 
alternative scheme would be for external logic to constantly hold AR low. using the level of the PE output to determine 
when new data could be transmitted. When PE is high. external logic will transmit new data to the CP1680 once. As 
soon as it transmits new data. external logic will strobe the data with a short. high AR pulse. then wait for PE to go low 
and high again before inputting more data. This may be illustrated as follows: 

CPU ready 
for input 

Extemal 
logic inputs 
data 

CPU is 
ready 
again 
for input 

Data output handshaking is illustrated in Figure 2 -15. 

DO - 07 

PE 

INTAk 

L 
:hen CPU outputs data, PE is automatically set 

Extemallogic uses PE high as a "valid data ready" .~.nal. Aft., """,;,. th;, /'" Ali low \ 

Figure 2-15. P01680 Handshaking for Data Output 
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The most important point to note is that there is no control bit which specifies data input mode or data output 
mode. Thus, the signal sequences we described for data input and those we are about to describe for data out­
put occur automatically; the input or output mode is purely a function of CPU and external logic interpretation. 

Whenever the CPU outputs data to the PD 1680, the arrival of data forces PE output high. If PDO - PD 15 has been con­
figured as two 8-bit ports, then the arrival of a single data byte to either port will cause PE to be output high. If PDO -
PD15 is configured as a single 16-bit 1/0 port then PD will not be output high until two bytes of data have been 
received from the CPU by the PD1680. 

Once PE is output high, nothing more happens until external logic responds. External logic cannot tell by the simple in­
spection of any control signals whether a data input operation or a data output operation is in progress. It is up to you, 
when designing your system, to dedicate CP1680 devices to input or output: or you must generate your own identifica­
tion logic in the event that a CP1680 lOB is bidirectional. In Figure 2-15 we simply assume that external logic knows 
data is to be read, and knows whether the data is 16 bits or 8 bits wide. Furthermore, if the data is 8 bits wide, external 
logic must know which 8 bits to read. In any event. when external logic has completed its undefined operations, it must 
input AR low. The high-to-Iow transition of AA forces PE low again. and if interrupts are enabled, an interrupt will be re­
quested via INTRO. When the CPU acknowledges the interrupt by outputting INT AK via BC 1, BC2. and BDIA. the 
PD1680 uses the INTAK pulse to reset INTRQ high. 

The method used by external logic to reset AR high again is undefined. In Figure 2-15, we show PE going high as the 
trigger which external logic uses to reset AJ1 high. This is clearly a viable scheme; PE will not go high again until fresh 
data has been output at which point it is safe to assume that the CPU knows prior data has been read by external logic. 
It would be equally viable for external logic to hold AR continuously low, transmitting a short high pulse whenever it 
reads data. This may be illustrated as follows: 

PE 

CPU has 
output 
data 

logic has 
read data 

CPU has 
output 
more data 

Because there are no control signals which identify the PD1680 operating in input mode or output mode, there 
is no straightforward scheme for handling bidirectional data transfers with a single PD1680 device. 

THE CP1680 INTERVAL TIMER 
The CP1680 has very elementary interval timer logic. A 16-bit Timer register, addressed as two separate 8-bit loca­
tions, decrements once every eight CK1 pulses, providing the timer has been enabled. You enable and disable timer 
logic via Control register bit 5. As a separate event timer interrupts may be disabled via Control register bit 4. If timer 
interrupts are enabled, then when the timer decrements to 0, an interrupt request will occur. (Timer interrupt logic is 
described with other CP1680 interrupt logic later in this chapter.) If timer interrupts are not enabled, then the timer it­
self is effectively disabled, since you cannot test any timer status flag to see if the timer timed out: nor can you ac­
curately read the contents of the Timer registers on the fly, since there is no protection against reading timer contents 
while it is in the process of being decremented. 

The only timer programmable option you have is to load an initial value before the timer is enabled. The timer 
has no buffer; therefore, once it times out it begins decrementing again, if still enabled, beginning with the 
value FFFF16. This may be illustrated as follows: 

Time intervals 

f t t 
~XXXX*S*CKl ~I" FFFF*S*CKl ~I" FFFF*S*CKl ~ 

t , , t 
Load TImer Time out. Time out. TIme out. 
starting Restart Restart Restart 
value XXXX 
and start 
TImer 
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The only accurate long time intervals you can compute are exact multiples of FFFF16 • 8 • CK 1. 

The CP1600A uses a 4MHz two-phase clock. which generates a 500 nanosecond cycle time. Thus. CK1 equals 500 
nanoseconds. and long CP1600A time intervals must be an exact multiple of 262.144 milliseconds - the time it will 
take for the cou nter to decrement from FFFF16 to 0000. 

The CP1600 uses a 3.3MHz two-phase clock. which generates a 600 nanosecond cycle time; therefore. long time.inter­
vals must be exact multiples of 314.572 milliseconds. 

The CP161 O. which runs on a 2MHz two-phase clock and has a one microsecond cycle time. will compute long time in­
tervals that are exact multiples of 524.288 milliseconds. 

You cannot attempt to generate clock periods that are multiples of shorter time intervals by loading some initial value 
into the timer following each time out an unknown amount of time will elapse between the interval timer interrupt oc­
curring and being acknowledged. The length of this unknown period of time will depend on the number of non-inter­
ruptable instructions which may be executing in sequence when the interrupt request first occurs. plus any higher 
priority interrupts which may exist. Therefore. if you load an initial value into the timer. it should be to compute an isol­
ated time interval only. Here is an appropriate instruction sequence: 

MVI 
ANDI 
MVO 
MVII 
MVO 
MVII 
MVO 
MVI 
ADDI 
MVO 

10B.RO 
CFH.RO 
RO.IOB 
2AH.RO 
RO.IOB+3 
34H.RO 
RO.JOB+4 
10B.RO 
30H.RO 
RO.IOB 

;INPUT CONTROL REGISTER CONTENTS 
;ZERO BITS 4 AND 5 
;RETURN TO CONTROL REGISTER 
;TRANSMIT LOW-ORDER TIMER 
;INITIAL BYTE 
;TRANSMIT HIGH-ORDER TIMER 
;INITIAL BYTE 
;LOAD PRIOR CONTROL REGISTER CONTENTS 
; SET BITS 4 AND 5 
;START TIMER 

The instruction sequence above begins with three instructions that load the CP1680 Control register contents into 
Register RO. Bits 4 and 5 are zeroed. then the result is returned to the Control register. Thus. the timer and timer inter­
rupts are disabled. We do not bother with an SDBD instruction. Since the data source is eight bits wide. only the low­
order byte of Register RO will be significant. This being the case. we can use an 8-bit immediate AND mask to modify 
Register RO contents before returning the low-order byte to the Control register. 

Next. we load the initial timer value. one byte at a time. into Register RO. Each byte is written out to the appropriate half 
of the Control register. Once again we do not need to use the SDBD instruction. Since an 8-bit data path connects the 
CPU to the 1680 lOB. only the low-order byte of Register RO will be significant during the data output. 

Finally. we start the timer by loading Control register contents into Register RO. setting bits 4 and 5 to 1 and writing 
back the resu It. 

When you write into the Timer registers. you clear any timer interrupt requests which may at that time be pending. 

CP1680 INTERRUPT LOGIC 
A CP1680 lOB will generate an interrupt request by outputting a low signal at 1NiliQ if anyone of these three 
conditions occurs: 

1) A low input at ERROR. External logic can request an interrupt via the CP1680 using the ERROR input. 

2) The AR handshaking control input makes a high-to-Iow transition. This is illustrated in Figures 2-14 and 2-15. 

3) The Interval Timer decrements from 1 to O. 

Recall that there are two separate interrupt enable/disable control bits in the Control register. One control bit applies to 
the Interval Timer. while the other control bit applies to both the AR handshaking and ~ interrupts. 

Interrupt priorities among the three sources within a single CP1680 lOB are as follows: 

ERROR highest 
AR handshaking 
Timer lowest 

When more than one CP1680 lOB is present In a CP1600 microcomputer system, then daisy chain priority is im­
plemented using the MSKI input signal and the MSKO output signal. Signal connections are illustrated in Figure 
2 -13. The manner in which interrupt priorities are handled by the CP1680 is a little unusual. 

Two or more CP1680 devices may combine their interrupt request signals. which are wired ORed and input to the 
CP1600 via INTRO. The CP1600 acknowledges an interrupt via the INTAK combination of BC1. BC2. and BDIR. We de-
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scribed this process earlier in the chapter. All CP1680 devices simultaneously receive the INTAK combination; 
however. a CP1680 which is acknowledged raises its IMSKO signal high. causing it to become the IMSKI input to the 
next CP1680 in the daisy chain. Any device that receives a high IMSKI input ignores the interrupt acknowledge. Thus. 
only the highest priority. interrupt requesting CP1680 device in the daisy chain will process the interrupt acknowledge. 
However. it takes a finite amount of time for IMSKO high signals to propagate as IMSKI signals. and thus ripple through 
the daisy chain. Consequently. a maximum of eight CP1680 devices may be present in the daisy chain. A ninth device 
will receive its IMSKI high signal too late and will respond to an interrupt acknowledge. 

CP1680 lOB devices maintain their interrupt priority status until they receive a high TCI pulse. At that time. prior inter­
rupt priorities are reset at all devices. and new priority arbitration begins. Thus. when using CP1680 lOB devices. you 
are required to end all interrupt service routines by executing a TCi instruction. 

Note that if one CP1680 lOB has more than one active interrupt request (for example. an ERROR interrupt request and a 
timer interrupt request), then this internal interrupt priority will take precedence over the daisy chain interrupt priority. 
That is to say. the ERROR interrupt request will be acknowledged and serviced first. After the next TCI instruction is ex­
ecuted. the timer interrupt request will be serviced before any interrupt request from a lower priority CP1680 device is 
acknowledged. 

Every CP1680 device has three 8-bit Interrupt Vector registers. one dedicated to each of the three interrupt 
sources. These three Interrupt Vector registers were illustrated earlier in the chapter. Following an interrupt 
acknowledge. when the lAB combination appears at BC1, BC2. and BDIR, the contents of the Interrupt Vector 
register for the highest priority active interrupt will be returned to the CPU. Interrupt acknowledge timing is il­
lustrated in Figure 2-9. At the interrupt service location a Jump-to-Subroutine instruction will probably be stored. 
Since the Jump-to-Subroutine object code is three words long. a maximum of 85 interrupts can be origined in the first 
256 words of memory. This is more than sufficient. since only eight CP1680 devices with 24 interrupts can be sup­
ported in a single daisy chain. 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• CP1600 CPU 
• CP1600A CPU 
·CP1610CPU 
• lOB 1680 I/O Buffer 
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CP1600·CP1600A·CP1610 

IUS TIMING DIAGRAM 

JS CONTROL 1m BAR @ NACT @ DTB @ IIACT @ BAR @ 

DO-DI5 ~ FlOAT x::x FLOAT -=x 
+--+ .... 
OUTPUT INPUT 

PROGRAM COUNTER IEXT INSTRUCTION 

+--+ 
OUTPUT PC+I TO 

FETCH DISPLACEMENT 

E3~3A!XXXXXXX UNDEFINED ~STABLE AS LONG AS ADDRESS IS STMILE ; 

I I---tAI ~ 
EBCI: • DON'T CARE • O-DOth CARE-; ....... 

VWD INPUT 
THROUGHOUT TSI 

TYPICAL INSTRUCTION SEQUENCE 

00-015 : 

~IJlCYCLE~ 

~~A~A~~~A~R~~ 
tcv----t 

~ B~ ~s 
CHANGING FROM OUTPUT CHAHGING FROM 
FLOAT IIOOE TO VALID OUTPUT IIOOE TO 
OUTPUT IIODE FLOAT IIOOE 

I 

tBI-l ~ -i t-tB2 
I 1 I 1 ,...-------i 

~-----~ 
W 
INPUT 

INSTRUCTION 
OR DATA 
OPERANO 

BRANCH ON EXTERNAL CONDITION INSTRUCTION 

Data sheets on pages 2-02 through 2-06 reprinted by permission of General Instrument Corporation, 
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CP1600 
ELECTRICAL CHARACTERISTICS (CP1600) 

Maximum Rating.· 
Voo, Vce, GNO and all other input/output voltages 

with respect to Vaa . . . . . . . . . . . . -0.3V to +18.0V 
Storage Temperature . . . . . . . . . . . . -550 C to +1500 C 
Operating Temperature ............. O°C to +70°C 

Standard Condition.: (unless otherwise noted) 

"Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-operating conditions are 
specified below. 

Voo=+12V±5%, 70mA(typ), 110mA(max.) VBa= -3V±10%, 0.2mA(typ) ,2mA(max.) 
Vce=+5V±5%, 12mA(typ) , 2SmA(max.) Operating Temperature (T A)=O° C to +70° C 

Characterlltlc Sym Min 

DC CHARACTERISTICS 

Clock Inputl 
High VIHC 10.4 
Low VILC 0 
Logic Inputs 
Low VIL 0 
High (All Lines except BOROY) VIH 2.4 
High (Bus Data Ready Line 

See Note) VIHa 3.0 
Logic Outputl 
High VOH 2.4 
Low (Data Bus Lines 00-015) VOL -
Low (Bus Control Lines, 

BC1,BC2,BOIR) VOL -

Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pulse Inputs, 1/>1 or 1/>2 

Pulse Width t1/>2, tl/>2 120 

Skew (1/>1, 1/>2 delay) t12, t21 0 

Clock Period tcy 0.3 

Rise & Fall Times tr,tf -
Malter SYNC: 
Delay from I/> tms -

DO-D15 BUI Signall 
Output delay from 1/>1 

(float to output) tBO -

Output delay from 1/>2 
(output to float) t BF -

Input setup time before 1/>1 t B1 0 
Input hold time after 1/>1 tB2 10 

Bu. Control Signall 
BC1,BC2,BDIR 

Output delay from 1/>1 t DC -

BUSAK Output delay from 1/>1 t BU -
TCI Output delay from 4>1 tro -
TCI Pulse Width trw -

EBCA output delay from BEXT 
input tOE -

EBCA wait time for EBCI input tAl -

CAPACITANCE 

1/>1, 1/>2 Clock Input capacitance C1/>1,C1/>2 -
Input CapaCitance 
00-015 CIN -
All Other - -
Output CapaCitance 
00-015 in high impedance state Co -

'"Typical values are at +25°C and nominal Voltages. 
NOTE: 

Typ·· Max 

- Voo 
- 0.6 

- 0.65 
- Vcc 

- Vee 

Vee -
- 0.5 

- 0.45 
- 0.45 

-

- -

- 2.0 

- 15 

- 30 

- 120 

50 -
-

- -

- 120 

150 -
200 -
300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Condltlonl 

V 
V 

V 
V 

V 

V IOH = 1oo~ 
V IOL = 1.6mA 

V IOL = 2.0mA 
V IOL = 1.6mA 

ns 

ns 

",s 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

TA=+25°C; Voo=+12V; Vee = +5V; 
VBB =-3V; tl/>1 t ct>2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Data ReaOY(BOROY) line is sampled during time period TSI after a BAR or AOAR bus control signal. BOROY must 
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BOROY may go high 
asynchronously. In response to BOROY, the CPU will extend bus cycles by adding additional microcycles up to a maximum 
of 40 ",sec duration. 
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CP1600A 
ELECTRICAL CHARACTERISTICS (CP1600A) 

Maximum Ratings· 
Voo, Vee, GNO and all other inpuVoutput voltages 

with respect to Vaa . . . . . . . . . . . . -0.3V to +18.0V 
Storage Temperature ............ -55°C to +150°C 
Operating Temperature ............. O°C to +70°C 

Standard Conditions: (unless otherwise noted) 

"Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-operating conditions are 
specified below. 

Voo=+12V±5%, 70mA(typ) ,14OmA(max.) VBa= -3V±10%, 0.2mA(typ) , 2mA(max.) 
Vee=+5V±5%, 12mA(typ) ,25mA(max.) Operating Temperature (TA)=O°C to +70°C 

Characteristic Sym Min 

OC CHARACTERISTICS 

Clock Inputs 
High VIHe 10.4 
Low VILe 0 
Logic Inputs 
Low VIL 0 
High (All Lines except BDROY) VIH 2.4 
High (Bus Oata Ready Line 

See Note) VIHB 3.0 
Logic Outputs 
High VOH 2.4 
Low (Oata Bus Lines 00-015) VOL -
Low (Bus Control Lines, 

BC1,BC2,BDIR) VOL -
Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pul .. Inputs, .p1 or .p2 
Pulse Width t.p2, t.p2 95 

Skew (411, 412 delay) t12, t21 0 

Clock Period tcy 0.25 

Rise & Fall Times tr, tf -

MMterSYNC: 
Delay from 41 tms -

00-015 Bus Signals 
Output delay from 411 

(float to output) tBO -
Output delay from .p2 

(output to float) t BF -

Input setup time before 411 t B1 0 
Input hold time after 4>1 tB2 10 

Bus Control Signals 
BC1,BC2,BDIR 

Output delay from 411 t DC -

BUSAK Output delay from 411 t BU -
TCI Output delay from 4>1 tTO -
TCI Pulse Width tTW -
EBCA output delay from BEXT 

input tOE -
EBCA wait time for EBCI input tAl -

CAPACITANCE 

.pl, .p2 Clock I nput capacitance C4>l,C4I~ -
Input Capacitance 
00-015 CIN -
All Other - -
Output Capacitance 
00-015 in high impedance state Co -
""Typical values are at +25°C and nominal voltages. 
NOTE: 

Typ·" Max 

- Voo 
- 0.6 

- 0.65 
- Vee 

- Vee 

Vee 
- 0.5 

- 0.45 
- 0.45 

-

- -

- 2.0 

- 15 

- 30 

- 95 

50 -
- -
- -

- 200 

150 -
200 -

300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Condillons 

V 
V 

V 
V 

V 

V 10H = l001lA 
V 10l= 1.6mA 

V 10l= 2.0mA 
V 10l= 1.6mA 

ns 

ns 

~s 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

TA=+25°C; Voo=+12V; Vec =+5V; 
VBB=-3V; t'4>l t tP2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Oata ReaOY(BOROY) line is sampled during time period TSI after a BAR or ADAR bus control signal. BOROY must 
go low requesting a wait state 50 ns before the end of TSl and remain low for 50 ns minimum. BDROY may go high 
asynchronously. In response to BDRDY, the CPU will extend bus cycles by adding additional microcycles up to a maximum 
of 40 ~sec duration. 
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CP1610 
ELECTRICAL CHARACTERISTICS (CP1610) 

Maximum Ratings· 
VoD, Vee, GNO and all other input/output voltages 

with respect to VBB • • • • • • • • • • • • -0.3V to +18.0V 
Storage Temperature . . . . . . . . . . . . -55° C to +150° C 
Operating Temperature ............. O°C to +70°C 

Standard Conditions: (unless otherwise noted) 

·Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-operating conditions are 
specified below. 

Voo=+11V±5%. 70mA(typ). 110mA(max.) VBB= -3V±10%. 0.2mA(tYPI .2mA(max.) 
Vee=+5V±5%. 12mA(typ) .25mA(max.) Operating Temperature (TA)=O°C to +70°C 

Characteristic Sym Min 

DC CHARACTERISTICS 

Clock Inputs 
High VlHe 10.0 
Low VILe 0 
Input current - -
Logic Inputs 
Low VIL 0 
High (All Lines except BOROY) VIH 2.4 
High (Bus Data Ready Line 

See Note) VIHB 3.0 
Logic Outputs 
High VOH 2.4 
Low (Data Bus Lines 00-015) VOL -
Low (Bus Control Lines. 

BC1.BC2,BOIR) VOL -

Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pulse Inputs, eIl1 or eIl2 

Pulse Width tell2. tell2 250 

Skew (eIl1. eIl2 delay) t12, t21 0 

Clock Period tcy 0.5 

Rise & Fall Times tr, tf -

Master SYNC: 
Delay from ell tms -

00-015 Bus Signals 
Output delay from .p1 

(float to output) tBO -
Output delay from .p2 

(output to float) t BF -
Input setup time before eIl1 t B1 0 
Input hold time after eIl1 tB2 10 
Bus Control Signals 

BC1,BC2,BOIR 
Output delay from .p1 t DC -

BUSAK Output delay from .p1 t BU -
TCI Output delay from eIl1 tTO -
TCI Pulse Width tTw -
EBCA output delay from BEXT 

input tOE -
EBCA wait time for EBCI input tAl -

CAPACITANCE 

eIl1, eIl2 Clock Input capacitance Cq>1, C4>2 -

Input capacitance 
00-015 CIN -
All Other - -
Output CapaCitance 
00-015 in high impedance state Co -

·'Typical values are at +25°C and nominal voltages. 
NOTE: 

Typ·' Max 

- Voo 
- 0.6 
- 15 

- 0.65 
- Vee 

- Vee 

Vee -
- 0.5 

- 0.45 
- 0.45 

-

- -

- .2.0 

- 15 

- 30 

- 200 

50 -
- -
- -

- 200 

150 -
200 -

300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Conditions 

V 
V 

mA VIHC = Voo-1 

V 
V 

V 

V 10H = 1001tA 
V 10L= 1.6mA 

V 10L= 2.0mA 
V 10L= 1.6mA 

ns 

ns 

p's 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

, 
TA=+25°C; Voo=+12V; Vee = +5V; 
VBB =-3V; t'4>1 t eIl2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Data ReaOY(BDROY) line is sampled during time period TSI after a BAR or ADAR bus control signal. BDRDY must 
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BOROY may go high 
asynchronously. In response to BDROY, the CPU will extend bus cycles by adding additional microcycles up to a maximum 
of 40 p'sec duration. 
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1081680 
ELECTRICAL CHARACTERISTICS 

Maximum Ratings· 

Voo and Vee and all other input/output voltages 
with respect to GNO ........................................... -0.3Vto+18V 

'Exceeding these ratings could cause 
permanent damage. Functional operation of 
this device at these conditions is not 
implied-operating ranges are specified 
below. 

Storage Temperature ..................................... -55° C to +150° C 
Operati ng Tem peratu re ....................................... 0° C to + 70° C 

Standard Conditions (unless otherwise noted) 

All voltages referenced to GNO 
Voo = +12V ± 5% 
Vee = +5V ±5% 
Operating Temperature (T A) = 0° C to +70° C 

Characteristic Symbol 

DC CHARACTERISTICS 

Clock Input: High Vihc 

Low Vilc 

Logic Inputs: High Vih 
Low Vii 

Logic Outputs: High Voh 
Low Vol 

AC CHARACTERISTICS 

Clock Inputs 

CK1 Clock period tpc 

Clock width tcl 

Rise & Fall times tcr,tcf 

CAPACITANCE (TA = 25°C, 

Voo = +12V, 

Vee = +5V) 

Input Capacitance: 00-07 Cin 
All others 

Output Capacitance: Cout 

Min 

2.4 

0 

2.4 

0 

2.4 

-

0.4 

70 

-

-
-

-

"Typical values are at +25° C and nominal voltages. 

TIMING DIAGRAM 

H~ H ~ 
/ .. t~e 

Typ·· Max Unit Condition 

- Voo V 

- .5 V 

- Vee V 

- .65 V 

Vce - V loh = 100pA 
- .5 V 101 = 1.SmA 

- 4.0 I1S 

- - ns 

- 10 ns 

6 12 pF Yin = OV 
5 10 pF Yin = OV 

8 15 pF 

H H 
.. / 

wo -U U u 
tef ----ll+:----ll--- ter I tel 

BOIR I -'J BC2.BC1 / '"-______ _ 

-+l toe I+-

CIRCUIT DESCRIPTION 
This circuit is designed to provide all the data buffering and 
control functions required when interfacing the Series 1600 
Microprocessor System to a simple peripheral device. Data is 
transferred to and from the peripheral on 16 bidirectional lines. 
each of which can be considered to be an input or output. The 
transfer of information with the CP1600 is accomplished via an 8-
bit highway, the 16-bits being transferred as two 8-bit bytes. the 
register addresses are assigned CP1600 memory locations. as 
follows (N is an arbitrary starting address): 

Note: CK1' not drawn to scale. 

Register Address Description 
N Control Register 
N + 1 Data Register Low Order 8-bits 
N + 2 Data Register High Order 8-bits 
N + 3 Timer Low Order 8-bits 
N + 4 Timer High Order 8-bits 
N + 5 Peripheral Interrupt Address Vector 
N + 6 Timer Interrupt Address Vector 
N + 7 Error Interrupt Address Vector 
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Chapter 3 
THE TEXAS INSTRUMENTS TMS 9900, 
TMS 9980, AND TMS 9940 PRODUCTS 

The TMS 9900 was the first 16-bit microprocessor that could compete effectively in the minicomputer market. In fact. 
the TMS 9900 is a one-chip implementation of the TM 990 series minicomputer Central Processing Units. 

The TMS 9900 is packaged as a 64-pin DIP; it generates signals for a 15-bit Address Bus and a separate 16-bit Data 
Bus, whereas other 16-bit microprocessors multiplex their Data and Address Busses. The TMS 9980 series 
microprocessors are 40-pin DIP versions of the TMS 9900; in order to reduce pin counts, the TMS 9980 series 
microprocessors access external memory via an 8-bit Data Bus and 14-bit Address Bus. The TMS 9940 is a one-chip 
microcomputer containing a subset of the TMS 9900 Central Processing Unit. together with on-chip memory and real­
time clock logic. 

The TMS 9900 product line has for some time been one of the enigmas of the microprocessor industry. Even a 
casual examination of the TMS 9900 instruction set shows that from the programmer's viewpoint. this microprocessor 
was at least two years ahead of its time. While it may have had problems competing in high-volume, simple applica­
tions, it was certainly the microprocessor of choice for data processing-type, program-intensive applications, yet it was 
not widely used in these markets. 

The reason for this lack of acceptance has been poor support from Texas Instruments. 

Texas I nstru ments initially offered little support for the TMS 9900 because this microprocessor was designed as a low­
end product of the TM 990 minicomputer series. That is to say, customers were expected to develop products around 
the TM 990 minicomputers; then, if they chose to, they could build production models around the TMS 9900 
microprocessor. This development path did not call for extensive TMS 9900 support. In all probability, Texas Instru­
ments was caught by surprise by the buoyancy of the microprocessor market - as a market in its own right. Certainly, 
if Texas Instruments had given the TMS 9900 the same level of support that Intel gave the 8080A. we would see en­
tirely different microprocessor product distributions today. But the TMS 9900 and its derivative products are powerful 
enough that the belated support they are now receiving from Texas Instruments will give the product line a reasonable 
share of future markets. 

Texas Instruments now provides full support for the TMS 9900 microprocessor line. 

TMS 9900 support devices are designed specifically for the TMS 9900 and can be used with the TMS 9900, 
'TMS 9980, or TMS 9940 products. The following devices are described: 

The TIM 9904 Clock Generator 
The TMS 9901 Programmable System Interface 
The TMS 9902 Asynchronous Communications Controller 
The TMS 9903 Synchronous Communications Controller 

Texas Instruments is the primary manufacturer for all of the TMS 9900 series products. TMS 9900 series pro­
ducts are handled out of the following Texas Instruments office: 

TEXAS INSTRUMENTS, INC. 
P.O. Box 1443 
Houston. Texas 77001 

Second sources for the TMS 9900 family are: 

AMERICAN MICROSYSTEMS, INC. 
3800 Homestead Road 
Santa Clara. California 95051 

SMC MICROSYSTEMS CORP. (TMS 9980 series only) 
35 Marcus Blvd. 
Hauppage, N.Y. 11787 
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THE TMS 9900 MICROPROCESSOR 

The TMS 9900 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 64-pin DIP. Three 
power supplies are required: -5V. +5V. and +12V. 

Using a 3 MHz clock. instruction execution times range between 3 and 10 microseconds. 

A TMS 9900 FUNCTIONAL OVERVIEW 
Figure 3-1 illustrates that part of our general microcomputer system logic which is implemented by the TMS 9900 
CPU. 

The most important features of Figure 3-1 are: 

• The absence of programmable registers 

• The presence of significant interrupt handling logic 

• The presence of serial-to-parallel data conversion logic 

• The absence of I/O port interface logic 

Programmable 
Timers 

Clock Logie 

Accumulator 
Registerlsl 

I/O Ports 

Figure 3-1. Logic of the TMS 9900 CPU 
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Let us first consider the manner in which the TMS 9900 handles programmable registers. 

TMS 9900 PROGRAMMABLE REGISTERS 
Within the logic of the TMS 9900 itself. there are just three 16-bit programmable registers: a Program Counter. a 
Workspace register. and a Status register. 

The Program Counter and Status register are straightforward. The Program Counter contains the address of the 
next instruction to be executed. The Status register maintains various statuses. which we describe later in this chapter. 

The Workspace register is a unique and powerful programming feature of the TMS 9900. This register identifies 
the first of sixteen 16-bit memory locations which act as .16 General Purpose registers. This may be illustrated 
as follows: 

Any memory 

addresses 

xxxx 

WP 

., xxxx 

xxx x + 2 

xxxx + 4 

xxx x + 6 
xxx x + 8 

xxx x + A 
xxxx + C 

xxxx+ E 

xxxx+ 10 
xxxx + 12 

xxx x + 14 

xxx x + 16 
xxxx + 18 

xxxx + lA 

xxxx + lC 

xxxx + lE 

lS-BIT MEMORY 

LOCATION 

HIGH­
ORDER 

BYTE 
~~ 

I 

I 

I 

: 
I 

J 
I 

: 
I 
: 
I 
• 
i 
I 

LOW­
ORDER 
BYTE ---...IIi!. 
l' RO 

Rl 

R2 

R3 
R4 

R5 

RS 

R7 

R8 

R9 

Rl0 

Rll 

R12 
R13 

R14 

R15 

Special Functions 

~~--------~~~------~, 

RO cannot be an Index register . 
Shift instruction will seek shift 
count in low-order four RO bits if 
instruction object code specifies 
o shifts. 

Subroutine return address or XOP eft ective 
ss CRU Bit address addre 

Save old WP 

Save old PC 

Save old ST 

Some of the 16 registers serve special functions, as defined by the text on the right-hand side of the illustration 
above. For the moment. do not attempt to understand these special functions. They are described later in the chapter. 

In TMS 9900 microcomputer systems, external memory consists of 16-bit memory words. 
Each 16-bit memory word has its own memory address. Within the TMS 9900 CPU, 
however, memory is addressed as a sequence of 8-bit locations. For this to occu r. the CPU 
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generates an internal 16-bit memory address; the high-order 15 bits of the internal memory ad­
dress create the external memory addresses. This may be illustrated as follows: 

This 16-bit address is created 
by program logic to address 65536 bytes 

~ ................ ~~~ .............. ~ 
( ~ 

These 15 address bits are output 
to access 32768 external, 16-bit memory words I Byte Discrimination Bit 

. Y 0 = Even Byte 
A ...... _________ ) __ Lts!1 1 = Odd Byte 

~5 14 13 12 11 10 9 
~SB 

8 7 6 5 4 3 2 1 I 0 Bit No. 
. -. - - .- -

I I I I I I I I 11 I 1 I I I 1 J Memory Address I nside the CPU 

j~ j ~ j ~ ~ . ~ ~ • 
j, . ~ ~ j~ j tL AO (LSB) 

A1 

A2 

A3 

A4 

A5 

A6 

A7 External Address Bus 

A8 

A9 

A10 

A11 

A12 

A13 

A 14 (MSB) 

When designing hardware around the TMS 9900. you will implement external memory as 16-bit words. which are ad­
dressed by a 15-line Address Bus. That is to say. 32.768 16-bit words may be addressed. 

But when you are programming the TMS 9900 you will visualize memory as 65.536 bytes. addressed by a 16-bit ad­
dress. An even byte address will access the low-order byte of an external 16-bit memory word, while an odd 
memory address will access the high-order byte of an external 16-bit memory word. 

Any 16 contiguous words of read/write memory may serve as the current 16 general purpose registers for the 
TMS 9900. 

You may have as many sets of 16-bit registers as you wish, limited only by the size of implemented memory. 

If you are using more than one set of 16-bit registers, then at any time just one set of 16-bit registers can be 
selected. The WP register identifies the first of the 16 contiguous memory locations serving as the current 16 
general purpose registers. 

Each of the 16 general purpose registers may be used to store data or addresses. Thus. each general purpose register 
may serve as an Accumulator or as a Data Counter. 

Registers R11 through R15 are used as special Pointer storage buffers; we will be describing the way in which 
these registers are used as the chapter proceeds. 

Having 16 general purpose registers in read/write memory, rather than in the CPU, is the single most important 
feature of TMS 9900 architecture. The advantage of having 16 general purpose registers located anywhere in 
read/write memory is that you can have many sets of 16 general pu rpose registers. For example. following an interrupt 
acknowledge. you no longer need to save the contents of general purpose registers - all you need to do is save the 
contents of the Program Counter. the Workspace register and the Status register. and that is done automatically by 
TMS 9900 interrupt handling logic. By loading new values into the Program Counter and the Workspace register. you 
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can begin executing a new program. accessing 16 new memory words - which will be treated as a new set of 16 
general purpose registers. 

The disadvantage of having 16 general purpose registers in read/write memory is that no TMS 9900 microcom­
puter system can be configured without read/write memory; and if you are going to use many different sets of 16-
bit registers. then you are going to require a significant amount of read/write memory. Furthermore. you lose the speed 
associated with executing register-to-register operations; there are no source and destination locations left in the CPU. 
Every register access becomes a memory access. 

TMS 9900 literature refers to the process of switching from one set of general purpose 
registers to another as a context switch. This terminology reflects the complete change of pro­
gram environment that results from the switch. 

Special instructions allow you to perfqrm a forward context switch or a backward context switch. 

TMS 9900 
CONTEXT 
SWITCH 

During a forward context switch. you load new values into the Workspace register and Program Counter. while 
simultaneously saving the old Workspace register. Program Counter. and Status register contents in the new General 
Purpose Registers R13. R14. and R15. 

A backward. or reverse context switch loads the current contents of General Purpose Registers R13. R14. and R15 into 
the Workspace register. Program Counter. and Status register. respectively. thus returning you to your previous set of 
general purpose registers. 

You can perform context switches as often as you like and whenever you like. For example. a very effective way of 
using context switching is to group data into contiguous memory words which you can identify as a register set. Upon 
entering a subroutine. you can perform a context switch which automatically creates all necessary initial data and ad­
dress values in appropriate general purpose registers. This may be illustrated as follows: 

Data and parameters 
used by subroutine are 

RO 
Rl 
R2 

R3 

R12 

R13 
R14 

R15 

RO 
stored here by the calling ~ Rl 
program before calling 

the subroutine 
R2 

R3 
R4 

Rl0 

MEMORY 

WORDS 
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As illustrated above. when you perform a forward context switch, the current Program Counter 
contents. Status register contents. and WP register contents are saved in what will become the 
new Registers R13. R14 and R15 .. respectively. Here is the exact sequence in which events oc­
cur: 

1) The new WP register contents are loaded into the CPU and held in temporary storage. 

TMS 9900 
FORWARD 
CONTEXT 
SWITCH 

2) The current Status register contents are written out to the memory location which will become the new Register 
R15. 

3) The current Program Counter contents are written out to the memory location which will become the new Register 
R14. 

4) The current WP register contents are written out to the memory location which will become the new Register R13. 

5) The new WP register contents. which were held in temporary storage. are moved into the WP register. 

6) The new value is loaded into the Program Counter 

Thus. when a forward context switch is performed. an audit trail ensures that program logic knows the exact machine 
state at the instant of the forward context switch. 

When a backward context switch occurs, the contents of the current General Purpose 
registers R13, R14, and R15 are loaded into the WP register, the Program Counter, and the 
Status register, respectively. Thus. program logic returns to the location of the forward context 
switch 

TMS 9900 MEMORY ADDRESSING MODES 
The TMS 9900 provides these four methods of addressing memory: 

1 ) Direct memory addressing 
2) Direct, indexed memory addressing 

3) Implied memory addressing 
4) Implied memory addressing with auto-increment 

TMS 9900 
BACKWARD 
CONTEXT 
SWITCH 

The way in which the TMS 9900 implements these four memory addressing modes is exactly as described in Volume 1. 
Chapter 6. The important point to note is that the TMS 9900 looks upon its address space as consisting of 32.768 16-
bit memory words which are addressed using 15. rather than 16. Address Bus lines: yet programs compute all ad­
dresses as 16-bit words. This logic was described earlier. 

Direct memory addressing instructions provide the memory address in the second word 
of an instruction's object code: 

MSB LSB 

15 14 13 12 11 10 9 8 6 5 4 2 o '--BitNo. 

TMS 9900 
DIRECT 
ADDRESSING 

Instruction Object Code I I I I I I I I I I I I I I I I I 
\.------JL f Byte ;dontme, ""og~,ed by CPU logl, 

.... ----------------- Direct address output via Address Bus 

Direct, indexed memory addressing instructions provide a base address in the second 
object code word, but they also identify a general purpose register whose contents are 
to be added, as a signed binary number, to the base address. Again. the low-order bit of the 
computed address is not output via the Address Bus. but is interpreted by CPU logic as a byte 
identifier. 

General Purpose Register RO cannot be specified as an index register. 

TMS 9900 
INDEXED 
ADDRESSING 

Direct. indexed addressing is very useful in a TMS 9900 microcomputer system. It allows you to address the previous 
set of general purpose registers. following a context switch. without knowing where the previous registers were. Sup­
pose you want to access the contents of the memory word which was being used as General Purpose Register R5 
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before you switched to your current set of general purpose registers. Recall that the previous Workspace register con­
tents are stored in your current General Purpose Register R13. You could thus address the previous General Purpose 
Register R5. without knowing where this general purpose register may have been. by using direct. indexed addressing 
as follows: 

RO 
Rl 

R2 

R3 

R4 

R5 

R6 

R7 

RS 
R9 

Rl0 

Rll 

R12 

R13 

R14 

R15 

RO 
Rl 

R2 

"R3 
R4 

R5 

R6 

R7 

RS 
R9 

Rl0 

Rll 

R12 

R13 

R14 

R15 

Instruction 

Base Address 

Read/Write 
Memory 

~ 
High- Low-
Order Order 
Byte Byte 

I 
I 
! 
1 
I 

I 

j 

: 
! 
I 

i 

I 

i 
I 

i 
I 
I 

I 

1 

I 

I 

~ 

I 

i 
: 
I 

I 

I 

I 
I 

Xl.; I xx 
I 

i 
I 

ARBITRARY 
MEMORY 
ADDRESSES 

( 
XXXX 

XXXX + 2 
XXXX + 4 

XXXX + 6 

XXXX + S 

XXXX + A 

XXXX + C 

XXXX + E 

XXXX + 10 

XXXX + 12 

XXXX + 14 

XXX X + 16 

XXXI( + 18 

XXXX + lA 

XXXX + lC 

XQX + lE 

yyyy 

yvyy + 2 

YVYV + 4 
yyvy + 6 

yvyy +8 

yyyy+A 

yvyy +C 

yyyy + E 

yyyy + 10 

yvyy+ 1'2 
vyyy + 14 

yyyy + 16 

yyyy + 18 

yvyy+ lA 

yvyy + lC 

YVYY + lE 

Previous 

General 

Purpose 

registers 

Current 

General 

Purpose 

registers 

An implied memory addressing instruction will specify one of the 16 current general pur­
pose registers as providing the effective memory address. 

TMS 9900 
IMPLIED 

If you specify implied memory addressing with auto-increment, then the contents of the ADDRESSING 
identified general purpose register will be incremented after the memory access has 
been performed. If the instruction specifies a byte operation. the register contents will be incremented by one; the 
register contents will be incremented by two after a full-word operation. 
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Six object code bits identify the data memory addressjng option selected by any TMS 9900 instruction that accesses 
data memory. The six object code bits are interpreted as follows: 

T R 
~~ 

'-v--'~ 

L { 0000 through 1111 select the general purpose register to be ac­
cessed during the memory address computation 

{ 

00 - Not a memory reference instruction. The selected register is 
accessed directly. 

01 - Implied memory addressing 
10 - Direct addressing if register RO is selected. 

Direct, indexed addressing otherwise. 
11 - Implied memory addressing with auto-increment 

Two-address instructions will include 12 memory addressing option bits: 

MSBr--p __ ~~~~~~~~~~~~~~~~~~ __ ~-.LSB 
I .1 I Two-address instruction object code 

'"-v-' ~ '"-v-' ~ 
TO RD TS RS 

~~ 

Destination 
address 

Source 
address 

Some instructions allow a source to be anywhere in memory. but the destination must be a general purpose register. 
These object codes include TS. RS. and RD. but not TO. 

TMS 9900 Jump instructions use program relative. direct addressing. These are one-word 
instructions. where the low-order byte of the instruction object code provides an 8-bit. Signed 
binary value. which is added to the incremented contents of the Program Counter. This is 
straightforward program relative. direct addressing. 

TMS 9900 I/O ADDRESSING 

TMS 9900 
PROGRAM 
MEMORY 
ADDRESSING 

As compared to other microcomputers described in this book. the TMS 9900 has unusual I/O logic. In addition to ad­
dressing I/O devices as memory locations. you can address a separate I/O field of up to 4096 bits. Texas Instru­
ments' literature refers to this field as the "Communications Register Unit" (CRU).lf you are programming a TMS 
9900 microcomputer system that has already been configured by Texas Instruments. then it is justifiable to look upon 
the Communications Register Unit as a form of I/O port. If you are building your own interface to a TMS 9900 CPU. then 
instructions that are supposed to access the Communications Register Unit in reality Simply make alternative use of 
part of the Address Bus in conjunction with three control signals: CRUCLK. CRUIN. and CRUOUT 

There are two classes of TMS 9900 CRU instructions. The first class accesses individual bits (or signals). while 
the second class accesses bit fields that may be between 1 and 16 bits wide. 

There are three single-bit CRU instructions; they set. reset. or test the identified CRU bit. This is equivalent to set­
ting. resetting. or testing an external signal or single I/O port bit. When a bit is to be set or reset. the new level is output 
via CRUOUT. and a CRUCLK pulse indicates that valid data is on the CRUOUT line. When the condition of a bit is to be 
input or tested. then external logic is required to return the level of the tested bit via CRUIN. 

3-8 



A CRU bit instruction outputs a 12-bit address which is computed as follows: 

Instruction Object Code. 

-----------------~~--------------~ r \ 
MSB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o LSB 

I I I II I I I I X I y I y I y I y I y I y I y I General Purpose Register R 12 

~~--~~~'=~~~~~~-----------~----------~ r\ 

MSB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

I I I Izlzlzlzlzlzlzlzlzlzlzlzi 

x X X X X Y Y Y Y Y Y y 
+ Z Z Z Z Z Z Z Z Z Z Z Z 

o LSB 

LSum "",,om .. effec.;'. CRU "jd"" X, Y and Z represent any binary digits 

The 12-bit address is output on the 12 lower-order address lines; the three higher-order address .lines are all 0 to 
designate a CRU address. 

Now during the execution of a CRU bit instruction, the address which is output is supposed to be a bit address - that 
is, an address identifying one bit in a possible 4096-bit fieJd. So far as external interface logic is concerned. the address 
can be interpreted in any way. However. data output will' occur via CRUOUT only; data is input via CRUIN, and 
stored in the Equal bit of the Status register. 

There are two multi-bit CRU instructions: one. LDCR. transfers data from an addressed memory location to any ad­
dressed CRU bit field. The other. STCR. transfers data from an addressed CRU bit field to any addressed memory loca­
tion. Anywhere from 1 to 16 bits of data may be transferred by the LDCR and STCR instructions Instruction object 
codes are interpreted as follows: 

MSB T R LSB 
.-A-.~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o· Bit No, 

I I I I I I I I I I I I I I I I Multi-bit CRU Instruction 

...... - -~ 
~ ~ ~~ L{These four bits identify the general purpose register which is to be 

used in the memory address computation 0000 = RO to 1111 = 
R15, 

/ 00 - Register is the memory location 
01 - Implied memory addressing via address in the register 
10 - If Register RO is selected, then direct memory addressing is 

I specified; the direct address is in the next program memory 
'------.< word. If any register other than RO is selected, then direct, in­

I dexed addressing is specified. The contents of the selected 
register are added to the contents of the next program memo­
ry word. 

11 - Implied memory addressing with auto-increment 

L..----------CRU bit field length (0 is interpreted as 16) 
L-____________ jOOll00 = LDCR 

1001101 = STCR 

3-9 



The source/destination memory location is identified as it would be for any memory reference instruction. 

The address of the first CRU bit is specified by Register R12. For a multi-bit CRU instruction, the CRU bit address is in­
cremented for each succeeding bit access, but the incremented address is held in a temporary storage location. The 
contents of Reg ister R 12 are not incremented 
Thus, mUlti-bit CRU instructions may transfer anywhere from 1 to 16 bits between any memory location and any CRU 
bit field. Note that memory must be divided into 16-bit words, each of which has identified bit boundaries, but 
there are no equivalent bit boundaries in the CRU bit field. That is to say, any CRU bit may be identified via Register 
R12 as the first bit in a multi-bit field, while the length of the multi-bit field is identified by the instruction object code. 
This may be illustrated as follows: 

MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Ixlxlxlxlxlxlxlxlxlxlxlxl 1 
R12 

MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

CRU Instruction 
Object Code 

t, y I y 

If YYYY is 0000, the CRU bit field is assumed to be 16 bits in length. 
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< I 
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, 

t 
I 

Start of CRU 
Bit Field 

End of CRU 
Bit Field 



When bits are transferred from a memory location to a CRU bit field. the contents of the memory location are not 
actually modified. but the transfer occurs as though bits had been right shifted out of the memory location. Bits 
arriving within the addressed CRU bit field are stored in sequential CRU bit locations with ascending addresses. This 
may be illustrated as follows: 

Data Memory 

~ 

/ 
~ 

xlxlxlxlxl1 11101011101111101110 

\ 
\ 

" ~ --

CRU 

a 
1 
a 
1 
1 
a 
1 
a 
0 

1 
1 

Lowest CRU Bit 
Address 

Highest CRU Bit 
Address 

Eleven bits have been transferred in the illustration above. If eight or fewer bits are transferred from a general purpose 
register. only the more significant byte is accessed: 

MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a 

I x 1 x 1 X 11 1 a 1 a 11 11 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y I General Purpose Register 

CRU 

Lowest CRU Bit Address 

a 
a 

Highest CRU Bit Address 

Our illustration shows a transfer of five bits. 

3-11 



If eight or fewer bits are transferred from a memory location, then the memory address will be considered a byte ad­
dress rather than a word address; that is, the transfer will be from the low-order bits of the addressed byte, which may 
be either the upper or lower byte of a 16-bit memory word. Thus you can access the lower byte of a general purpose 
register by addressing it as a memory location. 

A data transfer from the CRU to data memory occurs as the exact logical reverse of the illustration above, except 
that high-order bits of the destination data memory word are zeroed if unfilled. This may be illustrated as follows: 

CRU 

Data Memory 

Lowest CRU Bit Address 

o 

o 

o 

Unused, Therefore Reset 
Highest CRU Bit Address 

As with data transfers from memory to the CRU, if eight or fewer bits are transferred, only a byte will be affected. This 
will be either the addressed memory byte: 

CRU 

Data Memory 

__ -----1 0 Lowest CRU Bit Address 

o 

o 

Highest CRU Bit Address 

These Bits Reset to 0 
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or the high-order byte of a general purpose register: 

MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
I 0 1 0 1 0 11 11 1 0 1 I 0 1 X I X 1 X 1 X I X 1 X 1 x'ix I General Purpose Register 

~j • "-- - V 
./ 

These Bits. This Byte Unaffected CRU 
Reset to 0 --

0 Lowest CRU Bit Address 

1 
0 
1 
1 Highest CRU Bit Address 

TMS 9900 STATUS FLAGS 
The TMS 9900 CPU has a 16-bit Status register which may be illustrated as follows: 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .....--TMS 9900 Bit Number 

15 14 13 12 11 10 9 8 6 4 3 o .-Our Bit Number 

Status register 

L-.. _______ Unused 

'------------- XOP instruction executed 

'-------------- Parity status 

-------------- Overflow status 

--------------- Carry status 

'------------------ Equal condition 

..... -----------______ Arithmetic Greater Than condition 

------------------- Logical Greater Than condition 

The low-order four bits of the Status register represent an interrrupt mask which identifies the level of interrupt 
which is currently enabled. As the 4-bit interrupt mask would imply. 16 levels of interrupt are allowed. We will describe 
interrupt processing later in this chapter. 

The X status is set to 1 while an XOP instruction is being executed. This instruction allows you to perform a soft­
ware interrupt - as described later in this chapter. 

The P, 0, and C are standard Parity, Overflow and Carry statuses. 

The Equal status (=) identifies a condition that currently exists, as the result of the execution of a previous in­
struction, that will cause a Branch-if-Equal instruction to branch. A CRU bit to be tested also gets stored in the 
Equal status. 

The Logical Greater Than and Arithmetic Greater Than statuses are set or reset following arithmetic. logical. or data 
move operations. A Logical Greater Than treats the source data as simple, unsigned binary numbers. An 
Arithmetic Greater Than interprets the operand as signed binary numbers. 

TMS 9900 CPU PINS AND SIGNALS 
Figure 3-2 illustrates the pins and signals of the TMS 9900 CPU. 

Being a 64-pin DIP. the TMS 9900 can afford to have separate Address and Data Busses. 
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VBB HOLD 
VCC MeMEN 

WAIT READY 
mAo We 

HOLDA CRUCLK 

REsET VCC 
IAQ 

4>1 

4>2 015 (LSB) 

(LSB) A14 014 

A13 013 

A12 012 

A11 011 

A10 010 

A9 09 

A8 08 

A7 07 

A6 06 

A5 05 

A4 04 
A3 03 

A2 02 

A1 01 

(MSB) AO 00 (MSB) 

cI>4 Vss 

Vss 

VOO 
4>3 

DBIN ICO (MSB) 

CRUOUT IC1 

CRUIN IC2 

iNTREa IC3 (LSB) 

Pin Name Description Type 

AO - A14 Address Bus Tristate. output 
DO - 015 Data Bus Tristate. bidirectional 
4>1.4>2.4>3. <1>4 Clock Signals Input 
MEMEN Memory Enable Tristate. output 
IAQ Instruction Fetch Output 
DBIN Data Bus In Tristate. output 
WE Write Enable Tristate. output 
READY Memory Ready Input 
WAIT Wait State Indicator Output 
CRUCLK I/O Clock Output 
CRUOUT Serial I/O Out Output 
CRUIN Serial I/O In Input 
iN'i'Rffi Interrupt Request Input 
ICO - IC3 Interrupt Code Input 
HOLD DMA Request Input 
HOLDA Hold Acknowledge Output 
LOAD Load Interrupt Input 
RESET Reset Input 

VBB. Vee. VDD. Vss Power and Ground reference 

Figure 3-2. TMS 9900 Signals and Pin Assignments 
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Pins AO - A 14 provide the 15-bit Address Bus. Note that Texas Instruments' literature numbers bits and pins 
from left to right; therefore, address line AO represents the most significant address bit, where as address line 
A 14 represents the least significant address bit. 

DO - 015 provide a 16-bit bidirectional Data Bus. Once again. DO represents the most significant data bit in Texas 
Instruments' literature. 

Remaining signals may be divided into bus control, interrupt control, and timing. 

External logic must provide four clock signals, cp1, <1>2, cp3, and <1>4. These are provided by the TIM 9904. described 
later in this chapter. 

Any memory access operation begins with an address being output via the Address Bus. The TMS 9900 CPU iden­
tifies a stable address on the Address Bus by outputting MEMEN low. 

If the memory access operation is an instruction fetch, the IAQ is output high. 

If the memory access is a read, then the TMS 9900 outputs a high level via DBIN. Memory interface logic must in­
terpret the high DBIN level as a signal to place data on the Data Bus. 

If the memory access is a memory write, then the TMS 9900 CPU outputs a low pulse via WE. Memory interface 
logic must use the low WE pulse to signal that valid data is on the Data Bus. and to store it in the addressed memory 
location. WE low does not last as long as DBIN high. 

When external logic cannot respond to a memory access in the available time, it requests a Wait state by input­
ting READY low. The CPU acknowledges by outputting WAIT high. 

CRUCLK, CRUIN, and CRUOUT are three signals used to implement single-bit or serial data transfers via the 
CRU interface. 

CRUOUT is used to output bits of data to the I/O devices. and CRUIN is used to retrieve input data from the I/O devices. 
CRUCLK is active during output operations only. and defines when data bits on CRUOUT are valid. 

Let us now look at interrupt control signals. 

There is a single interrupt request input, INTREQ, which must be held low by any external device requesting an 
interrupt. External devices identify themselves via control signals ICO - IC3. Thus. an interrupt request must be 
accompanied by the appropriate input at ICO - IC3. 

Observe that there is no interrupt acknowledge signal. 

For DMA operations, external logic requests access to the System Bus by inputting HOLD low. The CPU 
acknowledges the Hold request by outputting HOL'DA high. 

LOAD is a nonmaskable interrupt. 

RESET is a typical system Reset signal. However. TMS 9900 Reset logic uses the device's interrupt capabilities; 
therefore. we will describe the Reset operation in detail when discussing TMS 9900 interrupt capabilities in general. 

TMS 9900 TIMING AND INSTRUCTION EXECUTION 

TMS instructions execute as a sequence of machine cycles, each of which contains two clock periods. Clock 
periods are timed by four clock signals, cp1, cp2, <1>3, and cp4, as illustrated in Figure 3-3. Note that <1>2 is the first 
phase of each clock period. and that <1>1 is the last phase. 

The simplest instruction execution machine cycle is an internal operations cycle. No external 
bus signals are active during this machine cycle. and no memory or I/O access occurs. Timing for 
an internal operations machine cycle will consist of two clock periods, as illustrated in 
Figure 3-3. 

MEMORY ACCESS OPERATIONS 

TMS 9900 
INTERNAL 
OPERATIONS 
MACHINE 
CYCLE 

TMS 9900 memory access operations may consist of a memory read or a memory write. An instruction fetch is 
a minor variation of a memory read. 

Figure 3-4 illustrates memory read machine cycle timing. 

MEMEN goes low at the beginning of any memory access machine cycle and stays low for the entire machine cycle. 
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OSC 

cf>2 

cf>3 

cf>4 

I a..~"'---CLOCK PERIOD 1---.......... I ..... t-----CLOCK PERIOD 2---..... 1 

--------------~ 

cf>1 

cp3 

CP4 

MEMEN 

DBIN 

AO-A14 

00-015 

Figure 3-3. TMS 9900 Clock Periods and Timing Signals as 
Generated by the TIM 9904 

ONE MACHINE CYCLE ~ 

CLOCK PERIOD 1 I CLOCK PERIOD 2 I 

---tt-oJ 

--+I+----.J 

ADDRESS OUT 

INPUT MODE 

CPU READS DATA 

Figure 3-4. A TMS 9900 Memory Read Machine Cycle 
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DBIN goes high at the beginning of the memory read machine cycle and stays high for the entire machine cycle. Exter­
nal logic can therefore use fVi'E'MEiij low as a memory address indicator while DBIN high identifies the read operation. 

A memory address is output stable on the Address Bus for the entire machine cycle. 

The Data Bus operations during a memory read machine cycle represent the only unusual characteristics of the 
machine cycle. Input data needs to be stable during the <1>1 high pulse of the second clock period. However. the Data 
Bus is connected to input logic for the entire memory read machine cycle and for a portion of the next machine cycle. 
Thus. during a memory read machine cycle. external logic cannot access the Data Bus to perform direct memory ac­
cess. or any other operations. on the assumption that the Data Bus is free until Data I n becomes stable. Moreover. since 
the Data Busis held by data input logic of the CPU during the next machine cycle. a memory read machine cycle can­
not be followed by a memory write machine cycle. A memory read machine cycle must be followed by an internal 
operations machine cycle. or by another memory read machine cycle, 

The only difference between an instruction fetch machine cycle and a memory read machine cycle is the fact that dur­
ing an instruction fetch machine cycle. IAQ is output high. along with DBIN. for the duration of the machine cycle . 

.... I---------ONE MACH I NE CYCLE --------~ 

CLOCK PERIOD 1 CLOCK PERIOO 2 

cp1 

cp2 

CP3 ___ -+_.1 

cp4 ____ ~--------J 
MEMEN 

WE 

AO-A14 ADDRESS OUT 

00-015 OATA OUT 

----~--------------------------------------------~~----~ 

Figure 3-5. A TMS 9900 Memory Write Machine Cycle 

Memory write machine cycle timing is illustrated in Figure 3-6, In this illustration. we see that data is output sta­
ble on the Data Bus for the entire duration of the memory write machine cycle. The Data Bus is not held by output logic 
beyond this single machine cycle. Thus. no restrictions are placed on the type of machine cycle which can follow a 
memory write machine cycle. Even though data output is stable for the entire memory write machine cycle. the write 

3-17 



enable strobe WE does not go low until close to the end of the first clock period. In many cases it is easier to use NOT 
DBIN as a write control signal. Here is the necessary logic: 

WRITE 

DBIN READ 

TMS 9900 instruction execution machine cycle sequences are not always self-evident; therefore, let us look at 
some memory reference examples. 

Memory address computations make machine cycle sequences quite complex. particularly for two-operand instruc­
tions. Fortunately. the exact machine cycle sequences are rarely of any consequence to you as a programmer or logic 
designer. The eventual number of machine cycles required to execute an instruction (and therefore its execution time) 
is important. 

Generally stated. instruction execution proceeds as follows: 

1) The instruction object code is fetched. 

2) The first operand address is computed. 

3) The second operand address (if there is one) is computed. 

4) Any operation that may be required is performed. 

5) If a result is generated. it is returned to the second operand address. 

TMS 9900 
INSTRUCTION 
EXECUTION 
SEQUENCES 

Let us look at operand address computations using the ADD instruction (A) as a general example. First consider the in­
struction in its simplest form - where the contents of one reg ister are added to the contents of another register: 

A R1.R2 

Cycle Type Figure Function 
1 MEMORY READ 3-4 Fetch instruction object code 
2 ALU 3-3 Decode instruction 
3 MEMORY READ 3-4 Fetch R1 contents 
4 ALU 3-3 
5 MEMORY READ 3-4 Fetch R2 contents 
6 ALU 3-3 Add R1 and R2 contents 
7 MEMORY WRITE 3-9 Store sum in R2 

Now consider the same instruction's execution. but using implied memory addressing for the first operand: 

Cycle 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Type 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY WRITE 

A *R1.R2 

Figure 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-5 

Function 
Fetch instruction object code 
Decode instruction 
Fetch R1 contents 
Use R1 contents as a memory address (implied addressing) 
Fetch contents of implied address location 

Fetch R2 contents 
Add data fetched in cycles 5 and 7 
Store sum in R2 
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If the second (destination) operand uses direct addressing. here is the machine cycle sequence: 

Cycle Type 
1 MEMORY READ 
2 ALU 
3 MEMORY READ 
4 ALU 
5 MEMORY READ 

6.7.8 ALU 
9 MEMORY READ 
10 ALU 
11 MEMORY READ 
12 ALU 
13 MEMORY WRITE 

A 

Figure 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-5 

*R1.@LABEL 

Function 
Fetch instruction object code 
Decode instruction 
Fetch R1 contents 
Use R1 contents as a memory address 
Fetch contents of implied address location 

Fetch the second instruction object code word; it holds the direct address 

Fetch contents of directly addressed memory word 
Add words fetched in cycles 5 and 11 
Store sum in directly addressed memory word 

Indexed. direct addressing results in the following sequence: 

Cycle 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Type 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY WRITE 

A *R1.@LABEL(5) 

Figure 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-5 

Function 
Fetch instruction object code 
Decode instruction 
Fetch R1 contents 
Use R1 contents as a memory address 
Fetch contents of implied address location 

Fetch the second instruction object code word; it holds the direct address 

Fetch R5. the Index register contents 
Add direct address and index 
Fetch contents of memory word addressed by cycle 10 addition 
Add memory words fetched in cycles 5 and 11 
Store sum in memory word addressed by cycle 10 addition 

If the first operand-implied address specified an auto-increment. we must add one more machine cycle: 

Cycle 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Type 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY WRITE 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY READ 
ALU 
MEMORY WRITE 

A *R1 +.@LABEL(5) 

Figure 
3-4 
3-3 
3-4 
3-3 
3-5 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-4 
3-3 
3-5 

Function 
Fetch instruction object code 
Decode instruction 
Fetch R1 contents 
Increment fetched R1 contents 
Write incremented R1 contents back to R1 
Fetch contents of implied address location 

Fetch the second instruction object code word; it holds the direct address 

Fetch R5. the Index register contents 
Add direct address and index 
Fetch contents of memory word addressed by cycle 11 addition 
Add memory words fetched in cycles 5 and 12 
Store sum in memory word addressed by cycle 11 addition 

MEMORY SELECT LOGIC 
MEMEN discriminates between memory and 1/0 accesses. It is therefore very important that MEMEN low be a 
necessary component for any memory select. 

You can map 1/0 into the memory space of the TMS 9900. This is true of any microprocessor. Memory addresses that 
select 1/0 devices will. of course. also require l\ii'E'MEN low as a contributor to I/O device select logic. 
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MEMEN as a contributor to select logic may be illustrated as follows: 

1 __ 
CRU - SELECT 

~ LOGIC 

~ 

~ ~ j~ 

, r 

MEMORY 
AND 

0_ MEMORY 
MAPPED 

I/O SELECT 
LOGIC 

.. 
· · · .. -

.. -· -• ---.. 

---· · · · · · .. 

SELECT TRUE ONLY IF 
MEMEN IS HIGH AND 
A12-A14 ARE 000 

MEMEN 
AO (LSB) 

A11 
A12 
11.14 (MSB) 

SELECT TRUE 
ONLY IF 
MEMEN 
IS LOW 

The three high-order address lines. A 12. A 13. and A 14. are not used to address CRU bits. When addressing a CRU bit. 
these lines are all low. They are not low during execution of externally defined I/O instructions; therefore. A 12. A 13. 
and A 14 low must be a prerequisite for any CRU bit select. 

TMS 9900 I/O INSTRUCTION TIMING 
All TMS 9900 I/O instructions transfer serial data via the Communication Register Unit (CRU). (This excludes I/O which 
is addressed as TMS 9900 memory space.) 

There are four types of TMS 9900 I/O instructions. They are: 

1) Data input. Anywhere from 1 to 16 bits of data may be transferred from the CRU bit field to memory. 

2) Data output. This is the simple reverse of data input. Anywhere from 1 to 16 bits of data may be output from 
memory to the CRU bit field. . 

3) Bit test. Any bit in the CRU bit field may be tested. The tested bit is input and stored in the Equal bit of the Status 
register. Thence. condition branch instructions can be used to test the bit level. 

4) Externally defined I/O in8tructions~ These instructions generate I/O control signals. but they transfer no data. 

Timing for CRU output and input machine cycles is illustrated in Figures 3-6 and 3-7, respectively. Each of 
these figures shows two bits of data being transferred. (You should not attach any special significance to this fact; de­
pending on the instruction being executed. anywhere from 1 to 16 bits may be transferred.) CRU machine cycles are 
executed contiguously. one per bit. 



Every CRU 1/0 instruction will require a memory reference machine cycle. together with one or more CRU machine cy­
cles. For example. when an STCR instruction is executed to input data from the CRU to the CPU. the following 
machine cycle sequence will occur: 

Cycle Type Figure Function 

MEMORY READ 3-4 Fetch I nstruction Code 

2 ALU 3-3 Decode Instruction 

a Cycles, where 0 ~ a ~ 4 } Obtain Destination Address 

3+a 

4+a 

5+a 

6+a 
7+a 

i Cycles 

8+a + i 
9+a + i 

r Cycles 

10 + a + i + r to 
12+a+i+r 

13+a+i+i' 

MEMORY READ 3-4 Fetch Destination Memory Word Contents 

ALU 3-3 

MEMORY READ 3-4 Fetch R12 

ALU 
3-3 

Compute CRU Starting Address and Prepare 
ALU 

} 
Control Signals 

CRU IN 3-7 Input i CRU Bits 

ALU 
3-3 Load CRU Bits in Tempprary Register 

ALU 

} Fill Upper Bits of Byte or Word With Zeroes 
If i >8, r = 15 - i; if i ~ 8, r = 7 - i 

ALU 3-3 Prepare to Store Memory Word 

MEMORY WRITE 3-5 
Output Assembled Word to Memory Location Whose 
Contents Were Fetched in Machine Cycle 3 + a 

rMACHINE CYCLE' 

1 CLOCK PERIOD 'I CLOCK PERIOO 2 

MACHINE CYCLE 2--1 

CLOCK PERIOO , 1 CLOCK.PERIOD21 

<P 1 ____________ -J 

<p.3 --..... .-. 

<P4 ---1+-_..J 

AO-A14 

CRUOUT 

--~----------~------~---'\--------~------~--~~ 

CRUCLK 

Figure 3-6. Two TMS 9900 Output-to-CRU Machine Cycles 
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rMACHINE CYCLE' MACHINE CYCLE 2----1 

1 CLOCK PERIOD 'I CLOCK PERIOD 2 CLOCK PERIOD 'I CLOCK PERIOD 21 

cJ>1 

cJ>2 

cJ>3 ---to-' 

cJ>4 

AO-A14 

CRUIN 

CRU READS BIT CRU READS BIT 

Figure 3-7. Two TMS 9900 Input-from-CRU Machine Cycles 

An LDCR instruction outputs a sequence of 1 to 16 data bits to a CRU bit field. Here is the LDCR instruction 
machine cycle sequence: 

Cycle Type 
1 MEMORY READ 
2 ALU 

a Cycles where 0~a~4 
3+a MEMORY READ 
4+a 

Figure 
3-4 
3-3 

} 
3-4 

Function 
Fetch instruction object code 
Decode instruction 

Obtain sou rce address 

Fetch source memory word contents 

to ALU 3-3 Prepare for data transmission 
7+a 
8+a MEMORY READ 3-4 Fetch R12 
9+a ALU 3-3 Compute CRU starting address 

i Cycles CRU OUT 3-6} Output i bits to CRU 
10+a+i ALU 3-3 Machine cycle to conclude instruction 

The SBO and SBZ instructions set or reset an addressed CRU bit; in essence. these instructions output one data 
bit. Here is the machine cycle sequence via which the bit output occurs: 

Cycle Type Figure Function 
1 MEMORY READ 3-4 Fetch instruction object code 
2 ALU 3-3 Decode instruction 
3 ALU 3-3 Decode instruction 
4 MEMORY READ 3-4 Fetch R12 
5 ALU 3-3 Compute CRU address 
6 CRU OUT 3-6 Output to addressed CRU bit 

The TB instruction inputs one CRU bit; its timing is identical to the SBO and SBZ instructions. except that 
machine cycle 6 is a CRU IN machine cycle. 
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The Address Bus is used in an unusual way during a CRU machine cycle. As we have already stated, the CRU bit 
field is 4096 bits wide - addressed by 12 of the 15 Address Bus lines. The three high-order Address Bus lines are 
used to identify I/O control instructions, as defined in Table 3-1. We can conclude from Table 3-1 that when 
MEMEN is high and the three high-order Address Bus lines are all low, an I/O transfer is occurring. Otherwise, one of 
five externally defined I/O control instructions is being executed. There are dedicated functions for these five I/O con­
trols in TM 990 minicomputer systems; these are shown in Table 3-1. But to anyone who is simply building a 
microcomputer system around a TMS 9900, these five I/O states are undefined. Thus, Figure 3-8 illustrates TMS 
9900 systems' bus utilization during both CRU operations and externally defined 1/0 operations. If CRU SEL and 
MEMEN are high, CRU Select logic will be active. 

Externally defined instructions output 0 on the 12 low-order Address Bus lines, AO - A 11; in addition, CRUCLK 
pulses are output as part of the instruction executions. 

CRUCLK is an active CRU output strobe only. This Signal pulses high whenever a valid level is present on the 
CRUOUT Signal line. There is no pulse for CRUIN. External logic must generate its own strobe if it is needed, by com­
bining MEMEN high with a valid bit pattern on the Address Bus. 

CRU instructions that test the level of a bit are, to external logic. no different from CRU input instructions. External logic 
is required to return. via CRUIN the level of the selected bit The fact that the CPU interprets this input as status, rather 
than data, is immaterial to external logic. 

THE WAIT STATE 
Additional Wait State clock periods may be inserted between clock periods 1 and 2 of any memory access machine cy­
cle. Timing is illustrated in Figure 3-9. At the rising edge of <1>1 of clock period 1, the CPU samples the READY input 
signal. If this signal is low, then the next clock period is a Wait clock period. During a Wait cycle, the WAIT output sig­
nal is high; all other output signals hold the levels they had during clock period 1. 

A Wait State can last for any number of clock periods. During the ct>1 high pulse of every Wait clock period, the CPU 
samples the level of the READY input As soon as READY is sampled high, the Wait State ends. The next clock period 
becomes clock period 2 of the machine cycle, and the memory operation is completed. 

Table 3-1. High-Order Address Bus Line Used by TMS 9900 I/O Instructions 

Instruction Instruction (MSB) Function 
Mnemonic Type A14 A13 A12 

LDCR Output 0 0 0 Output data to CRU 
SBO Output 0 0 0 Set CRU bit to 1 
SBZ Output 0 0 0 Reset CRU bit to 0 
STCR Input 0 0 0 Input data from CRU 
TB Test (Input) 0 0 0 Input CRU bit to Equal status bit 
IDLE Control 0 1 0 Enter HAL T condition 
RSET Control 0 1 1 Reset the Interrupt mask 
CKOF Control 1 0 1 Real time clock on I These are 
CKON Control 1 1 0 Real time clock off I TM 990 uses. 
LREX Control 1 1 1 Execute bootstrap Instructions 

are undefined 
in a TMS 9900 
system. 
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-

7 
6 

~ 5 
4 
3 
2 
1 
01""-

CRU SEL 

t 

- CRU 
SELECT 

• LOGIC 
• • • .. . 

If CRU SEL and "M'EiVi'EN are high, CRU Select logic will be active. 

--
:: . . .. --

-:: 
--~ 
~ -

---

-

A14 
A13 
A12 
A11 

AO 
CRUCL.K 
CRUOUT 
CRUIN 
MEMEN 

LREX 
CKON 
CKOF 
UNUSED 
RSET 
HALT 
UNUSED 

CRU SELECT 
SIGNALS 

Figure 3-8. TMS 9900 System Bus Utilization During I/O Operations 

.... t----------- ONE MACHINE CYCLE -------------t~ 

I WAIT I WAIT 
CLOCK PERIOD 1 CLOCK PERIOD CLOCK PERIOD CLOCK PERIOD 2 

¢1 

¢2 

¢3 ___ -, 

¢4 ____ ....J 

READY 

WAIT 

Figure 3-9. The TMS 9900 Wait State 
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THE HOLD STATE 
The TMS 9900 has a typical microcomputer Hold State, used to enable direct memory access operations. Exter­
nal logic initiates a Hold State by inputting FK>m low. At the beginning of the next non-memory reference machine 
cycle. the CPU floats its Address and Data Busses. together with the DBIN. 'M"tMm and wt control signals. HOLDA is 
output high as a Hold Acknowledge. Timing is illustrated in Figure 3-10. 

(NON-MEMORY 

I CLO~~~~~IOD 'I HOLO HOLO I CLOCK PERIOO' I 
q,1 \ n ... _-rill} ..oJ 

q,3 
--+~ 

HOLOA 

00-015 ---~~------ ---
AO-A14, WE, } 
MEMEN,DBIN _-"_'" -------~~--------- ~------------~ 

Figure 3-10. TMS 9900 Hold State Timing 

The Hold State lasts until external logic raises HOLD high again. 

It is up to external logic to perform all operations associated with a DMA transfer. The CPU simply floats the 
System Bus in response to a Hold request. 

The only nonobvious aspect of Figure 3-10 is the fact that Data Bus timing, during normal instruction execution. 
differs from other System Bus signal timing. Figure 3-10 highlights this fact by showing the Data Bus floating at 
the beginning of the first HOLD clock period. while other signals float earlier in the preceding clock period. This is not a 
particularly significant event. The entire System Bus is floating once the HOLD clock period has begun. However. the 
actual tristate condition for any signal begins at that point in the preceding clock period when the signal is no longer 
being driven by current operations. 

THE HALT STATE 
The TMS 9900 IDLE I/O instruction generates a Halt State. When this instruction is executed. the CPU suspends all 
program ~ion and internal operations. You must terminate the Idle condition with an interrupt request or a low 
LOAD or RESET input. (['(5Ai) and RESET are treated as interrupts as we will describe soon.) 

The TMS 9900 CPU does not relinquish the System Bus while halted. That is to say. after an IDLE instruction has 
been executed. no System Bus lines are floated. 
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The IDLE instruction is usually executed when program logic requires that the CPU wait for an interrupt. or when exter­
nal logic is computing a real-time interval - which will be terminated with an interrupt request. 

You can, if you wish, initiate a DMA transfer by executing an IDLE instruction. In order to do this, you must 
create a HOLD request from the Address Bus output characteristic of the IDLE instruction's execution. This may 
be illustrated as follows: 

A14 
A13 
A12 

CRUCLK 

HOLD ~ -

---0 
- i'""\ 

" ~ 

C) + 5V 

.~ 
:~ 

I 
PRE 

"-- D 

CK 

7474 

erR 

t 

Q ~ 

HOLD 
Q ~ 

--.. 
:: -

A14 (MSB) 
~13 
A12 
CRUCLK 

END HOLD 

HOLDA ------------------------------------------------------~~.. HOLDA 

As illustrated above, the combination of 010 on the three high-order Address Bus lines, along with the CRUCLK pulse, 
identifies the IDLE instruction. Since the process of floating the System Bus will remove the conditions which gener­
ated a Hold request. these conditions are used to clock a flip-flop. Thus, external logic which receives the Hold 
acknowledge signal and takes control of the System Bus must subsequently reset the Hold request flip-flop in order to 
remove the Hold condition. That is to say, program logic can begin a Hold state within a Halt state, but it cannot 
end this combination. Two steps are needed to terminate a Hold within a Halt. The Hold request must be 
removed, then an interrupt request must follow to terminate the Halt. 

TMS 9900 INTERRUPT PROCESSING LOGIC 
The TMS 9900 has complex and capable interrupt processing logic. Sixteen levels of external interrupt are 
available. Sixteen software interrupts are also available. Fifteen of the sixteen external interrupts are maskable; the 
nonmaskable interrupt has highest priority and is the system Reset interrupt. There is, in addition, a non-maskable Load 
interrupt. External interrupts may be summarized as follows: 

Lc5AD 
RESET 

Maskable 
Levels of 
External 
Interrupt 

Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 
Priority 

} Non-maskable, Equal Highest 
0 Priority Interrupts 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 Lowest Priority Interrupt 
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External logic identifies the priority of its interrupt request via the ICO. IC1. IC2. and IC3 inputs. as follows: 

ICO IC1 

o 0 
o 0 
o 0 
o 0 
o 1 
o 1 
o 1 
o 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

IC2 IC3 

o 0 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 

Priority 

Should not be input by external logic - highest external 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 lowest external 

Software interrupts are executed via the XOP instruction. There are, in addition, instructions that parallel the 
RESET and LOAD interrupts. We will describe these instructions in due course. 

Each one of the external interrupts has two dedicated memory words via which vectoring is TMS 9900 
enabled following an interrupt acknowledge. Figure 3-11 illustrates the memory map asso- INTERRUPT 
ciated with interrupt vectoring. The memory addresses in Figure 3-11 are byte addresses as VECTOR MAP 
seen by the programmer. Remember. the low-order bit of the address shown in Figure 3-11 is not 
output on the Address Bus; therefore. you must divide the memory addresses shown in Figure 3-11 by 2 in order to 
generate the address which will be seen by external memory. 

The memory words dedicated to interrupt vectoring. as illustrated in Figure 3-11 . can be read-only memory. 
read/write memory, or any combination of the two. Obviously, read-only memory will be used in applications that have 
dedicated interrupt service routines for specific interrupt requests. Read/write memory might be used in minicom­
puter-type applications where the interrupt response will depend on the application being serviced. 

Interrupt masking and priorities apply only to external interrupt requests. Interrupt masking priorities cannot be 
applied to software interrupts (the XOP instruction). Since program logic must generate the software interrupt pro­
gram logic can equally be relied on to know which software interrupt is to be executed, and whether the software inter­
rupt is allowed by current program logic. That is to say, from the programmer's viewpoint a software interrupt is simply 
the consequence of an XOP instruction's execution; you, as a programmer. can include an XOP instruction anywhere in 
a program. within or outside an interrupt service routine. XOP instructions might be used in response to error condi­
tions, or to call any frequently used subroutines. 

Let us begin by looking at the way in which external interrupts are processed. 

Any external device wishing to request an interrupt must pull the INTREQ input low while simultaneously plac­
ing a 4-bit code at the ICO - IC3 inputs. The CPU will acknowledge the interrupt, provided that its priority, as 
identified by the ICO - IC3 inputs, is enabled. The interrupt will be acknowledged at the conclusion of the cur­
rently executing instruction. The BLWP and XOP instructions are exceptions; for the integrity of program logic, 
they demand that the next sequential instruction be executed. Therefore, ifan interrupt request occurs while either of 
these two instructions is being executed, the interrupt will not be acknowledged until this instruction and the next in­
struction have been executed. 
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MEMORY MEMORY WORD CONTENT 

AREA DEFlNmoN 

NTERRUPT VECTORS 

XOP SOFTWARE TRAP VECTORS 

GENERAL MEMORY FOR 
~.DATA.AND 

WORKSPACE REGISTERS 

ADDRESS,. 

0000 WP LEVEL 0 INTERRUPT 

0002 PC LEVEL 0 INTERRUPT 

0004 WP LEVEL 1 INTERRUPT 

0006 PC LEVE~ 1 INTERRUPT 

003C WP LEVEL 15 INTERRUPT 

003E PC LEVEL 15 INTERRUPT 

0040 WP XOPO 

0042 PC XOP 0 

007C WP XOP 15 

007E PC XOP 15 

0080 

· • • GENERAL MEMORY AREA 
MAY BE ANY 

COMBINATION OF 

PROGRAM SPACE 

OR WORKSPACE • • • 

FFFC WP LOAD FUNCTION 

FFFE PC LOAD FUNCTION 

Figure 3-11. TMS 9900 Memory Map 

When an Interrupt Is acknowledged, the following machine cycles are executed: 

Cycle Type Figure Function 
1 ALU 3-3 

I 

2 MEMORY READ 3-4 Move new WP register contents from vector word to temporary storage 
3 ALU 3-3 
4 MEMORY WRITE 3-5 
5 ALU 3-3 
6 MEMORY WRITE 3-5 
7 ALU 3-3 
8 MEMORY WRITE 3-5 
9 ALU 3-3 

Store status in new R15 
Store ICO - IC3 levels in four low-order Status bits 
Store incremented PC in new R14 

Store old WP register contents in new R13 

10 MEMORY READ 3-4 Fetch new PC contents from vector word 
11 ALU 3-3 Fetch new WP contents from temporary storage 

Vector words are illustrated in Figure 3-11. 
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At the conclusion of the interrupt acknowledge sequence listed above. the priority of the 
acknowledged interrupt request. less one. is recorded in the four low-order Status register bits. 
Thus. subsequent interrupt requests will be acknowledged only if their priority is higher than that 
of the interrupt being serviced. That is to say. whenever an interrupt request occurs. CPU logic 
compares the levels input at ICO - IC3 with the levels present in the four low-order Status register 

TMS 9900 
NESTED 
INTERRUPT 
PRIORITIES 

bits. If ICO - IC3 is not greater than the mask. then the interrupt request will be acknowledged. If ICO - IC3 is higher. 
then the interrupt request will not be acknowledged. Thus. In the normal course of events. TMS 9900 interrupt 
priority logic disables all interrupts of equal or lower priority than an acknowledged interrupt. while leaving high­
er priority interrupts enabled. Priorities are maintained for the duration of the interru~t service routine. This is il­
lustrated in the following figure. which you should read in the sequence ® -® -© -@ - ® -® -® : 

o Int."upts whh 5 ~ 11 
priorities 5,8 and 11~~ /--, 
occur simultaneously / \1(3\ 

/ \\:::Y 

® ., / Interrupt 7. having highest 
Interru!'t ~Ith, / priority of three pending 

PriOrity 5, / interrupts (7,8 and 11) will 
acknowledged / immediately be acknowledged 

Main Program 

@ Interrupt with 
priority 7 occurs 

and is denied 

@ I nterrupt service 
routine 2 executes 

Interrupt service routine 5 
completes execution 

The interrupt priority arbitration logic of the TMS 9900 is exceptional among microcomputers. Most microcomputers 
arbitrate priorities at the instant interrupts are being acknowledged. and once an interrupt has been acknowledged. all 
interrupts are disabled. That is to say. interrupt priorities apply only during the acknowledge process. In contrast. the 
TMS 9900 maintains interrupt priorities for the duration of the interrupt service routine. as illustrated above. 

The net effect of the interrupt response steps illustrated above is to perform a context switch while disabling all inter­
rupts that have the same priority as the acknowledged interrupt. or that have a lower priority.' 

There are some very important and nonobvious advantages to initiating an interrupt service routine with a con­
text switch. 

Since the 16 new memory locations that will be used as general purpose registers may lie anywhere in read/write 
memory. you can store parameters that will be used by the interrupt service routine. in advance of the interrupt. in 
those memory locations that are ultimately to serve as general purpose registers for the duration of the interrupt service 
routine. 

You can. if you wish. modify the interrupt priority scheme that will control nested interrupts. As we have already 
stated. if you do nothing about interrupt priorities. then any interrupt service routine may be interrupted by a higher 
priority external interrupt. but not by an external interrupt that has the same priority or a lower priority. 

If you wish to eliminate nested interrupts entirely. then the first instruction executed within an interrupt service routine 
must be an LlMI 0 instruction (Load Interrupt Mask Immediate). which clears the four low-order Status register bits. 
thus disabling all maskable interrupts. A RESET or LOAD interrupt - or a level a external interrupt request - will still 
be acknowledged; these should be alarm conditions and not part of the normal interrupt logiC of any microcomputer. 
You can execute variations of the LlMI instruction to increase or decrease the levels of priority that will be masked for 
the duration of any interrupt service routine (or for that matter. any subsequent instruction within the interrupt service 
routine) can load appropriate data into the four low-order bits of the Status register. thus changing the priority level at 
which all subsequent interrupt requests will be disabled. 
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All interrupt service routines should end with an RTWP (Return Workspace Pointer) instruction. The RTWP in­
struction performs a reverse context switch. which puts the central processing unit back to the logical environment 
which was interrupted. Observe that since the Status register is also saved during a forward context switch. the return 
instruction will restore whatever level of interrupt priorities existed at the instant the interrupt was acknowledged. You 
can. of course. modify the contents of General Purpose Registers R13. R14. and R15 in the course of an interrupt ser­
vice routine's execution. This allows program logic to alter the conditions that will be restored when the return instruc­
tion executes a reverse context switch. 

The TMS 9901 PSI, which we describe later in this chapter, provides multiple interrupt handling for TMS 9900 
series CPUs. If your system does not include a TMS 9901, then external hardware required to support multiple 
interrupts in a TMS 9900 microcomputer system will not be as straightforward as the software response. 

First of all. we must cope with the fact that if more than one interrupt request occurs 
simultaneously. then there will be competition on the INTREO input. but there will also be 
competition at the four priority inputs. ICO - IC3. Resolving competition on the·INTREQ input is 
no problem; you can wire-OR interrupt requests from many devices to create the CPU input. 
But your external logic must make sure that only the highest priority combination of ICO - IC3 
appears at the TMS 9900 inputs. One method of doing this is to use latched decoders that 

TMS 9900 
MULTIPLE 
INTERRUPT 
HARDWARE 
CONSIDERATIONS 

create a 4-bit output corresponding to the highest level input. provided that the decoder is enabled by a latching sig­
nal. This may be illustrated functionally as follows: 

INTREQ -

I, *u 
TMS 
9900 _ACO 

ENABLE 

- -
AC1 -::. 

-: 
AC2 DECODER -

_AC3 - -= --

- -
i .... i 

i<1) *n 

.... 

( +5V 

~~ 
> 

~) 

if (HI 

(L 

GHEST PRIORITY) 
INT 1 

INT 15 
OWEST PRIORITY) 

In the illustration above. 15 external interrupt requests are input to a decoder. These interrupt requests are high true. 
The 15 interrupt requests are buffered. inverted. and wire-ORed to create the master interrupt request INTREO. which 
is input to the CPU. This master interrupt request also enables the decoder. That is to say. when the enable input to the 
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decoder is high, the four outputs, ICO - IC3 will be low. When the enable input to the decoder is low, ICO - IC3 will out­
put a 4-bit value as follows: 

o .... C"I (") 
U U U U 

o 0 0 0 

000 

o 0 

o 0 

o 
o 
o 
o 

o 

o 0 

o 
o 

000 

o 0 

o 
o 

o 

o 0 

o .... N (") 'It It) 
C"I (") 'It It) W ~ 00 m.... .... 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
z z z z z z z z z z z z z z z 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

* * * * * * * * * * * * * * 
o 
o 0 

* * * * * * * * * * * * * 
* * * * * * * * * * * * 

000 * * * * * * * * * * * 
o 0 0 0 * * * * * * * * * * 
o 0 000 * * * * * * * * * 
o 0 0 0 0 0 T * * * * * * * * 
o 0 0 0 000 * * * * * * * 
o 000 0 0 0 0 * * * * * * 
o 0 0 0 0 0 000 * * * * * 
o 0 ~ 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 000 
* * * * 

* * * 
o 0 0 000 0 0 0 0 0 0 0 * * 

o 0 000 0 0 0 0 0 0 000 * 
000 000 0 0 0 0 0 0 0 0 

* REPRESENTS A "DON'T CARE" BIT 

If you do not use the TMS 9901, Texas Instruments suggests the following circuit to accomplish priority encoding: 
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External logic must maintain its interrupt request until it receives its own specific interrupt acknowledge. This 
need is obvious, since an interrupt request may be denied for a long time while higher priority interrupts are being ser­
viced. 

The problem is that the TMS 9900 has no interrupt acknowledge signals. 

Interrupt acknowledge signals can be generated in one of two ways: 

1) By using CRU bit instructions to set and reset external flip-flops that create interrupt acknowledge signals. 

2) By decoding appropriate addresses on the Address Bus 

Figure 3-12 illustrates two possible configurations that will allow CRU bit set and reset instructions to gener­
ate interrupt acknowledge signals. The logic in Figure 3-12A generates a short interrupt acknowledge pulse. 
CRUOUT becomes the input to a flip-flop which is decoded to generate CRU select signals. The CRU bit select and 
"M'E'M'E'N are gated to the flip-flop's Clear input. Therefore, when CRU bit "n" is selected, CLR is removed and CRUOUT 
can be clocked through. A set bit (SBO) instruction switches the flip-flop on. As soon as the flip-flop address is removed 
at the end of the CRU I/O machine cycle, the flip-flop is cleared, thus terminating the interrupt acknowledge pulse. 

The logic illustrated in Figure 3-12A requires that you execute an SBO instruction at the beginning of every interrupt 
service routine in order to generate an interrupt acknowledge. You could require every interrupt service routine to con­
trol the length of the interrupt acknowledge pulse by executing an SBZ instruction to terminate the pulse. Figure 
3-12B shows logic to implement this scheme. When the flip-flop is selected by the appropriate CRU address, CRUCLK 
will clock CRUOUT to INT ACK n. At other times, CRUCLK will merely clock the flip-flop's output through, thus making 
no change. In this way, only SBO and SBZ instructions which address INT ACK n can set or reset the flip-flop. 

Figure 3-13 illustrates generation of an interrupt acknowledge signal by identifying specific addresses on the 
Address Bus. Following any interrupt acknowledge, specific memory locations will be accessed, as identified in Figure 
3-11 ,in order to fetch the new values for the Program Counter and WP register. Figure 3-13 shows a very simple 
scheme whereby Address Bus lines are combined with MEMEN low to generate high pulses for the duration of a valid 
address. That is to say, the interrupt acknowledge signal will last for one machine cycle - the time that the valid ad­
dress exists on the Address Bus. 

External logic which requested an interrupt removes its interrupt request and priority signals upon receiving an 
interrupt acknowledge. 
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B) Logic to have a programmed INT ACK n pulse length' 

Figure 3-12. A TMS 9900 Interrupt Acknowledge Pulse Generated Using an SSO Instruction 
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Figure 3-13. TMS 9900 Interrupt Acknowledge Generated by Decoding Valid Addresses 

3-33 



THE TMS 9900 RESET 
You reset the 9900 microcomputer system by inputting a low RESET signal. This signal must remain low for at 
least 3 clock periods. When the low RESET signal is removed, the following machine cycle sequence is ex­
ecuted: 

Cycle Type 
1 ALU 
2 ALU 
3 ALU 
4 MEMORY READ 

5 ALU 
6 MEMORY WRITE 
7 ALU 
8 MEMORY WRITE 
9 ALU 

10 MEMORY WRITE 
11 ALU 
12 MEMORY READ 
13 ALU 

Figure 
3-3 
3-3 
3-3 
3-4 

3-3 
3-5 
3-3 
3-5 
3-3 
3-5 
3-3 
3-4 
3-3 

Function 
Prepare for Level a interrupt 

Fetch new WP register contents from memory word 000016 to temporary 
storage 

Store Status register contents in new R15 

Store Program Counter contents in new R14 

Store old WP register contents in new R13 

Fetch new Program Counter contents from memory word 000'16 
Load WP register from temporary storage 

Thus. program execution begins with a program whose starting address is stored in memory word 1. The starting ad­
dress for the 16 general purpose registers is stored in memory word O. 

The TMS 9900 has a Reset instruction (RSET). In reality. this instruction resets only the interrupt mask in the Status 
register; it also outputs a code on the Address Bus. as identified in Table 3-1 and illustrated in Figure 3-8. TM 990 
minicomputer systems use this signal to generate a program-initiated Reset. If you are designing your own TMS 9900-
based microcomputer system. you are free to use the RSET instruction in any way. 

THE TMS 9900 LOAD OPERATION 
The LOAD input to the TMS 9900 is a non-maskable, highest priority interrupt. Load must be input low for at 
least one instruction's duration. Since the length of an instruction can vary, you must use the IAQ signal to con­
trol the LOAD input pulse width. Texas Instruments' literature recommends the following circuit: 

+5V 
C) 

~ . . 

PRE PRE 
~ 0 0 "'- D Q t--

lAO . CK 7474 ~ ~CK 7474 

TMS Q - a 
9900 CLR CLR 

J I 

EXTERNAL LOAD __ i:O'AD 
-
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The CPU checks LOAD at the end of each instruction's execution. 

After a valid LOAD input has been acknowledged. the following machine cycle sequence is executed: 

Cycle Type Figure Function 
1 ALU 3-3 
2 MEMORY READ 3-4 Input new WP register contents from memory word 7FFE 16 to temporary 

storage 
3 
4 
5 
6 
7 
8 
9 

10 
11 

ALU 3-3 
MEMORY WRITE 3-5 
ALU 3-3 
MEMORY WRITE 3-5 
ALU 3-3 
MEMORY WRITE 3-5 
ALU 3-3 
MEMORY READ 3-4 
ALU 3-3 

Store in new R15 

Store incremented Program Counter contents in new R14 

Store old WP register contents in new R13 

Input new Program Counter contents from word 7FFF16 
Load WP register from temporary storage 

There are two differences between Reset and Load. First. the RESET input provides a true hardware reset. syn­
chronizing internal operations. as well as a level 0 interrupt; LOAD provides only a non-maskable interrupt. Sec­
ond. the Reset vector in bytes 0 through 3. while the Load vector is in bytes FFFC16 through FFFF 16. 

In TM 990 minicomputer systems. the LREX instruction is frequently used as a software load. Output due to 
LREX is identified in Table 3-1 and Figure 3-8. In a TMS 9900 microcomputer system. you can use the LREX 
signal in any way. 

THE TMS 9900 INSTRUCTION SET 
The TMS 9900 instruction set is extremely powerful when compared to any 16-bit microprocessor described in 
this book. When you consider that the TMS 9900 was first manufactured in 1976 •. the power of this instruction 
set becomes more impressive. 

With regard to instructions described in Table 3-2 • some explanations are required. 

The ABS instruction converts the contents of a memory location to their absolute value. That is to say. this instruction 
assumes that the memory location contains a signed binary number. If the number is positive. nothing happens. If the 
number is negative. the twos complement of the number is taken. 

A number of instructions act on specific bits within source and destination memory words. These include the SOC. 
SOCB. SZC. SZCB. COCo and CZC instructions. In the OPERATION PERFORMED column of Table 3-2. the word 
"corresponding" means that the source word bits are affected only if selected by the destination word bit pattern. For 
example. the SOC instruction will be interpreted as follows: 

Source: 
Destination: 

After SOC: 

This is equivalent to an OR operation. 

Here are the new destina­

tion contents. 

The SOCB instruction is identical to the SOC instruction. except that only one byte is affected. This may be any memo­
ry byte or the high-order byte of a general purpose register. 

TheSZC instruction may be illustrated as follows: 

Source: 
Destination: 

After SZC: 
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This is equivalent to complementing the source operand and then ANDing the two operands. The SZCB instruction is 
identical to the SZC instruction. except that only one byte is affected. 

The cac instruction compares Source Register 1 bits with general purpose register bits that happen to be in the same 
bit positions. If all corresponding general purpose register bits are also 1. then the Equal status is set. Matches are not 
significant in bit positions if the source register bit is O. 

The CZC instruction operates in the same fashion as the cac instruction. except that those source memory word bits 
that are 0 become significant. That is to say. if every source memory worcf 0 bit has a corresponding Workspace 
register 0 bit. then the Equal status is set. Matches are not significant in bit positions if the source register bit is 1. 

The BLWP instruction is a subroutine call accompanied by a context switch. The operand memory address identifies 
the first of two memory words within which the new WP register and Program Counter contents will be stored. 

The BLWP instruction is remarkably powerful. The subroutine call and passing parameters to the subroutine become a 
single operation. The memory words that are to serve as subroutine general purpose registers can be used as general 
data memory locations prior to the subroutine call. Thus. the subroutine finds its registers pre-loaded with data when it 
starts executing. 

The RTWP instruction should be used to return from a subroutine that is called by the BLWP instruction. 

One-bit position arithmetic shifts may be illustrated as follows: 

Right Shift Left Shift 

1011010110100110 1011010110100110 

~"""""""~ """""""" 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 Lost Lost 0 1 1 0 1 0 1 1 0 1 0 0 110 O~ 

Inserted 

A one-bit-position logical right shift may be illustrated as follows: 

1011010110100110 

,~"""""'", o 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 Lost 

I nserted '!I 

A one-bit right rotate (Shift Right Circular) may be illustrated as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

You can specify any number of bits. from 1 to 15. as the number of bit positions for any TMS 9900 shift or rotate in­
struction. If you specify 0 for the bit count. then the actual bit count is taken from the four low-order bits of general pur­
pose Register RO. If these four low-order bits are 0000. then the bit count is assumed to be 16. 
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The following symbols are used in Table 3-2: 

AG 
C 
CNT 
CRUA 

d 

DATA4 
DATA16 

DISP 
EQ 

G 
LG 

OP 
OV 
PC 
R 
Rxx 
S 
ST 
WP 

x<y.z> 

[ ) 

Arithmetic Greater Than status 

Carry status 
4-bit count field 
CRU base address from R12 
Destination memory word. There are five possible options for the destination memory word. They are 
represented by these combinations of addressing modes: 
Workspace Register D 
Implied through Workspace Register D 
Direct address 
Direct. indexed address 
Implied through Workspace Register D. auto-increment Workspace Register D 

4-bit data unit 
16-bit data unit 
8-bit signed displacement 
Equal status bit of Status register 
Both the AG and LG statuses 

Logical Greater Than status 
Odd Parity status 
Overflow status 
Program Counter 
Any of the 16 Workspace registers 
Workspace register. For example. R15 is Workspace Register 15 
Source memory location. Addressing options identical to destination memory location 

Status register 
Workspace Pointer register 
Bits y through z of the quantity x. For example. ([ S) * [R)) < 31.16> represents the high-order word of 
the product of the contents of the Source Register S and the Workspace Register R. 

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the brackets. 
then the contents of the addressed memory location are specified. 

Mu Itiplication 

/ Division 
A Logical AND 

V Logical OR 
-¥- Logical Exclusive-OR 

Data is transferred in the direction of the arrow 

Under the heading of STATUSES in Table 3 -2. an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X. it means that the status maintains the value it had before the instruction was ex­
ecuted. 

Byte-operand instructions will affect half of a 16-bit memory word. If the word is accessed as a general purpose 
register, then only the high-order byte will be affected. If the word is accessed as non-register memory, then 
the byte affected is determined by the least significant bit of the 16-bit address: 0 selects the high-order byte; 
1 selects the low-order byte. 
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Table 3-2. TMS 9900 Instruction Set Summary 

STATUSES 

I TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 
G EQ C OV OP 

LDCR S,CNT 2 X X X* [CRUA]-[ S <CNT-l,O >] 

Transfer the specified number of bits from source memory word to the CRU. 

STCR O,CNT 2 X X X* [D <CNT-1.0> ]-[ CRUA] 

g Transfer the specified number of bits from the CRU to destination memory word. I 

SBO DISP 2 [CRUA + OISP]- 1 

Set bit in CRU to 1. ! 

SBZ DISP 2 [CRUA + DISP] - 0 i 

Set bit in CRU to O. I 

TB OISP 2 X If [CRUA+DISP] =0, then [EQ]=l;orelse [EQ]=O 

i Test bit in CRU. 

w MOV S,D 2 X X [O]-[S] I 
»(J 
a:a:z 16-bit move contents of source memory word to destination memory word. i 

COw 
I ~~a: MOVB S,O 2 X X X [D]-[S] -ww 

g:~~ a-bit move contents of source memory byte to destination memory byte. 

A S,D 2 X X X X [D]-[S]+ [D] 

16-bit add contents of source memory word to contents of destination memory word. 

I AB S,O 2 X X X X X [O]-[S]+ [0] 

Co) 

fA 
00 

iii 
a-bit add contents of source memory byte to contents of destination memory byte. 

I 
~ S S,D 2 X X X X [D]-[D]- [S] 
C 
a: 16-bit subtract contents of source memory from contents of destination memory word. w 
A- SB S,O 2 X X X X X [D]-[D]- [S] 
0 
> a-bit subtract contents of source memory byte from contents of destination memory byte. 
a: 
0 C S,D 2 X X Set status flags based on 16-bit comparison of source and destination memory word contents. 
::E CB S,O 2 X X X Set status flags based on a-bit comparison of source memory byte contents and destination I 

w 
~ memory byte contents. 
w XOR S,R 2 X X [R]-[S]¥ [R] 
(J 
Z Exclusive-OR contents of source memory word with Workspace Register R. 
w 
a: MPY S,R 2 [R]-[([S]* [R])<31,16 >] 
w 
II. [R+ 1l-[([S]*[R])<15,O>] w 
a: Multiply the contents of source memory word by contents of Workspace Register R. Store most 
> a: significant word of result in R. Store least significant word of result in Workspace Register R + 1. 
0 
~ DIV S,R 2 X [R]-([R,R + 11/ [S]Xquotient) 
w [R + 11-( [R,R + 111 [S]Xremainder) ::E 
> Divide the 32-bit quantity represented by R (high-order word) concatenated with R + 1 (low 
a: order) by the contents of the source memory word. Store the quotient in R, the remainder in C 
0 R + 1 and set overflow if quotient will exceed 16 bits. z 
0 INC 0 2 X X X X [O]-[D]+ 1 
(J 
w Increment contents of memory word by 1. (/J 

INCT 0 2 X X X X [0]-[0]+2 

Increment contents of memory word by 2. 

DEC 0 2 X X X X [0]-[0]-1 

Decrement contents of memory word by 1. 

*OP status is affected only if between 1 and a bits are transferred. 



Table 3-2. TMS 9900 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

G EQ C OV OP 

DECT D 2 X X X X [D]-[D]-2 

Decrement contents of memory word by 2. 

is CLR D 2 [D]-OOOO 
1&1 Clear the ~~stination memory word. 
=:) 
Z SETO D 2 [D]-FFFF 
i= Set all bii~ of memory word. Z 
0 INV D 2 X X [D]-(O] 
9 
W 

Ones complement the destination memory word. 
~ NEG D 2 X X X X ,[D]-['D.J+l 
c( 
a: Twos complement the destination memory word. 
1&1 
A. ABS D 2 X X X X [D]-I [D]I 
0 
> Take the absolute (unsigned) value of the destination memory word's contents. 
a: 
0 

D [D<15,8>]--[0<7,O>] ~ SWPB 2 

Col 

W 
co 

1&1 Exchange the high and low bytes of the memory word. 
~ - SOC S,D 2 X X If [S<i>]=l,then [D<i>]-l 
1&1 
CJ Set the bits in the destination memory word that correspond to ls in the source memory word 
Z 
1&1 for all 16 bits. a: 
1&1 saCB S,O 2 X X X If [S<i>]="l, then [O<i>]-l u.. 
1&1 Set the bits in the destination memory word that correspond to ls in the source memory word a: 
> for 8 bits. 
a: 
0 SZC S,D 2 X X If [S<i'>]=l, then [D<i>]-P 
~ 
1&1 Clear the bits in the destination memory word that correspond to ls in the source memory word 
~ for all 16 bits. 
> SZCB S,D 2 If [S<i>]=l, then [D<i>]-O a: X X X 
c( Clear the bits in the destination memory word that correspond to ls in the source memory word Q 
Z for 8 bits. 0 
U COC S,R X If for all [S<i>]=l, [R<i>]=l,then [EQ]-l 
1&1 
CI) If the bits in the Workspace Register R that correspond to the set bits in the source memory 

word are all ls, set the EQUAL status. 

CZC S,R 2 X If for all [S<i>]=l, [R<i>]=O, then [EO]=l 
If the bits in the Workspace Register ~t correspond to set bits in the source memory word 

are all Os, set the EQUAL status. 

1&1 
~ 

LI R,DATA16 4 X X [R]-DATA16 c( 

is Load immediate to Workspace Register R. 
1&1 
:::E LWPI DATA 16 4 [WR]-DATA16 

~ Load immediate to Workspace Pointer Register, WR. 

-~-- - -- -



Table 3-2. TMS 9900 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

G EO C OV OP 

w CI R,DATA16 4 X X Set the status flags based on 16-bit comparison between contents of Workspace Register Rand l-
e( immediate data. II: 
w AI R,DATA16 4 X X X X [R]-[R] + DATA 16 11-
0 Add immediate to Workspace Register R contents. w 
I- ANDI R.DATA 16 4 X X [R]+-[R] A DATA 16 e( 

0 AND immediate with Workspace Register R contents. 
w 
~ ORI R,DATA16 4 X X [R]+-[ R] V DATA 16 

;:! OR immediate with Workspace Register R contents. 

B 
11-

S 2 [PC]+-[S] 

~ Branch unconditional to address in Source memory word. 
::;) JMP D(SP 2 [PC]+-[ PC] + DISP .., 

Branch unconditional. 

BL S 2 [R111-[PC]+1 
[PC]-[S] 

Branch to subroutine at address in source memory word. 
2 BLWP S 2 [R13]-[WP] 
II: 

Col 

~ 

W::;) [R14]+-[ PC] 
21-
~~ [R15]+-[ST] 
::;)Q [WP]+-[S] 
~2 
1IIe( [PC]-[S+2] 
::;) ... 
0 ... Branch to subroutine whose address is stored in source memory word + 1. Perform context 

e( switch to RD address contained in source memory word. (,) 

RTWP 2 X X X X X [WP]-[R13] 

[PC]+-[R14] 

[ST]-[R15] 
Perform a backward context switch. 

JEQ DISP 2 If [EO]=1; then [PC]+-[PC] +DISP 

Branch if equal. 

JNE DISP 2 If [EO]=O; then [PC]-[PC] +DISP 

2 
Branch if not equal. 

0 JGT DISP 2 If [AG]=1; then [PC]-[PC] + DISP 
~ Branch on arithmetic greater than. 
is 
2 JlT DISP 2 If [AG]=O and [EO]=O; then [PC]+-[PC] +DISP 
0 Branch on arithmetic less than. (,) 

2 JHE DISP 2 If [lG]=1 or [EO]=1; then [PC]+-[PC] +DISP 
0 

Branch on logical greater than or equal. :z: 
(,) JH DISP 2 If [LG]=1 and [EO]=O; then [PC]+-[PC]+DISP 
2 

~ Branch on logical greater than. 
III Jl DISP 2 If [lG]=O and [EO]=O; then [PC]-[PC] +DISP 

Branch on logical less than. 

JLE DISP 2 If [EO]=1 or [LG]=O; then [PC]+-[PC]+DISP 

Branch on less than or equal. 



Table 3-2. TMS 9900 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

G EQ C OV OP 

JNC DISP 2 If [C]=O; then [PC]-[PC]+DISP 

ZZe 
Branch on carry reset. 

OOw JNO DISP 2 If [OV]=O;then [PC]-[PC]+DISP 

~Ei Branch on overflow reset. 
z°j:: JOC DISP 2 If [C]=l;then [PC]-[PC]+DISP ~ZZ 00 Branch on carry set. m U !:! 

JOP DISP 2 If [OP]=l;then [PC]-[PC]+DISP 

Branch on odd parity set. 

a: W SLA R,CNT 2 X X X X Arithmetic shift the Workspace Register R left the specified number of bits. 
W l-
I- 0( SRA R,CNT 2 X X X Arithmetic shift the Workspace Register R right the specified number of bits. 

~ ~ SRL R,CNT 2 X X X Logical shift the Workspace Register R right the specified number of bits. 
~ 0 SRC R,CNT 2 X X X Rotate the Workspace Register R right the specified number of bits. 

STST R 2 [R]-[ST] 

. Store the Status register into Workspace Register R. 

STWP R 2 [RJ-[WP] 

. Store the Workspace Pointer into Workspace Register R. 

w 

~ 

01-
ZA. L1MI DATA4 4 [SR<3,O>] -oATA4 
0(;:) Load immediate data into the interrupt mask bits of the Status register. 
0a: 
;:)IZ: XOP S,R 2 X [R13]-[WP] I-w 
0(1- [R14]-[PC] I-Z 
0- [R15]-[ST] 

[Rll]-[S] 

[WP]-[40,. +(4*[R))) 

[PC]-[41,. +(4* [R))) 
Perform a context switch. This is the software interrupt. 

W X S 2 Execute the instruction represented by the data in the source location. If that instruction has im-I-
;:) mediate operand words, those words must be located directly after the X instruction. The instruc-U 
W tion [S] will affect the status flags but its fetch will not cause IAQ to go high. )( 
W 

IDLE 2 CPU enters Halt state. 
CPU clears interrupt mask and outputs 001 on three high-order Address Bus lines. 

RSET 011 on three high-order Address Bus lines. 
> CKOF 110 out on three high-order Address Bus lines. :le 
o(w CKON 101 out on three high-order Address Bus lines. 
ZZ 
a:jL LREX 111 out on three high-order Address Bus lines. 
WW 
t<0 
W 



THE BENCHMARK PROGRAM 
For the TMS 9900, our benchmark program may be illustrated as follows: 

LOOP 

BLWP MOVE CONTEXT SWITCH TO APPROPRIATE REGISTERS 

MOV 
DEC 
JNE 
RTWP 

@IOBUF(R11.*R2+ 
R1 
LOOP 

LOAD NEXT INPUT WORD IN NEXT TABLE WORD 
DECREMENT COUNT 
RETURN FOR MORE 
RETURN FROM SUBROUTINE 

Let us look at how our benchmark program can collapse to just five instructions. 

We assume that there is some set of 16 General Purpose registers within which we store the word count and the ad­
dress of the first free word in TABLE. We illustrated this idea when describing context switching earlier in the chapter. 

Observe that Register R1 contains the word count and is therefore used as an Index register. while Register R2 ad­
dresses the first free word in TABLE. Note that the contents of Register R2 are incremented automatically when the 
next byte is loaded into the table. 

The BLWP instruction will branch to the program which performs the required data move. but simultaneously it loads 
the Workspace register with the appropriate initial address. We do not need to load any initial addresses or word 
counts into registers. since we have adopted the memory space where this data is stored to serve as our General Pur­
pose registers. 

After the move has been completed. we do not have to update any counters or pointers. because they were updated 
"in situ". All we have to do upon completing the move is store the contents of the current General Purpose Registers 13 
and 14 to the Workspace register and Program Counter. 

The following notation is used in Table 3-3: 

aa 

bb 

cccccccc 
dddd 

eeee 
rrrr 

ssss 

xx 

Two bits determining the addressing mode for the destination memory word 

Two bits determining the addressing mode for the source memory word 

8-bit Signed address displacement 

Four bits used with aa to determine the destination memory word 

4-bit count field 

Four bits choosing the Workspace register 

Four bits used with bb to determine the source memory word 

16 bits of immediate data 

If either aa or bb is 1°2. and the corresponding register specified is 02. then an additional 16-bit direct memory address 
word. used in computing the effective memory address of the operand. will follow the instruction. 

If aa and bb are 1°2. and both corresponding register specifications are 0. then two additional 16-bit direct memory ad­
dreSSing words will follow the instruction: the first will be used in computing the source address; the second will be 
used in computing the destination address. 
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Table 3-3. TMS 9900 Instruction Set Object Codes 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

PERIODS· PERIODS· 

A S,D 1010aaddddbbssss 2 14-30 (1) JOP DISP 000lll00cccccccc 2 8/10(15) 

AB S,D 1011aaddddbbssss 2 14-30 (1) LDCR S,CNT 00ll00eeeebbssss 2 22-52 (11) 

ABS 0 0000011101aadddd 2 12-20 (6) LI R,DATA16 000000100000mr 4 12 (19) 

AI R,DATA16 00000o 1000 lOrrrr 4 14(17) XX 

XX LlMI DATA4 0000001100000000 4 16(21) 

ANDI R,DATA16 00000o 1 00 1 00rrrr 4 14(17) XX 

XX LREX 0000001111100000 2 6(14) 

B S 00000 1 000 1 bbssss 2 8-16 (7) LWPI DATA 16 0000001011100000 4 10(20) 

BL S 0000011010bbssss 2 12-20 (9) XX 

BLWP S 00000 1 OOOObbssss 2 26-34 (10) MOV S,D l100aaddddbbssss 2 14-30 (1) 

C S,D l000aaddddbbssss 2 14-30 (1) MOVB S,D 1101aaddddbbssss 2 14-30 (1) 

CB S,D 100 1 aaddddbbssss 2 14-30 (1) MPY S,R 00lllOrmbbssss 2 52-60 (2) 

CI S,D 000000101000mr 4 14 (18) NEG 0 0000010100aadddd 2 12-20 (5) 

XX ORI R,DATA16 000000100110mr 14(17) 

CKON 0000001111000000 2 6 (14) XX 

CKOF 0000001110100000 2 6(14) RSET 0000001101100000 2 6 (14) 

CLR 0 00000l00llaadddd 2 10-18 (5) RlWP 0000001110000000 2 14 (8) 

COC S,R 00 1 OOOrmbbssss 2 10-18 (1) 5 5,0 0110aaddddbbssss 2 14-30(1) 

CZC S,R 00l00lrrrrbbssss 2 14-22 (1l SB S,D 0111 aaddddbbssss 2 14-30 (1) 

DEC 0 00000ll000aadddd 2 14-22 (5) SBO DISP 00011101cccccccc 2 12 (13) 

DECT 0 00000ll00laadddd 2 10-18 (5) SBZ DISP 00011110cccccccc 2 12(13) 

DIV S,R 00 1111 rrrrbbssss 2 10-18 (3) SETO 0 00000lll00aadddd 2 10-18 (5) 

IDLE 0000001101000000 2 6 (14) SLA R,CNT 0000 10 1 Oeeeerrrr 2 14-52 (16) 

INC 0 0000010110aadddd 16-124 (5) SOC S,D l110aaddddbbssss 2 14-30(1) 

INCT 0 0000010111 aadddd 2 10-18 (5) 50CB S,D 1111 aaddddbbssss 2 14-30 (1) 

INV 0 0000010101 aadddd 2 10-18 (5) SRA R,CNT 00001000eeeerrrr 2 14-52 (16) 

JEQ DISP 00010011cccccccc 2 10-18 (15) SRC R,CNT 00001011eeeemr 2 14-52 (16) 

JGT DISP 00010101cccccccc 2 8/10 (15) SRL R,CNT 0000100 leeeemr 2 14-52 (16) 

JH DISP 00011011cccccccc 2 8/10 (15) STCR D,CNT 001101eeeeaadddd 2 42-60 (12) 

JHE DISP 00010100cccccccc 2 8/10 (15) STST R 000000101100mr 2 8(23) 

JL DISP 000 11010cccccccc 2 8/10 (15) STWP R 000000101010mr 2 8 (22) 

JLE DISP 000 100 1 Occcccccc 2 8/10 (15) SWPB 0 0000011011aadddd 2 10-18 (23) 

JLT DISP 000l000lcccccccc 2 8/10 (15) SZC S,D o l00aaddddbbssss 2 14-30 (1) 

JMP DISP 000l0000cccccccc 2 10(15) SZCB 5,0 0101aaddddbbssss 2 14-30(1) 

JNC DISP 00010111cccccccc 2 8/10(15) TB DISP 00011111cccccccc 2 12(8) 

JNE DISP 00010110cccccccc 2 8/10(15) x 5 00000100 lObbssss 2 8-16 (7) 

JNO DISP 000ll00lcccccccc 2 8/10 (15) XOP S,R 00 1 0 11 rrrrbbssss 2 44-52 (4) 

JOC DISP 000ll000cccccccc 2 8/10 (15) XOR S,R 001010rmbbssss 2 14-22 (1) 

• The number in brackets identifies the instruction's machine cycle sequence, as defined in the preceding text. 
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The minimum and maximum number of clock periods for the execution of each instruction are shown in the 
CLOCK PERIODS column of Table 3-3. Remember that a machine cycle consists of two clock periods. The 
bracketed number after the number of clock periods identifies the machine cycle sequence. Machine cycle se­
quences associated with each bracketed number are listed below. In the machine cycle list below, the follow­
:ing abbreviations are used: 

R represents a memory read machine cycle as identified in Figure 3-4. 

A represents an ALU machine cycle as illustrated in Figure 3-3. 

W represents a memory write machine cycle as illustrated in Figure 3-5. 

C represents a CRU machine cycle as illustrated in Figures 3-6 and 3-7. 

A subscript associated with any machine cycle notation identifies that machine cycle repeated a number of times. Thus 
A3 is equivalent to -A-A-A-. 

M represents memory address computation machine cycles. Memory address computations were described earlier in 
this chapter. In su mmary. here are the various possibilities for M: 

Register addressing: R 

Implied memory addressing: 

Implied memory addressing with auto-increment (for byte operand): 

R-A-R 

R-A-W-R 

Implied memory addressing with auto-increment (for word operand): R-A-A-W-R 

Direct addressing: A-A-R-A-R 

Direct. indexed addressing: R-A-R-A-R 

(1) R-A-M-A-M-A-W 
(2) R-A-M-A-R-A18-W-A-W 
(3) R-A-M-A-R-A-A-R-Ax-W-A-W (51 ~ x :::; 35) 
(4) R-A-M-A3-R-A-W-A-W-A-W-A-W-A-R-A 
(5) R-A-M-A-W 
(6) R-A-M-A3-W-A 
(7) R-A-M-A 
~) R-A-A-R-R-R-A 
(9) R-A-M-A-A-W 

(10) R-A-M-A-A-W-A-W-A-W-A-R-A 
(11) R-A-M-A4-R-A-Cx-A (16 ~ x ~ 1) 
(12) R-A-M-A-R-A-A-Cx-Ay-W (16 ~ x ~ 1. 11 ~ y ~ 5) 
(13) R-A-A-R-A-C 
(14) R-A-A-C-A-A 
(15) R-Ax (x=3 or 4) 
(16) R-A-R-A-A-R-Ax-W-A (18 ~ x ~ 3) 
(17) R-A-A-R-R-A-W 
(18) R-A-R-A-R-A-A 
(19) R-A-A-R-A-W 
(20) R-A-A-R-A 
(21) R-A-A-R-A3 
(22) R-A-A-W 
(23) R-A-M-A-R-A4-W 

THE TMS 9980A AND THE TMS 9981 MICROPROCESSORS 

The TMS 9980A and the TMS 9981 are low-cost variations of the TMS 9900. The principal differences be­
tween the TMS 9900 series and TMS 9980 series microprocessors are summarized in Table 3-4. Differences 
between the TMS 9980A and the TMS 9981 are summarized in Table 3-5. 

This discussion of the TMS 9980 series microprocessors covers only differences as compared to the TMS 9900. 

The TMS 9980 series microprocessors are manufactured using N-channel silicon gate MOS technology. They are 
packaged as 40-pin DIPs. The TMS 9980A uses three power supplies: -5V. +5V. and +12V. The TMS 9981 useS two 
power supplies: +5V and +12V. 

Typically. a c'lock cycle time of 400 nanoseconds will be used with TMS 9980 series microprocessors. This generates 
instruction execution times ranging between 4 and 14 microseconds. 
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Figure 3-14 illustrates that part of general microcomputer system logic which is implemented by the TMS 
9980 series microprocessors. This figure is identical to Figure 3~ 1. with the exception of clock logic. which is now 
shown present. 

Programmable registers are implemented and used in exactly the same way the TMS 9900 and TMS 9980 
series microprocessors. Note. however. that the TMS 9980 series microprocessors address a 2048-bit CRU; 
therefore. bits 1 through 11 of Register R12 identify the origin of any CRU bit field. The TMS 9900 uses bits 1 through 
12 of Register R12 to identify the CRU origin within a 4096-bit CRU. 

Table 3-4. A Summary of Differences Between the TMS 9900 and TMS 9980 Series Microprocessors 

FUNCTION TMS 9900 TMS 9980AITMS 9981 

Addressable external memory 32.768 x 16-bit words 16.384 x 8-bit words 

DIP pins 64 40 

Data Bus 16 bits 8 bits 

Address Bus 15 bits 13 bits 

External interrupt priorities 15 4 

CRU field width 4096 bits 2048 bits 

Clock logic Four external inputs One external input 
or internal (TMS 9981 

only) 

Table 3-5. A Summary of Differences Between the TMS 9980A and TMS 9981 Microprocessors 

FUNCTION TMS 9980A TMS 9981 

Power supplies -5V. +5V. +12V +5V. +12V 

Clock logic One external input One external input 
or crystal only 

Pin incompatibility ties DO - 07. INTO - INT2. cJ>3 

The TMS 9980 series microprocessors have a 14-line Address. Bus, used to address up to 16,384 bytes of 
memory. In contrast. the TMS 9900 addresses up to 32.768 16-bit words of external memory. Thus. TMS 9980 pro­
grams address memory as bytes. while externally generated addresses also select bytes. The TMS 9900. by way of con­
trast. addresses memory as bytes within the CPU. but as 16-bit words externally. 

The TMS 9980 series microprocessors use exactly the same memory and CRU addressing techniques as the 
TMS 9900. General-purpose registers are used in the same way. and instruction object codes are identical. 

The Status register and Status flags used by the TMS 9980 series microprocessors are identical to those which 
we have already described for the TMS 9900. 

TMS 9980 SERIES MICROPROCESSOR PINS AND SIGNALS 
Figure 3-15 illustrates pins and signals for the TMS 9980A. Figure 3-16 provides the same information for the 
TMS 9981. In both of these illustrations. signal names conform to Texas Instruments nomenclature. For the Data and 
Address Busses. our notation is given in brackets. Differences result from the fact that we number bits from right to left 
(0 being the low-order bit). while Texas Instruments numbers bits from left to right (0 becomes the high-order bit). TMS 
9980AITMS 9981 pin-out differences are shaded in Figures 3-15 and 3-16 so that you can identify them 
quickly. 

For descriptions of the individual signals, refer to the earlier TMS 9900 discussion. 
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Programmable 
Timers 

Accumulator 
Registens) 

Data Countens) 

I/O Ports 
Memory 

Figure 3-14. Logic of the TMS 9980A and TMS 9981 Microprocessors 
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HOLD 
HLDA 

IAQ 

(LSB) (AO) CRUOUT/A13 
(A1) A12 
(A2) A11 
(A3) A10 

(A4) A9 
(A5) A8 
(A6) A7 
(A7) A6 
(A8) A5 
(A9) A4 

(A10) A3 
(A11) A2 
(A12) A1 

(MSB) (A13) AO 

AO-A13 

00-07 

CKIN 

cJ>3 

IAQ 

DBIN 

WE 

READY 

WAIT 

CRUCLK 

CRUOUT 

CRUIN 

DBIN 
CRUIN 

(+5V) VCC 

Pin Name 

INTO, INT1, INT2 

HOLD 

HOLDA 

1 40 
2 39 
3 38 
4 37 
5 36 
6 35 
7 34 
8 33 (LSB) 

9 32 
10 TMS 31 
11 9980A 30 
12 29 
13 28 
14 27 
15 26 (MSB) 
16 25 
17 24 
18 23 
19 22 
20 21 

Description Type 

Address Bus Tristate, output 

Data Bus Tristate, bidirectional 

Clock signal in Input 

Synchronizing clock Output 

Memory Enable Tristate, qutput 

I nstruction Fetch Output 

Data Bus in Tristate, output 

Write Enable Tristate, output 

Memory Ready Input 

Wait State indicator Output 

I/O clock Output 

Serial I/O out Output 

Serial I/O in Input 

I nterrupt request and priority Input 

DMA request Input 

Hold acknowledge Output 

Power and Ground reference 

Figure 3-15. TMS 9980A Signals and Pin Assignments 
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HOLD-~" 

HLDA~---I 

IAQ ..... 1----1 
(LSB) (AO) CRUOUT/A13~~--I 

(A1) A12 ~---I 
(A2) A 11 .... 1----1 
(A3) A10 .... ---1 

(A4) A9 ..... 1----I 
(A5) A8 .... ---1 

( A6) A 7 ..... '""----1 

(A7) A6 ~I----I 
(A8) A5 .... -----1 

(A9) A4 .... --f 
(A 1 0) A3 .... 1----1 

(A11) A2 .... 1----4 

(A12) A1 .... 1----1 
(MSB) (A 13) AO ... 1----1 

OBI N .... I----t 
CRUIN 

(+5V) VCC ----I 

1 
2 
3 
4 
5 
6 
7 
8 33 
9 32 

10 TMS 31 
11 9981 30 
12 29 
13 28 
14 27 
15 26 
16 25 
17 24 
18 23 
19 22 
20 21 

Pin Name Description 

AO-A13 Address Bus 

00-07 Data Bus 

CKIN Clock or crystal connection 

OSCOUT Crystal connection 

Synchronizing clock 

MEMEN Memory Enable 

IAQ I nstruction Fetch 

DBIN Data Bus in 

WE Write Enable 

READY Memory Ready 

WAIT Wait State indicator 

CRUCLK I/O clock 

CRUOUT Serial I/O out 

CRUIN Serial I/O in 

INTO, INT1, INT2 I nterrupt request and priority 

HOLD DMA request 

HOLDA Hold acknowledge 

v CC' V DO' V SS Power and G round reference 

(LSB) 

(MSB) 

Type 

Tristate, output 

Tristate, bidirectional 

InptAt 

Output 

Output 

Tristate, output 

Output 

Tristate, output 

Tristate, output 

Input 

Output 

Output 

Output 

Input 

Input 

Input 

Output 

Figure 3-16. TMS 9981 Signals and Pin Assignments 
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TMS 9980 SERIES MICROPROCESSOR TIMING AND INSTRUCTION EXECUTION 
The TMS 9980A and TMS 9981 microprocessors have the same signal relationships and instruction execution 
sequences as the TMS 9900. The few minor waveform differences are identified in the data sheets at the end of 
this chapter. 

The only significant difference between the TMS 9900 and TMS 9980 series is in clock logic. The TMS 9900 ree 

quires four clock inputs. as identified in Figure 3-3. 

The TMS 9980A requires a single clock signal. input via CKIN. The frequency of this clock input 
must be four times the desired clock frequency. That is to say. CKIN will be divided by four in 
order to create one clock period. The TMS 9981 can operate with the same CKIN input as the TMS 
9980A; however. you can also connect a crystal across CKIN and OSCOUT. This may be illustrated 
as follows: 

CKIN ~------~------------____ ~ 

D 
OSCOUT t-------.... ---------. 

--
C 1 and C2 must have values between 10pf and 25pf. typically 15pf. 

TMS 9980 
SERIES 
CLOCK 
LOGIC 

The crystal must be of the fundamental frequency type. The frequency will be divided by four in order to create the in­
ternal clock frequency. 

Both the TMS 9980A and the TMS 9981 output <1>3. a synchronizing clock Signal. <1>3 is the inverse of the <1>3 clock sig­
nal shown in Figure 3-3 and in subsequent timing diagrams for the TMS 9900. 

Thus you can create the timing diagram for any TMS 9980 operation by looking at the equivalent timing diagram for 
the TMS 9900 and replacing the four TMS 9900 clock signals by a single timing pulse which will be the complement of 
<1>3. 

The following operations are identical within TMS 9900 and TMS 9980 systems: 

• Memory references. However. note that memory reference will consist of two memory access cycles. as a 16-bit word 
is handled as two bytes. 

·CRU I/O operations (remember that the TMS 9980 series CRU is only 2048 bits wide). 

·CRU control operations 
·The Wait state 

• The Hold state and direct memory access operations 

• The Halt state 
• The interaction of Hold and Halt states 

Refer to the TMS 9900 discussion for any of the above topics. 

TMS 9980 SERIES INTERRUPT LOGIC 
The TMS 9980A and TMS 9981 microprocessors support four levels of external interrupt. together with a Reset and a 
Load. Reset and Load are non-maskable interrupts. In contrast. the TMS 9900 supports 15 levels of external interrupt. 
along with Reset. 

The TMS 9980 series microprocessors identify external interrupts via the INTO, INT1, and INT2 inputs as 
shown in Table 3-6. Figure 3-17 shows the interrupt vector map. 
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Table 3-6. TMS 9980 Interrupts 

INTO INT1 INT2 I nterrupt Decoded 

0 0 0 Reset 

0 0 1 Reset 

0 1 0 Load 

0 1 1 Level 1 (Highest Priority) 

1 0 0 Level 2 

1 0 1 Level 3 

1 1 0 Level 4 (Lowest Priority) 

1 1 1 No Interrupts 

Observe that the TMS 9980A and the TMS 9981 have no iNTRffi input. Also. the Reset and Load non-maskable inter­
rupts are decoded from the INTO - INT2 inputs. 

Figure 3-18 shows some pin connections for various levels of interrupt complexity in a TMS9980 series microcom­
puter system. The three illustrations shown are self-evident; they simply implement the INTO - INT2 codes defined 
above. 

The TMS 9980 series microprocessors provide all 16 XOP software interrupts available with a TMS 9900. 

Observe that Figure 3-17 shows memory as 8-bit units in contrast to Figure 3-11, which shows memory as 16-bit 
units. This reflects the fact that external memory is addressed as bytes by the TMS 9980A and the TMS 9981. 
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Memory Memory Byte 
Address Content 

... 

~ 
0000 WP HI 

Reset 0001 WP La t WP 

~ 
0002 PC - Reset Vector 

HI 

0003 PC La 
). PC 

(' 0004 WP 
- < HI 

0005 WP La 
). WP 

0006 PC 
, Leve.! 1 Vector 

HI t 
0007 PC 

- > ~C 
La 

0008 WP HI 
~ 

} 0009 WP La 
> WP 

OOOA 'PC HI 
Level 2 Vector 

External Interrupt. < OOOB PC La 
). PC 

~ 
OOOC WP HI 

} 0000 WP La 
> WP 

OOOE PC HI 
Level 3 Vector 

OOOF PC La 
; PC 

0010 WP HI 1 
} Leve' 4 Veeto' 

0011 WP La 1WP 

0012 PC HI J 
Una .. 'oned Memo", t 0013 PC La 

PC 

for Programs or Data t 
L 

0040 WP HI 
} WP } 0041 WP La 

0042 PC HI 
} PC 

xap 0 Vector 

0043 PC La 

xap Vectors, Use 
Same Memory Space 

as the TMS 9900 

007C WP HI }wp } 0070 WP La 

007E PC HI 
} PC 

xap 15 Vector 

Unassigned Memory , 

007F PC LO 

. t 

Loed { 

3FFC WP HI 

} 3FFO WP LO ~wp 
3FFE. PC HI 

Load Vector 

3FFF PC La 
PC 

Figure 3-17. TMS 9980 Memory Map 
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I 
LEVEl.. 1 

r--f }- INTO 

r INTO ...... 
TMS 9980AI 

RES'ET INT1 TMS 9981 

LEVEl.. 4 INT2 RESET INT1 

TMS 9980A/ ['5Ai5 INT2 
TMS 9981 

A) Using Reset and One B) Using. Reset, I..oad and 
External Interrupt One External Interrupt 

Vee 
) 

! -d:-
~H 7 E1 . 

RESET ... 6 

Lc5A5 5 A2 ". 
INTO 

I..EVEI..1 4 A1 "'" INT1 -
LEVEL 2 ... 3 AO r- INT2 

LEVEL 3 ... 2 

LEVEL 4 ~ 1 
SN74148 TMS 9980A/ 

--<l (TIM 9907) TMS 9981 

c) Using Reset, Load and Four External Interrupts 

Figure 3-18. Some TMS 9980A/TMS 9981 Interrupt Interfaces 

The interrupt acknowledge process and interrupt priority arbitration logic are identical in TMS 9900 and TMS 
9980 series microprocessors. For a discussion of these subjects. refer to the earlier TMS 9900 description. 

THE TMS 9980 SERIES INSTRUCTION SET 
The TMS 9900 and TMS 9980 series microprocessors have identical instruction sets. Instructions execute in almost the 
same sequences of machine cycles - the only difference is that each memory reference will have twice as many 
memory access cycles. Refer to Tables 3-2 and 3-3, together with their accompanying text. for details. Remember to 
substitute two memory cycles for each TMS 9900 memory cycle. 

THE TMS 9940 SINGLE-CHIP MICROCOMPUTERS 

The TMS 9940 is a single-chip microcomputer based on the TMS 9900 microprocessor. Figure 3-19 illustrates 
that part of our general microcomputer system logic provided by the TMS 9940 series microcomputer. 

Specifically, this is the logic provided by the TMS 9940 series microcomputers: 

·A Central Processing Unit. essentially equivalent to the TMS 9900 Central Processing Unit 
·2048 bytes of read-only memory. Erasable Programmable Read-Only Memory (EPROM) is provided by the TMS 
99400E. Normal mask programmable Read-Only Memory (ROM) is available with the TMS 9940M. 

.128 bytes of read/write memory. This read-write memory is frequently organized as four sets of sixteen 16-bit 
registers. 
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• Two levels of external interrupt 
• An on-chip timer/event counter with its own interrupt logic 

.32 I/O pins accessed as 32 CRU bits 
• A single +5V power supply 
• On-chip clock logic 

Figure 3-19. Logic of the TMS 9940 Single-Chip Microcomputers 

The TMS 9940 microcomputer has very little expansion logic; 256 external CRU bits can be addressed, but 
there is no provision for executing programs directly from external memory. 

But the TMS 9940 is easily included in multiprocessor configurations. For multiprocessor configurations. the TMS 
9940 has internal Hold request/acknowledge logic. together with a serial I/O path via which data can be transferred 
between processors. 

The TMS 9940 has two +5V power supplies: a standard operating power supply and a standby power supply. 
Under program control. it is possible to shut down the TMS 9940. in which case only the standby power supply is ac­
tive. An external interrupt can subsequently restart the TMS 9940. 

The TMS 9940 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 40-pin DIP. 

Using a 3 MHz clock. instryction execution times range between 3 and 10 microseconds. 
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This description of the TMS 9940 microcomputer relies on the preceding detailed description of the TMS 9900. 
This description of the TMS 9940 does not stand alone. and you should not read it until you understand the TMS 
9900 in detail. 

TMS 9940 REGISTERS AND READIWRITE MEMORY 
There are some important conceptual differences between the read/write memory/registers of the TMS 9940 
and those of the TMS 9900. 

The TMS 9940 has only 128 bytes of read/write memory. with all the read/write on the chip itself. and you cannot 
create an external Data/Address Bus. Therefore. it makes no difference whether memory is addressed as bytes or 
words. The only remaining restriction is that 16-bit words must be origined on even byte address boundaries. 

ROM 

0000 

0002 

0004 

0006 

0008 

OOOA 

OOOC 

OOOE 

0010 

0012 

004E 

0050 

0052 

0054 

0056 

007C 

007E 

WP HI 
} WP LO 

I ~ 
PC HI } 
PC LO 

11 
WP HI } 
WPLO 

I ~ 
PC HI 

} 
PC LO 

WP HI } 
WP LO 

PC HI 
} 

PC LO 
I ~ 

WP HI 
WPLO 

~ 
PC HI 

} 
PC LO 

I ~ 

• I 

! I 
I 

WP HI 
} WP LO 

PC HI 
} PC ~Q. 

Ij 
WP HI 

} WP LO 
H 

PC HI 
PC LO 

I) 

WP} Reset Vector 

PC 

WP } Level 1 Interrupt Vector 

PC 

WP} Decrementer Vector 

PC 

WP } Level 2 Interrupt Vector 

PC 

Unused and Available for Programs 

RAM 

WP} XOP 4 Vector 

PC 

WP} XOP 5 Vector 

PC 

} XOP 6 - XOP 14 Vectors 

WP HI} } 
....... W_P_L_0--l} WPc

P 
XOP 15 Vector 

PC HI 
PC LO 

0080 1 
( Unused and Available for Programs 

07FF ..... __ ..... ' 

:~~ ~:~ I 
~ : Register Set 1 

831C s' · R14 
831E R15 
8320 ~1 

8322 R2 

Register Set 2 

833E R15 
8340 R1 

8342 . R2 

• I 

835E R15 

.:::~ :; I 
B37e HR14 Regi"., Set 4 

837E C:JR15 

Figure 3-20. TMS 9940 Memory Map 
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The TMS 9940 does introduce one additional read/write memory restriction: the 128 bytes of read/write memory 
are divided into four non-overlapping sets of sixteen 16-bit registers, as illustrated in Figure 3-20. Note that th e 
128 bytes of read/write memory have specifically defined addresses. Both the TMS 9900 and the TMS 9980 series 
microprocessors allow any sixteen 16-bit words of memory to serve as a set of general purpose registers. whether or 
not they overlap with another set. 

The TMS 9940 has the same three CPU registers as the TMS 9900: the Program Counter. the Workspace register. 
and the Status register. The TMS 9940 sets aside general-purpose registers to serve specific functions. as does the 
TMS 9900. 

Given the configuration of the TMS 9940. many register deSignations can be justified only as a means of preserving 
TMS 9900 series compatibility. For example. a 16-bit TMS 9940 Workspace register makes no sense when there are 
only 64 locations that the Workspace register can possibly address. Moreover. the whole idea of context switching -
and tying up three 16-bit registers in order to execute a context switch - is ridiculous. given the few places to which 
you can context switch. 

But there is long-range sense in the TMS 9940 design. Over the next few years. enhancements of the TMS 9940 will 
appear with substantially more memory - both read-only memory and read/write memory. Since it is absolutely im­
perative that TMS 9940 programs be compatible with new. enhanced one-chip microcomputers that are likely to ap­
pear. it is necessary that addressing modes and architectural features that influence the instruction set be included in 
the TMS9940 if they will be useful in later enhancements. 

Despite the fact that the TMS 9940 has only 128 bytes of read/write memory and 2048 bytes of read-only memory. the 
TMS 9940 has all of the TMS 9900 memory addressing modes. Note carefully that so far as memory addressing is con­
cerned. there is no difference between read-only memory and read/write memory. Many one-chip microcomputers 
have a scratchpad read/write memory which can only be accessed as data memory. while a separate program memory 
can only store instruction sequences. the TMS 9940 makes no such distinction between its read-only memory and 
read/write memory. Data and instructions can be stored in read-only memory or in read/write memory. 

The TMS 9940 and TMS 9900 CRU addressing techniques are identical; however. the TMS 9940 has just 32 exter­
nal CRU bits, each with its own dedicated pin. By configuring 11 of these pins as address lines and CRU controls. you 
can expand external CRU to 256 bits. 

There are some small differences between the TMS 9930 Status register as compared to the TMS 9900 Status register. 
The TMS 9940 Status register may be illustrated as follows: 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15--TMS 9900 Bit Number 

15 14 1~ 12 11 10 9 8 7 6 5 4 3 2 0-- Our Bit Number 

I ~ I ~ I = I C I 0 I P I 0 IACI 0 I 0 I 0 I 0 I 0 I 0 I 1 J 
•• • • I ~ I ~ ~ 

1 t r I -~L 
Status Register 

I nter.rupt Mask 

Unused 

Half Carry Status 

Parity Status 

Overflow Status 

Carry Status 

Equal Condition 

Arithmetic Greater Than Condition 

Logical Greater Than Condition 

TMS 9940 L. N. =. C, 0, and P statuses are the same as those of the TMS 9900. 

The TMS 9940 has no XOP instruction executed status, which the TMS 9900 holds in Status register bit 9. 
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The TMS 9940 has an AC status in bit 8. This is a half-carry status. For byte-oriented instructions. AC represents the 
carry from the low four bits to the higher four: 

7 6 5 4 3 2 o ... Bit No. 

,I P ! P ! P ! P ! a ! a ! a!, a I Memory Byte 

V 
AC = 1 for Carry 

AC = 0 for No Carry 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 ... Bit No. 

IRIRIRI(5l s lslsININININININININJ 

'- V" J 

Byte instructions operate on the 
high-order byte of a register. 

For 16-bit instructions. the AC status represents a carry from bit 11 to bit 12: 

General-Purpose Register 

1 5 14 13 12 11 1 0 9 8 7 6 5 4 3 2 0 ., Bit No. 

1 .. '_P ... !_P_ ..... !_p ... !'-!Qj~a ...... !_a ..... ! a ..... !_a ..... !_R ... !_R ..... !_R ... !_R ..... !_S ... !_s ..... !_s ... !_5 ... 1 ~::~~~;~S~rRegister 

AC = 1 for Carry 

AC = 0 for No Carry 

Since there are just four levels of external interrupt. the TMS 9940 uses Status register bits 0 and 1 for its interrupt 
mask, In contrast. the TMS 9900 uses Status register bits O. 1. 2. and 3 for its interrupt mask. 

TMS 9940 CPU PINS AND SIGNAL ASSIGNMENTS 
Figure 3-21 illustrates the pins and signals of the TMS 9940 microcomputer. 

PO - P31 and 321/0 pins addressed as 32 CRU bits. Some of these pins serve additional functions which can be 
selected under program control. 
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The TMS 9940-can, in fact. use standard TMS 9900 CRU instructions t<Jaddress up to 612 CRU bits. But 512 is the 
maximum number of CRU bits that the TMS 9940 can address. Therefore. the TMS 9940 uses just 9 bits of General Pur­
pose Register R12 to create CRU bit addresses. For a single-bit CRU instruction. this may be illustrated as follows: 

I nstruction Object Code 

~~-----------------~-----------------" MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I lxlvlvlvlvlvlvlvl 

'-:;7 G.:".' Pu,po •• R .. ' ... , R12 
~ ~--""""----~~'----"""---------L-S'~ 

15 14 13 12 11 10 9 

x X y y y y y y y 
+ Z Z Z Z Z Z Z Z Z 

Sum Becomes Effective 
CRU Address 
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P23 
P22 
P21 
P20 
P19 
P18 

EC/P17 
I DLE/P16 

HLDA/P15 
H LD/P14 

TD/P12 
(+5V) V CC1 
(+5V) V CC2 

WP11 

C/>/P13 
CRUCLK/P10 
CRUOUT/P9 

CRUIN/P8 
INT1/TST 

"R'ST'iPE 

Pin Name 

PO - P31 
INT1/TST 
INT2/PROG 
RST/PE 
AO - A7 
CRUCLK 
CRUOUT 
CRUIN 
TC 
TO 
EC 
IDLE 
HLD 
HLDA 
<I> 
XTAL2, XTAL1 

VCC1 
VCC2 
Vss 

- ~- 1 -- - 2 .. 3 - -- - 4 .. 5 - .. 6 - -- - 7 - .. 8 -- - 9 - .. 10 -- -.. 11 
12 
13 - .. 14 - --- - 15 - .. 16 - -.. 17 - -

~ 18 .. 19 -- 20 

Description 

CRU I/O pins 

40 
39 - .. - -
38 - --37 -
36 -
35 - .. - -
34 .. - -
33 - -
32 - .. - -

TMS 31 - .. - -
9940 30 - .. - -

29 - -- -
28 f4-... 
27 - .. -26 .. -- -
25 - ---
24 -- -
23 .. -- -
22 
21 

Extemal interrupt and Test select 

VSS (GND) 
P31 
P30 
INT2/P·ROG 
P29 
P28 
P27 
P26 
P25 
P24 
P7/A8 (LSB) 

P6/A7 
P5/A6 
P4/A5 
P3/A4 
P2/A3 
P1/A2 
PO/A1 (MSB) 
XTAL2 
XTAL1 

Type 

Bidirectional 
Input 

External interrupt and EPROM programmer 
System reset and EPROM programmer enable 
External CRU bit address 

Input 
Input 
Output 
Output 
Output 
Input 
Bidirectional 
Bidirectional 
Input 
Output 
Input 
Output 
Output 

External CRU clock 
External serial I/O output 
External serial I/O input 
Multiprocessor data I/O clock 
Multiprocessor data I/O 
Event counter input 
Idle state indicator 
Hold request 
Hold acknowledge 
Synchronizing clock 
External crystal connections 
Standby + 5V power 
Normal + 5V power 
Ground reference 

(In this figure, Pn and An numbering conforms to Texas Instruments' policy of beginning with N=O for the high-order bit. We use N=O 
for the low-order bit.) 

Figure 3-21. TMS 9940 Microcomputer Signals and Pin Assignments 
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Table 3-7 shows how the TMS 9940 interprets its 512 available bit addresses. 

CRU 
Address 

Table 3-7. TMS 9940 CRU Bit Address Assignments 

Read Function Write Function 

000 to 
OFF } 

External CRU bits; the address is output via A 1-A8. Data is transferred via CRUIN, CRUOUT 
and CRUCLK 

100 to 
17F 

180 

181 

182 

183 

184 

185 

186 

} Unused 

INTl state 

Decrementer interrupt level 

INT2 state 

Unused 

Unused 

Unused 

Unused 

Unused 

Unused 

Clear decrementer interrupt 

Unused 

Configuration bit 0 (CBO) 

Configuration bit 1 (CB 1) 

Configuration bit 2 (CB2) 

Configuratiol7l bit 3 (CB3) 

190 to 
190 

} Decrementer register. 190 is the least significant bit and 190 is the most significant bit 

19E 

19F 

lAO to 
lAF 

lBO to 
lBF 

Unused Timer (high) or Counter (low) select 

Unused Unused 

t Multiprocessor System Interface buffer register 
f 1 AO is the least significant bit and 1 AF is the most significant bit 

} General purpose flag bits 

lCO to 
10F } Unused Identify direction for PO (via lCO) through P31 (via 1DF). 

1 specifies output. 0 specifies input 

lEO to 
lFF } local CRU pins (PO = lEO, P3l = lFF 

I 

The place to begin looking at Table 3-7 is at CRU bits 183, 184, 185, and 186. These four 
CRU bits represent write-only locations which determine how the 32 CRU pins illustrated in Figure 
3-21 will be used. 

If you look again at Figure 3-21. you will see that PO through P17 have shared functions. P18 
through P31 are simple I/O pins without other programmable options. 

TMS 9940 
CRU BIT 
UTILIZATION 

CRU addresses 183, 184, 185 and 186 control the functions of PO through P16, as illustrated in Table 3-8. P17 
options depend on real-time clock logic. which we will describe later. 

Let us look at the programmable options available with CRU pins PO through P31. 

It does not matter what options you have selected: you will actually access the 32 CRU pins PO - P31 via CRU ad­
dresses 1 E016 through 1 FF 16. 

In the simplest case, all 32 pins, PO - P31, will be used for input or output. We call this Sim­
ple I/O mode. In order to use all 32 pins for data input or output. (that is. in Simple 1/0 mode). all 
four of the configuration bits. CBO. CB1. CB2. and CB3. must be O. At any time. a CRU bit can 
either input data or output data. but it cannot be used for bidirectional data transfer. You must 
identify the direction for each pin by outputting appropriate data to CRU addresses 1C016 

TMS 9940 
SIMPLE 
CRU I/O 
MODE 

through 1 DF16. As shown in Table 3-7. each pin has a dedicated CRU address. beginning with pin PO controlled by 
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1 C016 and ending with pin P31 controlled by CRU address 1 DF16. A 1 written to any Direction CRU bit causes the as­
sociated pin to output data only. A 0 written to any CRU Direction bit causes the associated pin to input data only. Of 
course. you can at any time change a pin from input to output or from output to input. under program control. by 
rewriting control information to Direction CRU bits 1 C016 through 1 DF16. 

Table 3-8. TMS 9940 CRU Bits Whose Functions are Determined Under Program Control 

CRU Function as Configured 

Bit Address Pin CBO=O CBO = 1 CB1, CB2, CB3 

0-7 1 EO-1 E7 23-30 PO-P7 A1-A8 No Effect 

8 1E8 18 P8 CRUIN No Effect 

9 1E9 17 P9 CRUOUT No Effect 

10 1EA 16 P10 CRUCLK No Effect 

CB1 = 0 CB1 = 1 CBO, CB2, CB3 

11 1EB 14 P11 TC No Effect 

12 1EC 11 P12 TO No Effect 

CB2 =0 CB2 = 1 CBO, CB1, CB3 

13 1ED 15 P13 4> No Effect 

CB3 = 0 CB3 = 1 CBO, CB1, CB2 

14 1EE 10 P14 HLO No Effect 

15 1EF 9 P15 HLOA No Effect 

16 1FO 8 P16 i'i5'i:'E No Effect 

You will always have to define the direction of data transfer for pins P18 through P31 - assuming that you are using 
these pins. When pins PO through P17 are being used in any of the special ways which we are about to describe. then 
the data direction associated with the special operation will apply. and it makes no difference what you output to the 
associated Direction CRU bit. 

If you wish to use 266 external CRU bits, then you must set CRU bit 183 (CBO) to 1. This is 
called I/O expansion mode. I/O expansion mode modifies the functions of pins PO through P10. 
When you use CRU addresses 00 through FF16 in I/O expansion mode. the address is output via 
pins PO - P7. which now function as CRU address lines A 1 - A8. P8. P9. and P 10 serve as the stan­
dard CRU data transfer lines: CRUIN. CRUOUT. and CRUCLK. Timing for data input and output via 

TMS 9940 
CRU I/O 
EXPANSION 
MODE 

these three lines has been described for the TMS 9900. Refer to the TMS 9900 description for details. In order to il­
lustrate the use of external CRU, consider execution of the instructions: 

LI 
LI 
LDCR 

R3.>OO 
R12.>140 
R3.4 

LOAD 1010 BINARY INTO UPPER BYTE OF R3 
LOAD A BASE ADDRESS OF 82 HEX INTO R 12 
OUTPUT FOUR LOW-ORDER BITS OF R3 TO CRU 

Note that R12 contains 014016 to represent the address 08216. since R12 bit 0 is unused; therefore the internal ad­
dress is. in effect. doubled. 

This instruction outputs 1010 to CRU bit 08216 (0). 08316 (1). 08416 (0), and 08516(1). Since fewer than eight bits will 
be transferred. they will come from the upper byte of the general purpose register. This is the event sequence which 
occurs: 

1) The address 8216 is output via A 1 - A8. Remember. Texas Instruments' literature uses 0 to represent the high­
order bit therefore A 1 represents the high-order address bit. and A8 represents the low-order address bit. CRUIN is 
inactive. but CRUOUT is low to represent 0 while CRUCLK is pulsed high to time the 0 bit on CRUOUT. 
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2) The address output on A 1 1- A8 increments to 8316. and CRUOUT goes high. then CRUCLK pulses high. 

3) The address on A1 - A8 increments to 8416. CRUOUT goes low again. and CRUCLK pulses high. 

4) The address on A 1 - A8 increments to 8516. and CRUOUT goes high. and CRUCLK pulses high. 

1010 has now been transmitted to four external CRU bits. 

Note that it is up to external logic to decode the CRU address output however. the Parallel System interface (which we 
will describe in later editions) will connect directly to the TMS 9940 Address and CRU outputs that we have just de­
scribed. 

When you write 1 to CRU bit 18416 (CB1), pins P11 and P12 function as serial data 
transfer pins. The purpose of this logic is to allow the TMS 9940 to operate in multi-CPU 
configurations. This logic is very simple. You output data by writing the data to CRU bits 
1A016 through 1AF16. This data is immediately transmitted via TD (P12) as a serial data 
stream which is clocked by TC (P11). In keeping with normal bit sequence protocol. data is 
transmitted low-order bit first. Thus. 16 bits of data being output may be illustrated as follows: 
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When a TMS 9940 has a 1 written to CB1. it can also receive data via TD. Data input is again clocked by TC. Input logic 
is the reverse of the output logic illustrated above; that is say. as a data stream is input. the first input bit is loaded into 
CRU bit 1 AF16. and the sixteenth input bit is loaded into CRU bit 1 A016. 

TMS 9940 multiprocessor system interface logic is used to transfer data from a memory location in one TMS 
9940 to a memory location in another TMS 9940. You will not normally use this logic to transfer data between a 
TMS 9940 and external logic; the CRU serves that purpose better. There are three reasons why you may want 
to use the TMS 9940 multiprocessor system interface; they are: 

1) To transmit status information. For example. one TMS 9940 cou Id tell another how far it has progressed through 
various phases of a task by transmitting a status word whose bits have some predefined interpretation. 

2) To transmit data. One TMS 9940 may generate data which another TMS 9940 needs in order to execute its pro­
grams. 

3) To transmit instruction sequences. Instructions could be transmitted from the read-only memory (or the 
read/write memory) of one TMS 9940 to the read/write memory of another TMS 9940. The receiving TMS 9940 
could then execute the instruction sequence out of its read/write memory. 
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Figure 3-22. Handshaking Logic in a TMS 9940 Multi-Microcomputer Network Communicating via the TD Data Line 
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You could use the CRU to perform any of the three data transfers described above. but the multiprocessor system inter­
face is somewhat easier to use. We say that data transfer via the multiprocessor system interface is "somewhat" easier 
to use because many problems still remain when you use the multiprocessor system interface. These problems arise 
from the fact that there is absolutely no handshaking protocol associated with the multiprocessor system inter­
face. For example. there is absolutely no protection against two TMS 9940s simultaneously trying to output data via 
TO and TC. There is no predefined protocol whereby a transmitting TMS 9940 identifies the receiving TMS 9940 or the 
instant data has been transmitted and should be read. Any protocol is your responsibility - to be provided by logic ex­
ternal to the TMS 9940s. Fortunately. this protocol is easy to implement. Figure 3-22' shows how eight TMS 
9940s can communicate with each other, such that each TMS 9940 may transmit data to, or receive data from, 
any other TMS 9940. The logic illustrated in Figure 3-22 is more complex than the logic you would need for a small 
system - for example. a two-microcomputer system. or a system where there are dedicated transmitters and receivers. 

While Figure 3-22 shows TMS 9940s communicating with each other. you will in fact use TMS 9940s just as fre­
quently with other microprocessors - such as a TMS 9900. Nevertheless. the concepts embodied in Figure 3-22 
would apply. from the viewpoint of the TMS 9940. in any other configuration. 

Let us look at how the logic in Figure 3-22 works. 

The first problem we must resolve is the problem of transmission contentions. How will we make sure that one TMS 
9940 does not try to transmit data while another TMS 9940 is already transmitting data? A simple scheme wou Id be to 
set aside a particular CRU pin to serve' as a "Busy" line. For example. every TMS 9940 could use P31 as a "Busy" output 
pin and P30 as a "Sense" input pin. We could wire-OR together all P31 Busy outputs and input this wire-OR to all P30 
Sense inputs. Now any TMS 9940 that wishes to transmit data will read its P30 CRU bit. If this bit is O. then it will out­
put 1 to P31. Outputting 1 to P31 causes all otherTMS 9940s to receive 1 at their P30 inputs. Thus. no other TMS 9940 
will begin transmitting data if another TMS 9940 was in the process of transmitting data. This logic may be illustrated 
as follows: 

P31 

P30 

All TMS 9940s 
now receive 
a high P30 

Another 
TMS 9940 
senses pao 
high - so 
does not 
try to 
output 

The problem with the logic illustrated above is that two TMS 9940s could simultaneously read P30. find it was O. out­
put 1 to P31. then output competing data on TO. While the chances of two microcomputers executing identical in­
structions at exactly the same time are very small. a well-designed microcomputer system must account for every po­
tential error. In Figure 3-22 we resolve our problem by using a 74148 8-to-3 decoder. The P31 output from every TMS 
9940 is connected to a different 74148 input. The 74148 outputs. via 00.01. and 02. the line number for the highest 
priority active input. This three-line output is connected to the P28. P29. and P30 pins of every TMS 9940; we assume 
that these three pins are inputs at every TMS 9940. Now every TMS 9940 that wishes to transmit data via TO must out­
put a 1 to P31. It must then input the contents of P30. P29. and P28. Upon detecting its own 10 on these three inputs. it 
begins data transmission. If a TMS 9940 outputs 1 via P31 and then reads in some other 10 via P30. P29. and P28. then 
it must wait. Here is an appropriate instruction sequence: 

LOOP 

LI 
SBO 
STCR 
CI 
JNE 
LI 
LDCR 

R12.>3F8 
3 
R2.3 
R2.ID 
LOOP 
R12.>340 
R3.16 

LOAD P28 ADDRESS. X2. INTO R12 
SET P31 ON 
INPUT P28. P29. AND P30 
COMPARE INPUT WITH DEVICE 10 
RETURN AND RE-ENTER CODE IF NOT .CORRECT 10 
LOAD MPSI OUTPUT DATA BASE ADDRESS X2 
OUTPUT CONTENTS OF R3 VIA TO 
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Assuming that a TMS 9940 has output 1 to P31 and has received back its own 10 via P28. P29. and P30. the TMS 9940 
is ready to transmit data. However. in addition to simply transmitting the data. the TMS 9940 must tell the intended 
recipient that the data has been transmitted. In Figure 3-22 we use a 74138 3-to-8 demu Itiplexer for this purpose. 
Pins P25. P26. and P27 of every TMS 9940 are outputs that connect to the 10. 11. and 12 inputs of the 74138. The 
transmitting TMS 9940 outputs data which will be received by every other TMS 9940; however. the transmitting TMS 
9940 follows up by outputting a 3-bit code via P25. P26. and P27; this 3-bit code identifies the intended recipient. The 
3-bit code is input to the 74138. which generates one of eight possible outputs. These eight outputs become external 
interrupt request inputs to the eight TMS 9940s. Only the single TMS 9940 will receive the data which was transmitted 
by the eighth TMS 9940. only one TMS 9940 will receive an interrupt request signal; this is the TMS 9940 for which 
the transmitted data was intended. The TMS 9940 which receives data simply executes an STRCR instruction to move 
the data from CRU bits 1 A016 through 1 AF16 to the appropriate general purpose register. 

CRU bit 18516. the CB2 bit. serves the very limited purpose of outputting a synchronizing 
signal. When you output 1 to CB2. P13 ceases to be an I/O pin and instead outputs the inter­
nal TMS 9940 clock signal. 

TMS 9940 
SYNC MODE 

CRU bit 18616 (CB3) controls idle and hold logic for the TMS 9940. When you write a 1 to CRU bit 18616. pins P14 
and P15 act as hold request input (HLD) and hold acknowledge output (HLDA) signals. respectively. P16 generates an 
IDLE output. 

The Hold request/acknowledge logic of the TMS 9940 is quite standard. The purpose of this TMS 9940 
logic is to remove the TMS 9940 from any shared busses when some other microprocessor or HOLD LOGIC 
microcomputer is bus master. If CB3 is 1. then a low signal arriving at the TMS 9940 HIT5 input 
will cause the TMS 9940 to enter a Hold state at the conclusion of the current instruction's execution. A 10w"RiJ5A out­
put marks the beginning of the Hold state. 

The IDLE signal is output low when an IDLE instruction is executed and CB3 is 1. The only 
way in which you can terminate an Idle state is by requesting an interrupt via iN"fT or INT2. The 
TMS 9940 three-state signals are not floated in the Idle state. You must additionally enter the Hold 
state for this. 

The purpose of the IDLE instruction and signal is to enable standby power logic. This may be illustrated as follows: 

+5V 

~------~------------------~ .. V CC1 

IOLE LOW OPENS SWIT'CH 

I 

Under normal circumstances. the power supply will input power to VCC1 and VCC2. When IDLE goes low. the power 
input to VCC2 is switched off. While VCC1 only is receiving power. the TMS 9940 read/write memory and interrupt 
logic is active. but all other logic is inactive. since the interrupt logic is active. any arriving interrupt request will be 
acknowledged. The process of acknowledging an interrupt request sets IDLE high again. This closes the switch and 
restores power to VCC2. which allows the TMS 9940 to resume normal execution 

In the illustration above. note that IDLE is connected to"HiJ). 
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TMS 9940 GENERAL PURPOSE FLAGS 
If you look again at Table 3-7 • you will see that CRU addresses 1 BO 16 through 1 BF 16 address 16 general pur­
pose flags. These general purpose flags have no special hardware functions. They are programming aids and that 
is all. You can write data out to these flags. and you can read back the data. How you use this data is entirely up to pro­
gram logic. 

TMS 9940 TIMER/EVENT COUNTER LOGIC 
The TMS 9940 has a timer which can also be used as an event counter. CRU bit 19E16 determines whether this 
logic will function as a timer or as an event counter. If CRU bit 19E16 is high. then this logic serves as a Timer. If 
CRU bit 19E16 is low. then this logic serves as an event counter. 

Timer and Event Counter logic both use CRU bits 19016 through 19016 as a 14-bit register whose contents are decre­
mented by Timer or Event Counter logic. This 14-bit register is buffered. That is to say. the initial value which you out­
put to CRU bits 19016 through 19016 is stored in a buffer. in addition to being loaded into CRU bits 19016 through 
19016. Subsequently. CRU bits 19016 through 19016 are decremented. but the buffer contents remain unaltered. 
When CRU bits 19016 through 19016 decrement to O. they are reloaded from the buffer. Thus Timer/Event Counter 
logic runs continuously. An interrupt request is generated internally when CRU bits 19016 through 19016 decrement 
to O. 

Remember. CRU bit 19016 is the low-order bit. and CRU 19016 is the high-order bit. This is the reverse of normal Texas 
Instruments bit numbering. where the high-order bit has the lowest bit number. However. this is consistent with the 
fact that Texas Instruments outputs data to the CRU low-order bit first. and addresses CRU bits in numerically ascend­
ing address sequence. 

When you write 0 to CRU bits 19016 through 19D16. you disable Timer/Event Counter logic. 

When the Timer/Event Counter is operating as a timer. the 14-bit register represented by CRU bits 19016 
through 19016 are decremented once every 30 internal clock oscillations. The crystal connected across XTAL 1 
and XT AL2 determines clock oscillation frequency. When CRU bits 19016 through 19016 time out to zero. an interrupt 
request is generated. 

When Timer/Event Counter logic is operating as an event counter. pin P17 serves as an input. receiving the 
event sequence to be counted. Every low-ta-high transition of the signal input at P17 decrements the counter. Once 
again. when the counter counts out to O. an interrupt request occurs and the counter is reloaded from its buffer 
register. 

TMS 9940 INTERRUPT LOGIC 
The TMS 9940 has four external interrupts and twelve internal software interrupts. 

These are the four external interrupts: 

1) Reset. This has highest priority. 

2) A level 1 interrupt occurring at the INT1 pin. This has second highest priority. 

3) A Oecrementer/Event Counter interrupt. This has third highest priority. 

4) A level 2 interrupt occurring at the INT2 pin. This has lowest priority. 

As described for the TMS 9900. you execute XOP instructions to generate software interrupts. XOP4 through XOP15 
are active. XOPO through XOP3 do not exist on the TMS 9940. 

TMS 9940 interrupt vectors. together with a complete TMS 9940 memory map. are illustrated in Figure 3-20. 

The actual interrupt acknowledge sequence for a TMS 9940 is identical to that which we have described for the TMS 
9900. 

TMS 9940 RESET 
You Reset the TMS 9940 by inputting a low signal at RST/PE (pin 20). This low signal must last for at least five 
clock cycles. A Reset resets to 0 the contents of all pointer registers and all CRU configuration bits. Following a Reset 
level 0 interrupt response beg ins - which means that read-only memory bytes 0 through 3 provide the initial Program 
Counter and Word Pointer register contents. and therefore the address of the program which will be executed follow­
ing the Reset. 

3-65 



Note that the TMS 9940, being a smaller and simpler system than the TMS 9900, can use elementary logic to generate 
an interrupt acknowledge. For the TMS 9900 we suggested an Address Bus decoding technique in order to create an 
interrupt acknowledge signal. For the TMS 9940 a CRU bit will do just fine. The following circuit is recommended by 
Texas Instruments: 

o a 

INT REa CLK 

7474 Q 
CLR 

INT ACK 

A simple O-type flip-flop has its 0 input connected to +5V. Every time an interrupt request pulse is input to the clock 
pin, the Q output will go low - generating a valid interrupt request at the TMS 9940. In order to acknowledge the in­
terrupt and remove the interrupt request signal. you can output a low pulse via any of the P pins. This low pulse clears 
the D-type flip-flop and forces Q high again. 

PROGRAMMING A TMS 9940E ERASABLE, PROGRAMMABLE READ-ONLY MEMORY 
The TMS 9940E has a transparent quartz lid over the device in its dual in-line package. In order to erase the TMS 
9940E EPROM, you should expose it to a high-intensity ultraviolet light with a wavelength of 2537 angstroms. 
An intensity of 10 watt-seconds per square centimeter is recommended. 

After the TMS 9940E EPROM has been erased, all EPROM memory bits will be O. 

These are the steps required in order to program a TMS 9940E EPROM: 

1) Reset the device. 

2) Apply the first data byte - to be stored in memory location 0000 to pins P24 through P31. Remember. P24 repre­
sents the most significant bit of the byte, and P31 represents the least significant bit of the byte. 

3) Apply a 26-volt level to pin 20, the RST /PE pin. This being the first programming pulse, it resets the internal pro­
gram memory address point at 0000 and writes the data byte at P24 through P31 into memory location O. 

4) After at least 80 clock cycles, apply 26 volts to pin 37, INT2/PROG, for 50 milliseconds while changing the data 
byte (step 5). 

5) Apply the next data byte to P24 through P31. At the high-to-Iow transition of PROG, the data will be written into 
the next location. 

6) Remove the 26 volts from pin 37 for a minimum of 50 clock cycles. Then apply 26V to pin 37 for 50 milliseconds. 

7) Return to Step 5 until all of program memory has been programmed. 

LOADING A PROGRAM INTO TMS 9940 READIWRITE MEMORY 
You can load a program directly into TMS 9940 read/write memory via pins P24(MSB) through P31 (LSB) for either the 
TMS 9940E or the TMS 9940M. Typically, this is done in order to load a small test program. The procedure for loading 
data into the TMS 9940 read/write memory is exactly as described in the previous section for loading data into EPROM. 
except: the 26-volt level is applied to pin 19, the TST pin, after the device has been reset by inputting a low signal to 
pin 20, the RST /PE pin; and the high pulses at PROG are logic '1' level rather than 26 volts. 

When you input data to a TMS 9940 read/write memory using the TEST pin and P24 through P31, the address pointer 
is initialized to address 830016. The address keeps incrementing the high-to-Iow transition of each 50 millisecond pro­
gramming pulse applied at pin 37. When you finally stop applying programming pulses, the last 16 bits of data input 
are interpreted as the beginning address for the program to be executed. This address may point to a read/write memo­
ry location, or to a read/write memory location. That is to say, the test program may be in read/write memory, in read­
only memory, or in both areas. 

THE TMS 9940 INSTRUCTION SET 
The TMS 9940 instruction set is identical to the TMS 9900 instruction set, with these exceptions: 

1) The RSET, CKOF, CKON and LREX instructions have been deleted. That is, all the external instructions except 
IDLE. 
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2) The XOP instructions will not work with operands 0, 1, 2, or 3. 

3) There are new DCA and DCS instructions that enable 8-bit binary-coded decimal arithmetic. 

Assuming that you start with two valid 8-bit binary-coded decimal operands, you can add these two 8-bit operands 
using normal binary addition. The result will be a meaningless 8-bit number; however, if you immediately execute the 
DCA instruction, this meaningless 8-bit number will be converted to a meaningful 8-bit 2-BCD-digit number. 

DCS, likewise, allows you to perform 8-bit binary-coded decimal subtraction. Assuming that the subtrahend and mi­
nuend are both valid 8-bit binary-coded decimal numbers, you perform a subtraction using binary arithmetic and you 
generate a meaningless 8-bit result. By executing the DCS instruction, you convert this meaningless 8-bit result into a 
valid 8-bit 2-BCD-digit binary-coded decimal difference. 

The DCA and DCS instructions both generate in the low-order eight bits of the 16-bit word. 

For a discussion of decimal adjust logic in BCD addition or subtraction, see Volume 1, Chapter 3. 

The LlIM instruction loads a 2-bit interrupt mask into the two low-order bits of the Status register. 

Here are the instruction object codes used by the DCA. DCS, and LlIM instructions: 

Clock 
Instruction Object Code Bytes Periods 

DCA r 0010110000bbssss 2 7 
DCS r 0010110001 bbssss 2 7 
LlIM n 001011001xxxxxnn 2 10 

The object code notation above conforms to that which we have described for Table 3-3. For the LlIM instruction, x 
represents "don't care" bits and n represents the two binary digits that get loaded into the two low-order Status 
register bits. 

THE TIM 9904 FOUR-PHASE CLOCK GENERATOR/DRIVER 

This part is also given the generic TTL name: the SN74LS362. The TIM 9904 provides TMS 9900 
microprocessors with the four clock signals: <1>1, <1>2, «1>3, and «1>4. These are +12V MOS driver signals. In addi­
tion, four complementary +5V clock signals, «1>1, <1>2, <1>3, and «1>4, are generated for use elsewhere in a TMS 
9900 microcomputer system. 

The TIM 9904 device may be driven by an external crystal, an external LC circuit, or a single external clock sig­
nal. 

The TIM 9904 is manufactured using low-power Schottky technology; hence the 74LS part number It is packaged as a 
20-pin DIP. All signals, other than the four MaS level clocks, are TTL-compatible. 

The TIM 9904 allows one asynchronous input Signal to be synchronized, via a D flip-flop, with the «1>3 signal. The syn­
chronized Signal is output frequently to be used as a RESET input to the TMS 9900. 

Figure 3-23 illustrates TIM 9904 pins and signal assignments. 

The four clock signals, <1>1,<1>2, <1>3, and «1>4, conform to Figure 3-3 . «1>1, «1>2, <1>3, and ct>4 are complements of 
<1>1, ct>2, «1>3, and «1>4. 

A logic level input at D will be output at Q on the high-to-Iow transition of «1>3: 

cf>3 ---....I 

o 

Q 
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TANK 1 

TANK2 

GNDl 
Q 

Pin Name 

o 
«1>4 
ct>3 

ct>3 

«1>4 
GND 

-
------

ct>l, ct>2, ct>3, «1>4 
<1>1, ~ ct>3, <Ii4 
o 
Q 

TANK1, TANK2 
XTAL1, XTAL2 
OSCIN 
OSCPUT 

1 

2 

3 
4 -.. 5 

6 
7 

8 

9 
10 

VCC1. VCC2, GND1, GND2 

20 

19 

18 
17 -TIM -

9904 
16 

15 

14 

13 

12 

11 

Description 

---.. --
-. . 

-:.. 

VCC1 (+5V) 
XTAL2 

XTALl 

OSCIN 
OSCOUT 

<1>2 
ct>1 

VCC2 (+ 12V) 
<1>1 

<1>2 

Type 

+ 12V clocks to drive a TMS 9900 Output 
+ 5V clock complements Output 
Asynchronous control Input 
Synchronized control Output 
Crystal overtone controls 
External crystal connections 
Extemal clock 
Clock with frequency 4<1> 
Power, Ground 

Input 
Output 

Figure 3-23. TIM 9904 Signals and Pin Assignments 

OSCOUT provides a clock frequency four times that of the <I» clocks. Its phase relationship to the cP clocks may be 
illustrated as follows: 

OSCOUT 

4>1 __ ...-./ \~------------------~/ \ 
4>2 ______________ ~1 \~ ________________ ~r_ 
4>3 ______________________ ~/ \ 
4>4~~ ______________________________ ~/ \ 
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When an external quartz crystal is used to drive the TIM 9904, the following connections are required: 

0.47 J.LH 

TANK 1 

...... _ ....... ~_--1 2 19 XTAL 1 
TANK 2 

·TIM 
9904 D 

17 OSCIN 

20 ohm to. 75 ohm crystal, 
2 mw power dissipation. 
(May substitute a 
0.1 J.LF capaciton) 

OSCIN must be tied to a high logic level for the internal clock logic to work properly. 

Required capacitor and inductance values are shown in the illustration above for a TMS 9900 microprocessor operating 
with its standard 3 MHz frequency. The crystal must have a resonant frequency of 48 MHz. For 48 MHz operation. a 
third overtone crystal is used. 

For less precise timing. the quartz crystal may be replaced with a 0.1 JLf capacitor. The LC-tuned circuit now estab­
lishes the clock frequency according to the following equation: 

fosc = 1/(2",$) 

where L is the inductance. with units of Henries. and C is the capacitance with units of Farads. This includes the 
capacitance of the circuit into which the components are mounted. 

If an external clock signal is input, it must occur at OSCIN. The crystal connections XTAL 1 and XTAL2 should be 
connected to VCC as follows: 

+ 5V 

NOT {TANK 1 20 

CONNECTED TANK 2 19 
XTAL2 

} TIED TO LOGIC '1' 
2 

TIM XTAL1 
9904 18 

17 
OSCIN 

CLOCK INPUT 
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The clock input OSCIN must have a frequency which is four times the clock period frequency and has a 25% duty cycle. 
Thus. for a 3 MHz frequency, a 12 MHz signal must be input via OSCIN: 

1 .......... --- 83.3ns "1 
OSCIN r---\ ,..--, --J , __________ --.' \~ ____ __ 

~20.8ns~ I 

In TMS 9900 microcomputer systems, the 0 input is used for an asynchronous reset; Q is output as a syn­
chronous reset. This may be illustrated as follows: 

Vee 
) 

TIM TMS 
10Kn: 9904 9900 . 

100.0 
.AAA 0 a .. RESET 

! -
1}LF ---1 I - -- -

The illustration above shows recommended resistor and capacitor values. 

THE TMS 9901 PROGRAMMABLE SYSTEM INTERFACE (PSI) 

The TMS 9901 Programmable System Interface (PSI) is a special support part designed for the TMS 9900 series 
of microprocessors. This relatively primitive device uses 32 bits of the TMS 9900 CRU bit field to support 
parallel I/O and interrupt request logic. Programmable timer logic is also available. 

Figure 3-24 illustrates that part of general microcomputer system logic which has been implemented on the 
TMS 9901 PSI. 

The TMS 9901 PSI is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL-com­
patible. The device is implemented using N-channel silicon gate MOS technology. 
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Clock Logic 

Arithmetic and 
Logic Unit 

Read Only 
Memory 

Accumulator 
Registensl 

Data Countens) 

Stack Pointer 

Program Counter 

Figure 3-24. Logic of the TMS 9901 Programmable System Interface 
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RS'fi 
CRUOUT 

CRUCLK 

CRUIN 

iN'i'6 
iN'f5 
INT4 

iNT3 
Cii 

INTREQ 

(LSB) IC3 

IC2 

IC1 
(MSB) ICO 

Vss 
wn 
INT2 

P6 

P5 

--

--------
---

Pin Name 

CRUIN 
CRUOUT 
CRUCLK 
PO - P15 

--.. -.. -
-.. .. 
--

... 
: 
--.... -

iNTT -INT15 
INTREQ 
ICO - IC3 
CE 
SO - S4 
RSTf 
4l 
VCC' Vss 

1 40 

2 39 -
3 38 --
4 37 

5 36 -
6 35 --
7 34 

. 8 33 --
9 32 --

10 TMS 31 --
11 9901 30 --
12 29 -
13 28 -. -
14 27 -
15 26 --
16 25 -
17 24 --
18 23 --
19 22 --

-20 21 --
Description 

CRU data output 
CRU data input 
CRU data input strobe 
I/O data 
External interrupt requests 
Interrupt request to CPU 
Interrupt priority designation 
Chip Enable 
CRU bit select 
Chip reset 
Synchronizing clock signal 
Power, Ground reference 

-.. 
.. 
... ---.. -.. 
... -.. .. --
.. -... -.. -

VCC (+5V) 
SO (MSB) 

PO 

P1 

S1 

S2 

INT7/P15 

INT8/P14 

INT9/P13 

INT10/P12 

INT11/P11 

iN'fi2/P10 

INT13/PS 

INT14/P8 
P2 

S3 
S4 (LSB) 

INT15/P7 

P3 

P4 

Type 

Output 
Input 
Input 
Input or Output 
Input 
Output 
Output 
Input 
Input 
Input 
Input 

Figure 3-25. TMS 9901 Programmable System Interface Signals and Pin Assignments 

In the illustration above, Address lines have been numbered using our standard notation, whereby A 14 is the highest­
order address line and AO is the lowest-order address line. This is the opposite of Texas Instruments' notation. The CRU 
select lines are numbered according to Texas Instruments' notation and Figure 3-25. Therefore, S4 is connected to 
AO, and SO is connected to A4. 
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TMS 9901 PSI PINS AND SIGNALS 
The TMS 9901 pins and signals are illustrated in Figure 3-25. The signals which connect the TMS 9901 to a 
TMS 9900 series microprocessor are quite straightforward; they consist of the CRU and interrupt signals. 

The CRU signals include CRUIN. CRUOUT. and CRUCLK. 

The interrupt signals consist of INTREQ. ICO, IC1, IC2, and IC3. 

For a description of CRU and interrupt signals, refer back to our TMS 9900 discussion. 

Device select logic includes a chip enable input, CE, together with five CRU bit select pins, SO - S4.a and SO -
S4 will connect to the Address Bus as follows: 

· · · 
-.r •••• r 1 S4 

DEVICE 
SELECT S3 _ 

S2 .. 
.~ 

S1 • 

SO .. 

CE. 

. . . -
--:. 
--.': 
.;: 
-. 

TMS 
9901 

A14 

A5 
A4 
.6.3 
A2 
Ai 
AD 

In the illustration above, Address lines have been numbered using our standard notation. whereby A 14 is the highest­
order address line and AO is the lowest-order address line. This is the opposite of Texas Instruments' notation. The CRU 
select lines are numbered according to Texas Instruments' notation and Figure 3-25. Therefore, S4 is connected to 
AO. and SO is connected to A4. 
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Device select logic determines the CRU address space that will be reserved for the TMS 9901 PSI. This may be illustr­
ated as follows: 

· · · 

l) r ...... 

CRU 
ACCESS .. DEVICE -- SELECT 

EE SO S1 S2 S3 S4 I, I 1, II , r r •• 
000 n n n n n n n x x x x x 

~ '---.... ---..... v-... ---",?"~ 
These three bits zero These seven bits 
and MEMEN inactive identify the 

(high) indicate a TMS 9901 address 
CRU address space. 

These five bits select 
a CRU bit in the 

TMS 9901 PSI 

= 
~ .. 
;, · · • ... 
':, 

... 
= :--

M"E'M'EN 
A14 
A13 
A12 
A11 

A5 
A4 
A3 
A2 
A1 
AO 

The high-order three address lines. which we call A 14. A 13. and A 12. are all zero during a CRU access. at which time 
MEMEN is inactive (high). Thus we decode address lines A 11 through A5 to select a particular TMS 9901 device. . 

Since the TMS 9980 uses the Address Bus differently during a CRU operation. TMS 9901 device select logic would 
connect to the Address Bus in a different way. The CRU bit select lines SO - S4 would be tied to lines A5 - A 1; device 
select logic would decode lines A11 - A6; and lines A13 and A12. along with MEMEN. would indicate a CRU access. 
We illustrate this as follows: 

MSB 

A13 A12 
o 0 

A11 A10 A9 
n n n 

AS 
n 

A7 
n 

LSB 

A6 A5 A4 A3 A2 A 1 AO .-Address Bus 

n x x x x x 

~ ~,------.. --~v-~----------~~ ~'----"--~~~-------'~ 

These two bits zero, 
along with MEi\ii"Ei\i 
inactive, indicate a 

CRU address 

These six bits identify These five bits 
the TMS 9901 select a CRU bit 
address space 

CRUOUT 

<tlis a synchroniz!!!9.. clock signal used to time data output and to sample interrupts. <I> is the complement of <1>3. For 
the TMS 9900. <1>3 is generated by the TMS 9904. The TMS 9980 outputs <1>3 directly. 

The best way of understanding the interface between a TMS 9901 and external logic is to look at functions per­
formed. as illustrated in Figure 3-26. 
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ICO ~--.r---, 

IC1.---I 

IC2 ..... ~-....... 

INTERRUPT 
PRIORITY 
ENCODER 

IC3 ~--L __ ..... .J 

INTREQ ..... ---( 

CRUOUT --__ ... 

CLOCK 
LOAD 

BUFFER 

INTERRUPT 
MASK BITS 

CRU 
CRUCLK ----t .. INTERFACE~----------' 

CAUIN .... I---~ 

SO 

S1 ~ 

S2 
CRU 
BIT 

'S3 SELECT 
LOGIC 

S4 

CE 

o SELECT BIT 

PO-P6 

Figure 3-26. TMS 9901 PSI General Data Flows and CRU Bit Assignments 
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From the programmer's viewpoint. a TMS 9901 looks like 32 contiguous CRU bits. Thus. you will access any part of a 
TMS 9901 device's logic using CRU input and output instructions. 

As you read through the TMS 9901 description that follows, you should bear in mind the power of multi-bit CRU 
load and store instructions as they apply to TMS 9901 architecture. A single instruction transferring an appropri­
ate bit pattern can frequently perform mu Itiple control and data transfer operations. 

The manner in which CRU bits are used by the TMS 9901 is not straightforward. This is because CRU bits share 
functions and pins. Functions and pins are shared in different ways. 

Let us first look at pin connections. CRU bits 1-6 connect to pins TNiT - INT6; thus. in interrupt mode each of these CRU 
bits has its own dedicated input pin. 

CRU bits 7-15 share nine input or output pins with CRU bits 23-31. CRU bits share pins as follows: 

31 7 4 
30 8 4 
29 9 ,. 
28 10 . ..,. 
27 11 ~ 

26 12 ~ 

25 13 ~ 

24 14 4 
23 15 ~ 

t t 

~ 

~ 

~ .. 
~ .. 
~ 

~ 

--I 

.-
34 
33 

32 

31 

~O 

29 
28 
27 

23 I 

Device Pins 

These CRU bits support interrupt logic 

These CRU bits are dedicated to data I/O 

Each of the CRU bits shown above shares a pin with another CRU bit. That is to say. within the illustrated CRU address 
range. there are two CRU bits which will access the same pin. although each CRU bit performs a different operation. 
Thus you use the same pin in one of two different ways. using a bit address to select one operation. This may be illustr­
ated as follows: 

If you select CRU bit 27. 
Pin 30 supports data I/O 

If you select CRU bit 11, 
and interrupt mode, 

Pin 30 serves as an 
interrupt request input 

') I 30 

.--11-.... ' 

27 

CRU bits 16-22 connect to parallel I/O pins. These bit addresses are not shared with any other TMS 9901 functions. 

CRU bit 0 is a select bit that is not connected to any pin. A 1 written into this bit causes bits 1-15 to support real­
time clock logic. A 0 written into CRU bit 0 selects interrupt logic. When CRU clock logic is selected. bits 1-14 function 
as two 14-bit real-time Clock Buffer registers -: one a read-only register. the other write-only. Real-time clock logic is 
separate from. and operates simultaneously with. and/or parallel 110 logic. That is to say. the process of selecting real­
time clock logic does not disable any other logic. The select bit merely chooses which registers CRU addresses will ac­
cess. rather than enabling or disabling any operations. 

TMS 9901 PSI INTERRUPT LOGIC 
The easiest place to start understanding the TMS 9901 is at its interrupt logic. 

External logic can input data to CRU bits 1-15 via their connected pins. These input data signals will be in­
terpreted as interrupt requests if interrupts are enabled. If interrupts are disabled, then these CRU bits act 
simply as data input. 
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You access interrupt logic through the CRU when the select bit, CRU bit 0, contains a O. 

CRU bit addresses 1-15 each access separate read-only and write-only locations. The read-only location stores the sig­
nal level input at the attached pin. The write-only location accesses an interrupt mask bit. This may be illustrated as 
follows: 

CRU Bit N { 

CRU Bit N + 1 { 

--
-

I 
I 

Write­
Only 
Mask 
Bit 

N 

NT 1 

--
f4-
I 
I 

-
I 
I 

Read­
Only 
Data 
Bit 

N 

N + 1 

-
- } From Pins 

I 
I 

Signals arriving at pins connected to CRU bits 1-15 are immediately reflected by CRU bit contents: 

Read-
Only 
Data I 
Bit I 

0 

~ 
Low 

High 

A low level (that is. a 0 bit) is interpreted as an interrupt request. The interrupt request is passed on to the mask bit. If 
the mask bit contains 1. the interrupt is enabled and the interrupt request is passed on: 

Write- Read-
Only Only 
Mask Data I 
Bit I Bit 

I I 
Interrupt 

-4 I· 0 I: Low 
Request 

High 

If the mask bit is O. the interrupt request is disabled and therefore denied: 

Write- Read-
Only Only 
Mask 

I LJata I Bit I Bit I 
0 I· 0 I: Low 

High 
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Quite apart from interrupt logic. the CPU can at any time read the contents of one or more CRU bits in the address 
range 1-15. Here are some instructions that may access CRU bits 1-15 in various ways: 

LI 
LI 
LDCR 

STCR 

R12.PSI+1 
R1.MASK 
R1.15 

R2.15 

LOAD CRU BASE ADDRESS INTO R12 
LOAD INTERRUPT MASK BITS INTO R1 
OUTPUT TO WRITE-ONLY MASK LOCATIONS 

INPUT CRU BITS 1 THROUGH 15 AS DATA TO R2 

For some randomly selected data levels. CRU bits 1-15 may be illustrated as follows: 

1 Bits Pass on 
Interrupt Reque sts 

1-
/ 

-

'\-

a CRU Dat 
to CPU 

-
-

-

Interrupt 
Mask Bits 

* 1 1 

2 1 

3 0 

4 1 

5 1 

6 0 

7 0 

8 0 

9 1 

10 0 

11 1 

12 1 

13 0 

14 1 

15 0 

- 1 

2 

3 

-- 4 

5 

- 6 

- 7 

8 

9 ... 10 ... 11 

- 12 

13 

-- 14 -
15 

CRU 
Bits 

t 
0 

1 

1 

0 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

1 

~Bit Number~-

.. -.. -.. 
.. · -----· .. ------.. -
... 
... · 
-

o Bits Generate Interrupt 
Requests 

If one or more CRU bit's interrupt requests are low. and the corresponding mask bit is 1. then interrupt priority encoder 
logic outputs INTREQ low. Simultaneously. the level of the active interrupt request which has highest priority is iden­
tified via ICO - IC3. 

""iNTf. input to CRU bit 1. has highest priority; 
INT15. input to CRU bit 15. has lowest priority. 

The levels at ICO - IC3 are maintained until the interrupt request signal is removed at the external pin. or the interrupt 
mask bit for the level is reset to O. 

TMS 9901 PSI DATA INPUT AND OUTPUT 
You can use CRU 1/0 instructions to input, output, or test external data at CRU bits 16-31. Data is output from 
the CPU to the TMS 9901 via CRUOUT; it is input from the TMS 9901 to the CPU via CRUIN. Bits are addressed via SO­
S4. as we have already described. 

Following a reset, pins connected to CRU bits 16-31 are in input mode. In this mode. external logic can assert high 
or low levels at connected pins. in which case one or two CRU bits will be affected: a signal input to PO - P6 will gener­
ate data in CRU bits 16-22; if interrupt mode is selected (by a 0 in CRU bit OJ. a signal input to INT? IP15-INT15/P? will 
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generate data in two CRU bits, one in the CRU bit range 7-15, the other in CRU bit range 31-23. In interrupt mode. if 
the CPU inputs data from CRU bits 7-15 or 31-23. then it will input the same data. but in reverse order. This may 
be illustrated as follows: 

CRU 
Bits 

LI R12,PSI + 7 7 0 
STCR Rl,9 

8 
0196

16 
Loaded into R1 

9 

10 0 

11 1 

12 0 
Pins 

13 0 34 4--0 

14 33 ~1 

15 32 ~1 

31 4--0 
30 ~1 

29 ..--0 

28 .--0 

LI R12,PSI + 23 23 
27 4--1 

STCR Rl,9 
24 1 23 .--1 

0003
16 

Loaded into R1 
25 0 

26 0 

27 

28 0 

29 

30 

31 0 

Note that. as in all CRU transfers, the first CRU bit transferred goes to the least significant bit position of the destination 
register. 

As soon as the CPU outputs data to any bit capable of supporting data output. the I/O logic associated with this 
bit is put into output mode. In this mode, a pin will output a voltage level reflecting data in the corresponding CRU bit. 
External logic cannot input data to a CRU bit that is in output mode; in fact. driving input currents into an output pin 
may damage the TMS 9901. 

Once a CRU bit has been placed in output mode. it remains in output mode until the TMS 9901 is reset. That is to 
say, you cannot selectively return CRU bits from output mode to input mode. However, you can always read output bits 
back to the CPU; that is, although external logic must never attempt to input to a pin that is in output mode. the 
CPU can always read the contents of any 1/0 bit. whether it is an input or an output. 

You cannot output data via CRU bits 7-15, even though these bits are connected to the same pins as CRU bits 31-23. 
When you output data to CRU bits 7-15, the data is routed to one of two write-only locations, depending on the con­
tents of CRU bit 0: if the select bit is 0, the data goes to interrupt mask bits 7-15; if clock mode is selected (CRU bit ° 
contains 1). the data goes to the Clock Load Buffer register (bits 7-14) and RST2 (bit 15). 

In interrupt mode you can input external data from CRU bits 1-6. Once again. you cannot output data via these CRU bit 
addresses, since any data output will be routed to corresponding interrupt mask bits or Clock Load Buffer bits. 
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TMS 9901 REAL-TIME CLOCK LOGIC 
If you write a 1 into CRU bit 0 of a TMS 9901 device, then CRU bits 1-14 are used as two 14-bit Clock buffers, 
which may be illustrated as follows: 

234 5678910111213 14"-CRUBitNumber 

CRUOUT ---.1 ......... _ ......... _ ......... _ ........ _ .......... _ ..... .....11.... ..... _ ..... "'" Clock Load Buffer 

MSB LSB 

CRUIN ~ ... I ....... _.a..-. ............ _ ..................... _ .................. _ ..... .-.. .... Clock Read Buffer 

Besides these two buffers. real-time Clock logic contains a decrementing r,gister which we call the Clock 
Counter register. The CPU loads the Clock Counter register via the Clock Load Buffer. and reads the Counter contents 
via the Clock Read Buffer. We illustrate this in the following way: 

CRUOUT 
.... CLOCK 

- ~ BUFFER .... 
REGISTER 

'< ~ 

CRU CLOCK 
INTERFACE COUNTER 

REGISTE(R 

"< >' 
A. I CLOCK - I READ CRUIN 
... BUFFER 

The Clock Counter register decrements continuously as long as the TMS 9901 is powered up. This will cause no 
problems as long as the clock interrupt is disabled. 

When you write any non-zero value into the Clock Load Buffer (CRU bits 1-14), the Clock Counter register 
starts decrementing from that value. A decrement occurs once every 64 <r clock pulses. Thus. with a 3 MHz clock. a 
decrement occurs once every 21.3 microseconds. When the CRU Clock Counter register decrements to 0, an inter­
rupt request is generated, the previously output starting value is reloaded, and the clock starts to decrement 
again. Thus. with a 21.3-microsecond time interval between decrements. the maximum time interval between inter­
rupt requests will be 249 milliseconds. 

An enabled clock interrupt request causes iNfiiEQ to be output low, together with a level 3 interrupt identified 
via ICO -IC3. That is to say. the INT3 external interrupt and the Clock logic share the same interrupt level and interrupt 
mask bit. In clock mode. CRU bit 15 is used to record the state of the INTREO signal. Thus. if interrupt requests are dis­
abled. the CPU program can check for a time-out by testing the level at CRU bit 15. This bit will be low if no time-out 
has occurred. and it will be high if a time-out has occurred; thus this bit is the complement of INTREO. 

Following aCRU real-time clock interrupt re.quest, you must write into interrupt mask bit 3 in order to clear the 
interrupt request. You can write a Oor a 1 into !he interrupt mask bit. Normally. you will write a 1 in order to keep in­
terrupts enabled. Writing a 0 will clear any active real-time clock interrupt request. and will simultaneously disable 
further real-time clock interrupt requests. 

The Clock Read Buffer register contents do not change as long as the TMS 9901 is in clock mode. This charac­
teristic insures that the Clock Read Buffer will hold a stable value while the CPU is reading it -"- even though the Clock 
Counter may decrement during the read operation. 

3-80 



Either of the following two events will cause the Clock Counter contents to transfer to the Clock Read Buffer: 

• The Ci> pulse which causes the Clock Counter to decrement. 

• An exit from clock mode. 

Thus, the Clock Read Buffer register is updated whenever the TMS 9901 leaves clock mode, and every time the 
Clock Counter decrements outside of clock mode. 

Beware - even if CRU bit 0 contains a 1, the TMS 9901 will exit clock mode for as long as it sees a 1 on select line SO; 
this will happen whether or not CE is active. Thus the Clock Read Buffer will not hold the same value indefinitely 
just because the TMS 9901 select bit is set. The PSI will leave clock mode whenever the CPU reads to or writes from 
CRU bits 16-31, or if any device accesses a memory address with a 1 on the address line connected to SO (A4 in a TMS 
9900 system). 

The logic c'ontrolling clock mode and the Clock Read Buffer may be illustrated .as follows: 

7$-----1 +64 

SELECT BIT 
(CRU BIT 0) 

DECREMENT 
CLOCK 

COUNTER 

UPDATE CLOCK READ 

BUFFER 

SO 

This logic summarizes our discussion above. There are two important things to note about clock mode and Clock Read 
Buffer update. First. you cannot inadvertently exit clock mode while you are reading the Clock Read Buffer, since you 
access it as CRU bits 1-14. Second, you cannot enter clock mode solely by accessing CRU bits 0-15; SO changes clock 
mode only when the select bit is 1 (clock mode selected). 

In order to read the most recent Clock Counter value, you must do two things: 

• Exit clock mode so the Clock Read Buffer will receive the current Clock Counter contents. 

• Enter clock mode so the Clock Read Buffer will be stable during the read itself. 

Here is the appropriate instruction sequence: 

LI 
SBZ 
SBO 
STCR 

R12,PSI+1 
-1 
-1 
R1,14 

TMS 9901 RESET LOGIC 

LOAD PSI CRU BASE ADDRESS 
EXIT CLOCK MODE TO UPDATE READ BUFFER 
ENTER CLOCK MODE TO STABILIZE READ BUFFER 
READ 14-BIT CLOCK READ BUFFER 

You can reset a TMS 9901 in one of two ways: 

1) By inputting a low signal at RSf"i. 
2) By using a programmed reset via RST2, a CRU bit. 

In order to use RST1, a low level must be input at 'this pin for at least two clock periods. 

You can reset the TMS 9901 under program control only when clock mode is selected (CRU bit 0 is 0). At this time, 
writing a 0 to CRU bit 15 (RST2) causes the device to be reset. Thus, the following instruction sequence causes a TMS 
9901 device reset: 

LI 
SBO 
SBZ 

R12,PSI 
o 
15 

LOAD PSI CRU BASE ADDRESS 
ENTER CLOCK MODE 
RESET PSI 

When the TMS 9901 is reset. the INTREQ signal is output high, ICO through IC3 are output low, all interrupt requests 
are disabled, and all I/O CRU bits are placed in input mode. 
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THE TMS9902 ASYNCHRONOUS COMMUNICATIONS CONTROLLER 

The TMS9902 microprocessor family includes two serial I/O parts. The TMS9902 is a simple, asynchronous 
communications device; the TMS9903 is a more powerful, recently introduced multifunction device. Both of 
these parts are peculiar to the TMS9900 since they communicate with the CPU via its CRU logic. The two parts 
are also pin-compatible; that is, the same 20-pin socket can hold either the TMS9902 (an 18-pin part) or the 
TMS9903. 

The TMS9902, which we are about to describe, offers asynchronous I/O capabilities comparable with those of 
parts which we describe in Volume 3. The TMS9902 lacks some features which other parts offer: 

1) There are no external clocking signals for received or transmitted data. Receive and transmit rates are computed by 
logic internal to the TMS9902. 

2) There is a single interrupt request which has no accompanying status output lines. Thus interrupt service routines 
must interrogate status in order to correctly service the interrupt. 

3) The TMS9902 has only three Modem control lines and no other lines for handshaking with peripheral logic. 

One advantage of the TMS9902 is that it occupies very little board space. It is an 18-pin part the smallest serial 
I/O controller on the market. It requires less surrounding logic because it uses the system clock for its time base, and 
because it provides almost no external status or handshake lines. 

Another advantage of the TMS9902, when compared to other serial I/O parts, is the presence of real-time clock logic. 
Anyone who has worked with serial I/O logic will appreciate the ability to generate interrupt requests at fixed time in­
tervals. 

The TMS9902 is fabricated using NMOS technology. It is packaged as an 18-pin DIP and requires a single +5V power 
supply. All Signals are TTL-level compatible. 

TMS9902 ACC PINS AND SIGNAL ASSIGNMENTS 
TMS9902 pins and signal assignments are illustrated in Figure 3-27. These signal assignments are the same as 
those of pins 1 through 9 and 12 through 20 of the TMS9903. 

INT 1 18 VCC (+5V) 
TxD 2 17 CE 
RxD 3 16 ~ 

CRUIN 4 15 CRUCLK 
RTS 5 TMS9902 14 SO (MSB) 

CTS 6 13 S1 
DSR 7 12 S2 

CRUOUT 8 11 S3 
VSS (GND) 9 10 S4 (LSB) 

Pin Name Description Type 

CRUIN CRU data output to CPU Output 
CRUOUT CRU data input from CPU Input 
CRUCLK CRU data strobe Input 
CE Device select Input 
SO-S4 CRU bit address Input 
iii Synchronizing clock Input 
DSR Data set ready indicator Input 
m Request to send indicator Output 
CTS Clear to send indicator Input 
RxD Serial data in Input 
TxD Serial data out Output 
iNT Interrupt request to CPU Output 
VCC' VSS Power, Ground reference 

Figure 3-27. TMS9902 Asynchronous Communications Controller Pins and Signal Assignments 
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Table 3-9, 'TMS9902 Control and Status Register Bit Interpretations 

CONTROL REGISTER (WRITE) 

Device Reset (write 1 or 0) 

Enable interrupts on DSR or CTS input level change 
(1 = enable, 0 = disable) 

Enable timer interrupts 
(1 = enable, 0 = disable) 

Enable transmitter interrupts 
(1 = enable, 0 = disable) 

Enable receive interrupts 
(1 = enable, 0 = disable) 

Transmit Break 
(1 = enable, 0 = disable) 

Enable transmit I~ 
(Complement of RTS output) 

Test mode select 
(1 = Test mode, 0 = normal operation) 

Write to Parameter register 

Write to Timer register 

Write to Receive Data Rate register 

Write to Transmit Data Rate register 

Receive Data Rate register 
or 

Transmit Data Rate register 

/ 

I 
Parameter register, 
Timer register, 
or Transmit buffer 

'1 = "true" condition, 0 = "false" condition, 

~ 

I 
I 

t 
, 

CRU!REGISTER 
BIT NUMBER 

31 

30 

29 

28 

27 

26 

25 
24 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 
7 

6 

5 
4 

3 
2 
1 

o 
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STATUS REGISTER (READ) 

Any interrupt pending' 

One or more of control bits 17, 14, 13, 12, or 11 set to 
l' 

DSR or CTS input level change detected, Reset by writ­
ing 1 or 0 to CRU bit 21 , 

Complement of CTS input level 

Complement of DSR input level 

Complement of RTS output level 

Timer time out', Reset by writing 1 or 0 to CRU bit 20, 

Timer overrun error', Reset by writing 10r 0 to CRU bit 
20, 

Transmit Shift register empty', Automatic reset, 

Transmit buffer empty', Reset by writing to high-order 
Transmit buffer bit. 

Receive buffer loaded', Reset by writing 1 or 0 to CRU 
bit 18, 

DSR or CTS input level change interrupt pending', Reset 
by writing 1 or 0 to CRU bit 21, 

Timer interrupt pending', Reset by writing 1 or 0 to CRU 
bit 20, 

Transmit interrupt pending', Reset either by writing 0 to 
CRU bit 19 or by writing to high-order Transmit buffer. bit, 

Receive interrupt pending', Reset by writing 1 or 0 to 
CRU bit 18. 

RxD input level 

Receive start bit detected', Reset automatically at end 
of received character, 

Receive first data bit detected'. Reset automatically at 
end of received character, 

Receive framing error detected', Reset automatically by 
error free received character. 

Receive overrun error detected', Reset automatically by 
error-free received character, 

Receive parity error detected." Reset automatically by 
error-free received character, 

Any receive error detected." Reset automatically when 
Status register bits 12, 11, and 10 are all 0, 

I 
I 
> 

~ 
I 



Signals that connect the TMS9902 to a TMS9900 series microprocessor include the three CRU signals CRUIN. 
CRUOUT. and CRUCLK. together with device select logic signals CE and SO-S4. The TMS9902 uses these sig­
nals exactly as described for the TMS9901. CE must be low for the TMS9902 to be selected; if the TMS9902 is 
selected. then data transfers occu r via the CRUIN or CRUOUT lines. SO-S4 identify the CRU bit within the selected 
TMS9902. Table 3-9 summarizes the way in which the TMS9902 assigns its 32 CRU bit addresses for read and 
write operations. 

DSR. RTS. and CTS are standard handshaking control signals for communications devices. 

DSR is a general purpose input signal; its level is reported in Status register bit 27. You can program DSR to generate 
an interrupt request when it makes a high-to-Iow or low-to-high transition. However. DSR plays no part in enabling 
either transmit or receive logic. 

The TMS9902 outputs RTS low while tranSmit logic is enabled. But the transmitter will not actually start transmitting 
data until CTS is input low. 

In a standard asynchronous protocol system. TMS9902 transmit logic will output Ri'S low and sometime later receive a 
low CTS input - at which time it will actually start transmitting data. But if TMS9902 transmit logic finds CTS low 
when it outputs RTS low. it will start transmitting immediately. 

For a discussion of Modem handshaking control signals. see Volume 1. Chapter 5. 

Serial data is input via RxD and output via TxD. External logic does not provide signals that clock the serial input 
or output data. Instead. the CP synchronizing clock input signal is used to derive data transmit or receive rates. Usually. 
<Ii will be the TIM9904 clock output <1>3 (the complement of CPU clock <1>3). However. you may use any clock signal that 
satisfies the timing requirements given in the TMS9902 data sheet at the end of this chapter. 

TMS9902 DATA TRANSFER AND CONTROL 
The various addressable locations within the TMS9902 are summarized in Figure 3-28. 

When you write to CRU bits 31 through 11 you will always access the Control register; when you read these 
bits you will access the Status register. CRU bits 10 and 9 are also read-only status flags. 

CRU bits 0 through 7. on a read. always access the Receive buffer; but via CRU bits 0 through 10 you can send 
data to a variety of write-only locations. 

The Control register contains four address bits. each of which corresponds to one of the write-only TMS9902 
locations. When an address bit is set to 1. the associated write-only register will receive REGISTER 
data output via CRU bits 0 through 10. If more than one write-only location is selected. then ADDRESSING 
the select priorities shown in Table 3-10 apply. The Transmit Buffer is selected when all 
four address bits contain O. If any address bit is set to 1. Status register bit 30 will also contain 1. 

When you write to the high-order (highest numbered) bit of the Parameter register. the Timer register. or the 
Receive Rate register. you automatically reset that location's address bit in the Control register. 

Table 3-10. TMS9902 Write-Only Register Select Scheme 

CRU Output Bit CRU Bits in 
Addressed Location 

14 13 12 11 
Location 

1 X X X Parameter register 7-0 
0 1 X X Timer register 7-0 
0 0 1 X· Receive Rate register 10-0 
0 0 X· 1 Transmit Rate register 10-0 
0 0 0 0 Transmit buffer 7-0 

"X" means "does not matter" 

• If both bits 11 and 1 2 are set to 1, data will be written to both Rate 
registers at the same time. 

----- -

Following a device reset. all write-only location address bits in the Control register are 
set to 1. This allows you to write data to registers in the priority order shown in Table 3-10 
during the device initialization process. without having to reset individual address bits. Thus 
the initialization process will consist of these steps: 

1) Reset the TMS9902 by writing to Control register bit 31. 

2) Write to the Parameter register. 
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3) Write to the Interval Timer register. 

4) Write to the Receive Data Rate and Transmit Data Rate registers. 

5) Write to the Control register and Transmit buffer. 

CRUOUT 
CRUIN 

CRUCLK 
INT 
<i> 
CE 
SO 
S1 
S2 
S3 
S4 

CPU 
Interface 

Logic 

Timer 
Logic 

Transmit 
Buffer 

Transmit Rate 
Register· 

Status Register 

Control Register 

Parameter 
Register· 

Receive Rate 
Register 

Receive 
Buffer 

Figure 3-28. TMS9902 Functional Logic 

Transmit 
Logic 

Receive 
Logic 

Texas Instruments' literature suggests an initialization instruction sequence such as the following: 

LI 
SBO 
LDCR 
LDCR 
LDCR 
LDCR 

R12.CRUBS 
31 
@CNTRL.8 
@INTVL.8 
@RDR.11 
@XDR.12 

INITIALIZE CRU BASE ADDRESS IN R12 
RESET COMMAND 
LOAD PARAMETER AND RESET BIT 14 
LOAD INTERVAL AND RESET BIT 13 
LOAD RECEIVE RATE AND RESET BIT 12 
LOAD TRANSMIT RATE AND RESET BIT 11 
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In the sequence above, CRUBS represents the base address for the 32 CRU bits in the TMS9902. Fou r memory loca­
tions -labeled CNTRL. INTVL. RDR. and XDR - hold the values to be loaded into the write-only locations. Since CRU 
bit 11 is not reset automatically. the instruction which writes to the Transmit Data Rate register writes 12 bits. the high­
order bit being a 0 for CRU bit 11. 

Let us now examine Control register bits in detail. 

Control register bits may be divided into interrupt enable/disable bits. write-only location address 
bits. the reset control. and the test mode control. 

The test mode control (bit 15) is usually left at 0: this causes normal operations to occur. When 
you set the test mode control bit to 1, RTS is internally connected to CTS and RxD is inter­
nally connected to TxD. Also. DSR is held low internally and the interval timer operates at 32 
times its normal rate. You will operate the TMS9902 in this condition only when testing its logic. 

You reset the TMS9902 by writing either a 0 or a 1 to Control register bit 31. 

You will usually begin every event sequence with a Reset. The following instructions constitute 
TMS9902 resets: 

LI 
SBO 

R12.ACC 
31 or 

LI 
SBZ 

R12.ACC 
31 

ACC is a label identifying CRU bit 0 (the CRU base address) for the TMS9902. 

When the TMS9902 is reset, the following events occur: 

1) All interrupts are disabled. 

2) RTS is output high: this is the inactive state for RTS. 

TMS9902 
CONTROL 
REGISTER 

TMS9902 
TEST MODE 

3) Control register bits 11. 12. 13. and 14 are set to 1. All other Control register bits are reset to O. 

The TMS9902 should not be accessed for a minimum of eleven <i> clock cycles following the reset command. 

There are four interrupt enable control bits. They enable interrupts when set to 1 and disable TMS9902 
interrupts when reset to O. INTERRUPT 

Control bit 21 enables CTS and DSR input signal level change interrupt requests. ENABLE 

Control bit 20 enables timer time out interrupt requests. 

Control bit 19 enables Transmit buffer empty interrupt requests. 

Control bit 18 enables Receive buffer full interrupt requests. 

In each case a Status register bit is set to identify the condition that can generate an interrupt request. But the interrupt 
will not actually be requested unless the associated interrupt enable control bit has been set to 1. r------....... 
You acknowledge any interrupt other than a transmitter interrupt by writing to the interrupt's TMS9902 
enable control bit. To acknowledge an interrupt and leave it enabled. rewrite a 1 to the inter- INTERRUPT 
rupt enable control bit. To acknowledge an interrupt and then disable it. write a 0 to the inter- ACKNOWLEDGE 
rupt enable control bit. But remember. you must write either a 0 or a 1 to the interrupt enable 
control bit. since this is the mechanism used to reset the status flags that identify the interrupting condition. 

You acknowledge a transmitter interrupt by writing to bit 7 of the Transmit buffer. If you write a 0 to CRU bit 19. you 
will disable the interrupt. but you will not reset the status flag which was set by the emptying of the Transmit buffer. 

Control register bits 16 and 17 directly control two TMS9902 operations. 

Control register bit 16 is the complement of the RTS output. You must write a 1 to this bit in order to set RTS low. In 
order to enable transmit logic. RfS must be output low while CTS is being input low. You must leave RTS low while the 
transmitter is active. To disable the transmitter you raise RTS high again by writing 0 to Control register bit 16: if 
transmit logic is part way through transmitting a character when you write a 0 to Control register bit 16, then it will 
complete transmitting the character - and the character in the Transmit buffer. if the buffer is full- before outputting 
RTS high. 

Transmit break logic is controlled via Control register bit 17. When you set this bit to 1, a TMS9902 
break (continuous low output) will be transmitted following the next underrun (that is, when both BREAK 
the Transmit register and Transmit buffer are empty). You must end the break by writing a 0 to LOGIC 
Control register bit 17 before you can restart transmitting by writing new data to the Transmit 
buffer. If you leave Control register bit 17 reset to 0, then following an underrun the transmitter will mark (output a con­
tinuously high signal). You can end the mark at any time. and start transmitting a new message. by writing fresh data 
to the Transmit buffer. 
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When the break control bit is set to 1. Status register bit 30 will also contain a 1. 

Let us now examine Status register bits; they may be grouped as follows: 

1) Signal level indicators 

2) Transmit operation status 

3) Receive operation status 

4) Timer logic 

5) Interrupt logic 

TMS9902 
STATUS 
REGISTER 

Status register bits 27 and 28 report the complement of the DSR and CTS input signal levels. Bit 26 reports the 
complement of the RTS output signal level. 

When the DSR or CTS input changes level, bit 29 is set. You reset bit 29 by writing to Control register bit 21. 

There are three transmit logic status bits. Bit 22 is set when the Transmit buffer is empty. The 
bit is reset when you next write data to the Transmit buffer. Bit 23 is set when the Transmit 
Shift register is empty; this is an underrun condition. Following an underrun. a break or a mark 
will be transmitted. depending on the level of Control register bit 17. Bit 30 of the Status register 
contains a 1 if any of the following Control register bits are set to 1: 

• Bit 17. the break control bit 

• Bits 14. 13. 12. and 11. the write-only. location address bits 

Thus Status register bit 30 will be set to 1 whenever Transmit buffer loading is disabled. 

For receive logic. bit 21 is set when the Receive buffer is full. The CPU resets this bit by writing to 
bit 18 of the Control register: usually the program will read the contents of the Receive buffer 
before resetting the flag bit. 

RxD, the serial data input line level. is reported at Status register bit 15. 

TMS9902 
TRANSMITTER 
STATUS 

TMS9902 
RECEIVER 
STATUS 

The start of each received character is identified by Status register bits 14 and 13. When the start bit has been 
detected, Status register bit 14 is set. One bit time later, when the first data bit is being detected, Status 
register bit 13 is set. These two bits remain set until the end of the character. They are reset when the last stop bit has 
been detected. 

Framing, overrun, and parity errors are reported by Status register bits 12, 11, and 1 0, respectively. These error 
status bits. once set. remain set until an error-free character is loaded into the Receive buffer. 

If one or more of the three receive error conditions exist, then Status register bit 9 is set. 

There are two timer status bits. Whenever the timer times out, Status register bit 25 is set to 
1. This bit must be reset by writing 0 or 1 to Control register bit 20. If you do not do so before the 
next time out. then Status register bit 24 will be set, indicating a timer error. The timer error is 
also cleared by writing 0 or 1 to Control register bit 20. 

TMS9902 
TIMER 
STATUS 

The four interrupt generating conditions have associated status bits which are set following an interrupt request. 

If the DSR or CTS input signal changes level, and the interrupt logic has been enabled, then TMS9902 
Status register bit 20 is set at the time that an interrupt request is generated. INTERRUPT 

If a time out occurs and timer interrupts have been enabled, then Status register bit 19 is 
set at the time an interrupt request occurs. 

STATUS 

When the Transmit buffer becomes empty, if transmitter interrupts have been enabled, then Status register bit 
17 is set at the time an interrupt request occurs. 

When the Receive buffer is full, if receive interrupts have been enabled, then Status register bit 16 is set at the 
time a receiver interrupt request is generated. 

If one or more of these interrupt requests are active, then Status register bit 31 is set. 

Interrupt status bits remain set until you reset either the status bit for the interrupting condition. or its interrupt enable 
bit in the Control register. In most cases. writing to the enable bit resets the status bit. 

For a Modem signal interrupt you must write to Control register bit 21 in order to acknowledge the interrupt. thus reset­
ting the two Status register bits. 

For a timer interrupt you must write to Control register bit 20 to reset the interrupt. 

For a Transmit buffer empty interrupt you must write new data to the Transmit buffer in order to acknowledge the inter­
rupt: specifically. you must write to bit 7 of the Transmit buffer. 
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For a Receive buffer full interrupt. you must write to Control register bit 18 in order to acknowledge the interrupt. 

Let us now examine Parameter register contents. 

After resetting the TMS9902, the next step is to identify subsequent operations by loading ap­
propriate data into the Parameter register. Parameter register bits are interpreted as follows: 

TMS9902 
PARAMETER 
REGISTER 

6 5 432 o ~BitNo. 

X Parameter register 

~--~--~~~--~~--~~ 

L {OO - 5-bit data words 
01 - 6-bit data words 
1 0 - 7 -bit data words 
11 - 8-bit data words 

L-_______ j 0 - Divide! by 3 to generate ClK 
11 -Divide <I> by 4 to generate ClK 

00 - No parity bit 
01 - No parity bit 
1 0 - Even parity bit 
11 - Odd parity bit 

00 - Select 11/2 stop bits 
01 - Select 2 stop bits 
1 0 - Select 1 stop bit 
11 - Select 1 stop bit 

The options presented by the Parameter register, as illustrated above, are self-evident. with 
the exception of Parameter register bit 3. This bit is used to generate an internal clock sig­
!l81. CL~Depending on the setting of Parameter register bit 3, the ClK frequency will be 
~/3 or <1>/4. ClK is then used to specify the time interval between bit sampling for serial 
data input or output. as well as the interval timer rate. The frequency of ClK should not be 
greater than 1.1 MHz; therefore if <I> is faster than 3.3 MHz, Parameter register bit 3 should 
be set to 1. 

TMS9902 INTERNAL 
CLOCK SIGNAL 

TRANSMIT AND 
RECEIVE DATA 
RATE REGISTERS 

After loading appropriate data into the Parameter register, you must load the Transmit and Receive Data Rate registers 
in order to specify the time interval that will separate bit sampling. Data Rate register contents are interpreted as 
follows: 

10 9 8 6 5 4 3 o 4--BitNo. 

Transmit or Receive Data Rate register 

----------- Second scale factor (S). 
Can have any value in the range 1 (000000001) 

through 1023 (111111111) 

L-------------------First scale factor (F). 
Can be 0 or 1. If F = 0, S should be ~ 4 
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The time interval separating serial bits transmitted or received is given by the equation: 

tClK x 2 x 8F x S 

For example. suppose the Receive Data Rate register contains 11000111000. S = 56810 and F = 1: 

11000111000 
~ 

L23816 ~ 56810 ~ S 

'---------- 1 = F 

If ClK = $/3. and <I> = 3 MHz. then the serial data transfer rate will be: 

(1 x 106) + (2 x 8 x 568) = 110.04 bits per second 

If F = O. then the serial data transfer rate becomes: 

(1 x 106) + (2 x 8 x 568) = 880.28 bits per second 

Table 3-11 shows sample Data Rate register values for standard Baud rates. The assumed <i> frequency produces very 
precise Baud rates; it is also within the recommended operating range of TMS9900 series parts. 

Table 3-11. Example of Data Rate Register Contents 
for Standard Baud Rates 

Frequency <I> = 3. '!,!8 MHz 
Frequency ClK = <I> + 3 = 1.066 MHz 

Data Rate Register 
Contents Data Rate in 

Decimal Bits per Second 

F S 
Hexadecimal 

0 55 037 9600 
0 110 06E 4800 
0 220 ODC 2400 
0 440 1B8 1200 
0 880 370 600 
1 220 4DC 300 
1 440 588 150 
1 600 658 110 
1 880 770 75 

Date Rate = ClK + (2 x 8F x S) 

It is not strictly necessary to have data rates as precise as those we have shown in Table 3-11. 

The devices which receive data from the TMS9902 will determine how precise the transmit rate must be. 

TMS9902 Receive logic resynchronizes itself with the beginning of each incoming character. It does this by starting its 
bit-time count at a high-to-Iow transition of RxD. When the TMS9902 has counted half a bit-time. it samples RxD; if the 
line is still low. Receive logic assumes a valid start bit is present. It then samples the. line at single-bit-time intervals 
after the first sample point. until a full character has been received: 

RxD 

Middle of start bit is 
one-half bit time from 

this falling edge 

Start 
bit Character 

Stop 
bit 

~+ + 'f 
TMS9902 samples RxD at the middle of each bit 
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Because of this resynchronization. no skew errors will occur as long as the transmitted bit rate is within 4% of the 
TMS9902 Receive data rate. 

TMS9902 TRANSMIT OPERATIONS 
Let us now examine a serial data transmit event sequence as illustrated in Figure 3-29 . 
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Figure 3-29. TMS9902 Character Transmit Event Sequence 

START 
BIT 

In this example. all operations will begin with a Reset. Remember. you reset the TMS9902 by writ­
ing a 0 or 1 to CRU bit 31. 

Next. output appropriate codes to the Control and Parameter registers and enable appropriate in­
terrupts. 

Output Data Rate register settings. 

Output the first character to the Transmit Buffer register. 

3-90 

TMS9902 
SERIAL 
TRANSMIT 
EVENT 
SEQUENCE 



Transmit logic has now been initialized. You begin actual data transmission by setting RTS low. An appropriate in­
itialization instruction sequence was given earlier. 

Setting Ri'S low enables transmit logic within the TMS9902. but actual data transmission does not begin until external 
logic inputs CTS low. If CTS is already low when RTS is reset low. then data transmission will begin as soon as RTS is 
output low. 

When a character is transmitted. the Transmit buffer contents are moved to the Transmit register. at which time Status 
register bit 22 is set. If transmit interrupt logic has been enabled. an interrupt request will occur at this time and Status 
register bit 17 will be set. 

The character is transmitted as illustrated in Figure 3-29; options are specified in the Parameter register. As soon as 
the character's stop bit (or bits) has been transmitted. transmission of the next data character begins. provided the CPU 
has by this time loaded the next data character into the Transmit buffer. The CPU will normally have plenty of time to 
reload the Transmit buffer. since it takes a long time. in terms of instruction execution times. to transmit a character. 

Note that you must write to bit 7 of the Transmit buffer in order to reset the Transmit buffer empty flag. Thus even 
though the character length is less than 8 bits. you will always write 8 bits to the Transmit buffer. You right-adjust 
Transmit buffer characters; that is. bit 0 of the Transmit buffer is always the least Significant bit of the character. 

If transmit interrupts have been enabled. an interrupt request will occur when Status register bit 22 is set. The CPU will 
respond to the interrupt request by interrogating Status register bits to identify the nature of the interrupt. Upon 
detecting a 1 in bit 17. the CPU will output another data character. If transmit interrupt logic has not been enabled. 
then the CPU must periodically poll the Status register and output the next data character upon detecting bit 22 set to 
1. 

If the Transmit buffer is empty at the end of a data character transfer, then the TMS9902 
may transmit a Break (if Control register bit 17 is 1), or it may terminate operations and go 
into an idle state (if Control register bit 17 is 0). 

The TMS9902 will transmit a Break if CTS is still low and Control register bit 17 is high. A Break is a continuous low 
level output via TxD. External logic interprets a Break as a signal indicating temporary suspension of data transfer. 

Break logic inhibits data transfers to the Transmit buffer. You must terminate a Break by resetting Control register 
bit 17 to O. then loading the next data character into the Transmit buffer. 

TMS9902 transmit logic will enter an idle state if CTS is input high by external logic or if CTS is input low. but no new 
data is ready to transmit and break logic is off. During this idle state TxD will be held high (marking). 

The level of the RTS output is not affected by a change in the m input level. 

If CTS goes high during a transmit operation a~ou leave RTS output low. then as soon as CTS goes low again the 
transmitter will be re-enabled; but if you output RTS high by writing 0 to Control register bit 16. then the CTS input will 
be ignored. In order to re-enable transmit logic you must output 1 to Control register bit 16. again setting RTS low. If 
CTS is low at this time. transmission will begin immediately; otherwise. transmission will begin as soon as CTS is input 
low - after RTS has again been output low. This may be illustrated as follows: 

Start 
transmitting Disable 

transmit 
logic 

Disable 
transmit 
logic; stop 
transmitting 
at end of character. 

--~-Enable 

transmit 
logic; start 
transmitting 
again 

Stop transmitting at end of character 
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TMS9902 RECEIVE OPERATIONS 
As soon as the TMS9902 is reset. receive logic is enabled. 

The TMS9902 outputs no "ready to receive" signal to external logic telling it when to start trfnsmitting data to 
the TMS9902. You must create some such signal, since the Parameter register. interrupt flags. and Data Rate 
register must be initialized before external logic starts to input data: otherwise. the TMS9902 will not know how to in­
terpret the serial data input. You have three options: 

1) You could use a CRU data bit (perhaps via a TMS9901 pin) for this purpose. 

2) You could use the RTS output for this purpose. provided transmit logic is not active. 

3) External logic could decode a TMS9902 Reset from the CE and SO-S4 pins. then. after some standard delay time. 
external logic could begin transmitting data to the TMS9902. For example. Reset could be used to trigger a one­
shot whose output initialized data transfer to the TMS9902. 

It does not matter whether you do or do not create a "ready to receive" signal. receive logic within the TMS9902 will 
begin operating as soon as it detects a high-to-Iow transition on the RxD input. One half of a bit-time after the RxD 
transition. Status register bit 14 is set to 1. If RxD is high at this time. then Status register bit 14 is reset to 0 and receive 
logic waits for the next high-to-Iow transition of RxD. If a true Start bit is present. however. then one bit-time after the 
setting of bit 14. Status register bit 13 is set to 1 and receive logic assumes that valid data is being input. 

Status register bits 14 and 13 are useful only for testing TMS9902 operations. For example. you can use them to verify 
the Receive data rate. These bits are not particularly useful in normal operation. 

As soon as a valid data character has been input. it is transmitted to the Receive buffer. and Status register bit 21 is set 
to 1. If receive interrupt logic has been enabled. Status register bit 16 is set. and an interrupt request is generated. If in­
terrupts have not been enabled. the CPU will poll the Status register in order to detect a data character which must be 
read. 

There are a number of error conditions that can occur during a receive operation. 

If a valid Stop bit is not detected. the receive framing error status (bit 12) is set. 

If parity has been specified but incorrect parity is detected. then Status register bit 10 is set. 

If the CPU does not read a character in time (that is. before the next character is loaded into the 
Receive Buffer register), then a receive overrun error occurs and Status register bit 11 is set. 

Status register bit 9 is set when any receive error occurs. 

TMS9902 
ERROR 
FLAGS 

A receive error does not generate an interrupt request. The CPU must check the receive error status flags in order to 
find out if any error has occurred. This is normally a routine part of reading received data. 

TMS9902 INTERVAL TIMER OPERATIONS 
TMS9902 interval timer logic is quite straightforward. 

You must initialize the interval timer by loading a value into the Interval Timer register. You subsequently start the in­
terval timer by resetting Control register bit 13 to O. (Remember. this occurs automatically when you write into the 
high-order Timer register bit.) At this time the contents of the Interval Timer register are moved to interval timer logic. 
where they are decremented once every 64 internal clock cycles (ClK). Remember. a ClK cycle may be three or four 
times as long as a (I) cycle. When the interval timer decrements to O. Status register bit 25 is set and an interrupt re­
quest is generated if interval timer interrupt logic has been enabled. Immediately. the contents of the Interval Timer 
register are moved to interval timer logic and decrementing begins again. 

The CPU must reset Status register bit 25 before the next time out occurs: otherwise. when the next time out occurs. 
an error will be indicated. Status register bit 24 is set to indicate this error. 

The CPU can at any time reset the value in the Interval Timer register. However. it is impossible to read the contents of 
the interval timer on the fly: that is to say. there is no way in which the CPU can read the current decrementing value 
held within interval timer logic. 

TMS9902 TEST MODE 
In order to diagnose the TMS9902 on line you can put it into a test mode by writing 1 to Control register bit 15. 
In Test mode, the following occurs: 

1) CTS is connected internally to RTS: therefore. CTS will become true internally whenever RTS is output low. regard­
less of the level at the CTS input pin. 

2) RxD is connected internally to TxD: therefore. whatever is transmitted and output via TxD will be received by 
receive logic. regardless of the level at the RxD input pin. 
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3) i5Srl is held low. 

4) The interval timer decrements at 32 times its normal rate. 

You can use the TS!st mode in order to check the TMS9902 when a TMS9900 microcomputer system would otherwise 
be idle. For example. during times of inactivity. you will frequently execute a "no operation" loop. waiting for an exter­
nal interrupt. Instead of executing a "no operation" loop. you could execute a short program which puts the TMS9902 
into Test mode. sends data to the device. and then checks received data to see if it is the same. 

TxD and ~ act as normal outputs during Test mode. Therefore. you might wi~h to disconnect these lines from exter­
nal logic during the execution of the test program. One way to do this would be to use an external CRU bit to disable 
TxD and iffS out; this bit would be set at the beginning of the Test mode program and reset before normal operations 
resumed. Disconnect logic would be basic AND logic: 

TxD 

TEST MODE 
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THE TMS9903 SYNCHRONOUS COMMUNICATIONS CONTROLLER 

The TMS9903 Synchronous Communications Controller is equivalent to the TMS9902 Asynchronous Com­
munications Controller, which we have just described, with synchronous and SOLC capabilities added. 
Although the TMS9903 is referred to in Texas Instruments literature as a Synchronous Communications Con­
troller, it also has asynchronous communications capabilities. 

Compared to devices described in Section C of Volume 3, you will find that the TMS9903 is a general purpose 
device of average capabilities. 

It is worth comparing the TMS9903 to serial I/O devices described in Section C of Volume 3. since these general pur­
pose serial I/O devices can easily be included in a TMS9900 series microcomputer system in the place of a TMS9903. 

This description of the TMS9903 assumes that you understand synchronous, asynchronous, and SOLC pro­
tocols. If you do not understand these protocols then see Volume 1. Chapter 5 for a description of synchronous and 
asynchronous protocols. For a description of SDLC protocol see Volume 3. Chapter C1. 

We describe the TMS9903 in this chapter. rather than Section C, of Volume 3. because the TMS9903 CPU interface 
uses the TMS9900 series Communications Register Unit (CRU) logic. 

The TMS9903 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 20-pin DIP. making it 
the smallest synchronous controller chip on the market. All Signals are TTL-level compatible. A single +5V power sup­
ply is required. 

A TMS9903 FUNCTIONAL OVERVIEW 
Logic of the TMS9903 is illustrated functionally in Figure 3-31. 

On the CPU interface the TMS9903 occupies 32 CRU bits. High numbered CRU bits write to the Control register. 
and are read from the Status register. Low numbered CRU bits form an internal Data Bus that is bidirectional and has 
variable width. Via this Data Bus the CPU may read data from the Receive buffer. or it may read one of three cyclical re­
dundancy characters. The CPU may write to the Transmit buffer. the Parameter register. or one of the two Sync 
registers; it may also output data to be included in either of two cyclical redundancy characters. Thus. when program­
ming a TMS9900 series microprocessor, you can visualize the TMS9903 32-bit CRU field as follows: 

Status Register Receive Buffer 

~ _________ ~~A""' __ "----'~' ~ ~ .-__ c_o_m_p_:_:_c:_~_v:_:_ec_i:_ec_C_R_C __ ~ 
,_ ~ _ _ () Computed T,""mit CRC 

31 1 0 cpu<=:::>t __ I ..... 1 ______ ..... 1 .... 11 

~ ..... ---.. -, 
Transmit Buffer 

Parameter Register 

Sync1 Register 

Sync2 Register 

Timer register 

Receive CRC 

Transmit CRC 
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CPU 
Interface 
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Status Register 

Control Register 

Parameter Register 
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Receive 
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Figure 3-31. TMS9903 Synchronous Communications Controller 
-Functional Logic 

......... -- TxC 

~-~ RTS 

14o--m 

TxO 

RxO 

.... 1--- RxC 

As illustrated above, there are three cyclical redundancy check characters which can be read from the 
TMS9903. 

Transmit and receive logic each compute a cyclical redundancy character (under program con troll for transmitted and 
received messages. 

In SOLe mode only, the cyclical redundancy character for a received frame is isolated by receive logic and held in a 
register out of which it can be read. 

3-96 



We will describe programming aspects of cyclical redundancy characters in more detail as the discussion of the 
TMS9903 proceeds. 

Transmit and receive logic are each buffered. Data is m9ved from the Transmit buffer to the Transmit Shift register, 
whence it is output serially via TxD. You have one character transmit time within which to write another character to 
the Transmit buffer, otherwise an underrun will occur. 

Characters are assembled by receive logic in the Receive Shift register: when assembled, they are transferred to the 
Receive buffer. You have one character receive time within which to read the contents of the Receive buffer, or else a 
receive overrun will occur. 

Data buffers within the TMS9903 are all nine bits wide; this gives you the option of appending a parity bit to 
any 8-bit character. The Status register is 23 bits wide, the Control register is 20 bits wide, and the Parameter register 
is 12 bits wide: these odd bit lengths cause no problems due to the nature of the CRU interface between the TMS9903 
and the TMS9900 series microprocessor. 

The Sync1 and Sync2 registers hold Sync characters; in certain protocols these two registers may hold special 
control characters. Transmit logic may output the contents of one or both of these registers at the beginning of a 
message and following an underrun. Receive logic uses the contents of the Syncl register to detect Sync characters in 
a received data stream. 

You specify the number of data bits per character for received data via Parameter register bit settings. 

When receive logic is assembling characters in the Receive Shift register, it uses the bits-per-character specification 
that was in effect when the current character started to be assembled. If you change the bits-per-character specifica­
tion, the change will be recognized on the next receive character boundary. 

The bits-per-character specification that you make in the Parameter register does not apply to transmit logic or 
the Sync1 and Sync2 registers. For these three registers the number of data bits you write into the register 
defines the number of data bits which will be transmitted. The most recently loaded Sync register determines 
the character length for transmission of both Sync characters. 

For example, if you output 6-bit characters to these three registers, then 6-bit characters are assumed by transmit logic. 
Likewise, if you output 9-bit characters, then transmit logic will subsequently assume 9-bit Syncl and Sync2 charac­
ters. 

Sync1 and Sync2 registers should have the same bits-per-character specifications. However, you could, for example, 
output a 7-bit character to Syncl and then a 5-bit character to Sync2. If you did, the device would transmit just the 
lower five bits of Syncl and Sync2. You could still specify 7-bit characters to receive logic: each received character 
would be compared to all seven bits of Sync1. The Sync character bit length need not be the same as the bits-per'­
character specification in the Parameter register or even the number of bits specified by loading the Transmit buffer. 

As with the Receiver, you can change the Transmit character length from character to character. As each character is 
shifted from the Transmit buffer to the Transmit Shift register, transmit logic attaches the bits-per-character specifica­
tion to the data in the Transmit Shift register. Therefore if you subsequently change the number of bits per transmit 
character - namely, by loading a different-sized word into the Transmit buffer - it has no effect on the character 
already in the Transmit Shift register. 

Although Texas Instruments literature describes the TMS9903 as supporting six different 
modes, in fact it supports three: Asynchronous, Synchronous, and SOLC/HOLC. 

Asynchronous and Synchronous mode capabilities are quite standard. 

In Synchronous mode you can approximate IBM standard Monosync or Bisync protocols. 

Asynchronous mode is well suited to RS-232C and RS-449 EIA standard protocols. 

The TMS9903 can be operated in a point-to-point SDLC or HDLC system: also, SDLC loop mode is supported. 

The TMS9903, like the TMS9902, has on-chip timer logic. 

TMS9903 PINS AND SIGNALS 
TMS9903 pins and signals are illustrated in Figure 3-32. Pins 1 through 9 and 12 through 20 are functionally 
equivalent to TMS9902 pins 1 through 18. 

On its CPU interface the TMS9903 has the same standard TMS9900 Signals as the TMS9901 and 
the TMS9902. These include: 

1) The threestandard CRU signals: CRUIN, CRUOUT. and CRUCLK. 

2) Five select lines (SO-S4) that address a 32-bit CRU field. 
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3) CEo an enable signal which must be low for the CPU interface to be enabled. 

4) An input clock signal. normally connected to the TIM9904 ~3 clock. 

Refer to our earlier discussion of the TMS9901 for a description of CPU interfacing logic. 

INT 1 20 VCC (+5V) 
TxD 2 19 et 
RxD 3 18 <ii 

CRUIN 4 17 CRUCLK 
RTS 5 TMS 16 SO 
CTS 6 9903 15 S1 
DSR 7 14 S2 

CRUOUT 8 13 S3 
(GND) VSS 9 12 S4 

TxC 10 11 RxC 

Pin Name Description Type 

CRUIN Data output to CPU Output. tristate 
CRUOUT Data input from CPU Input. tristate 
CRUCLK CPU data transfer clock Input 
SO - S4 CRU bit address Input 
cr Device enable Input 
TxD Serial data out Output 
TxC Serial data output clock Input 
RxD Serial data in Input 
RxC Serial data input clock Input 
RTS Request to send indicator Output 
CTS Clear to send indicator Input 
DSR Data set ready indicator Input 
<i> System clock Input 
iNf Interrupt request to CPU Output 
Vce. VSS Power. ground reference 

Figure 3-32. TMS9903 Synchronous Communications Controller 
Pins and Signal Assignments 

Let us now examine transmit and receive logic signals. TMS9903 

Serial data is output by transmit logic via TxD, as clocked by TxC. Data is transmitted on SERIAL 1/0 
high-to-Iow transitions of"f'X'C. SIGNALS 

RTS and CTS are two Modem control signals associated with transmit logic. I n order to 
transmit data you must input CTS low while transmit logic is enabled. You have the option of connecting Ri'S to 
transmit enable logic. If you do. RTS will be output low while transmit logic is enabled and it will be output high while 
transmit logic is disabled. You also have the option of selecting the RTS output level under program control. in which 
case RTS is disconnected from transmit enable logic. 

Receive logic receives data via RxD as clocked by RxC. Data is sampled on low-to-high transitions of RxC. 

DSR is shown in Figure 3-31 as a receive logic Modem input signal; in reality it is an unassigned input control sig­
nal. The DSR signal level is reported in a Status register bit. and can generate an interrupt whenever it changes state. 
DSR does not contribute to receive enable logic. 

TMS9903 PROGRAMMABLE REGISTERS 
The two principal programmable registers of the TMS9903 are the Control and Status registers. We refer to 
these as "principal" registers because they are automatically accessed by high numbered CRU bits on any CRU access. 
Low numbered CRU bits transfer data to or from a variety of addressable locations. as specified by Control register bit 
settings. 

3-98 



Cf 
(C 
(C 

... a:: 
iii~ 
=>~ 
a::=> c.)z 

31 
30 
29 
28 

27 
26 

25 

24 
23 

22 

21 

20 

19 

18 

17 
16 

15 
14 
13 

12 

C.) 
z 
> 
U) 
c( 

X 
X 
X 

X 

X 
X 

X 

X 

X 

X 

X 
X 

X 
X 
X 

X 

MODE 

C.) C.) 
Z ..J 
> Q 
U) U) 

X X 
X X 
X X 
X 

X 
X X 
X 

X 

X X 

X X 

X 
X 

X X 
X X 

X X 

X X 

X X 

X 

X 

X X 
X X 

X X 
X X 
X X 

X X 

Table 3-12. TMS9903 Synchronous Communications Controller CRU Bit Assignments 
When Writing to the TMS9903 

FUNCTION 

1 or 0 = Reset device. 
1 = Clear transmitter. 0 = Clear receiver. (In each case interrupts are disabled!' 
1 = Clear transmit CRC register. 0 = Clear receive CRC register. (CRC register is reset to 0). 
1 = Delete received Syncl characters (in Bisync mode only). 
1 = Inhibit transmit logic's zero bit insertion. 
1 = Load data at CRU bits 0 - 9 into Sync2 register. 
1 = Load data at CRU bits 0 - 9 into Sync1 register (only for versions of Synchronous mode that use Sync1 register). 
1 = Read received check character via CRU bits 0 - 1 5. 
0= Reset Status register CRU bits 13 (Check Character Buffer full), 12 (Check Character overrun) and 10 (Zero insert detect error). 
1 = Load data output to CRU bits 0 - 8 into Transmit buffer, and update the transmit CRC. Select the transmit eRC to be read via CRU bits 0 - 15. 
0= Reset Status register bits 22 and 17 .. 
1 = Update the transmit CRC with the next output to CRU bits 0 - 9. Read transmit CRC at CRU bits 0 - 15. 
1 = Transmit break (low level output) during underrun. Reset this bit to 0 before loading new data into Transmit buffer to end underrun. 
Specify synchronous modes' underrun options. (See text)(General and Bisync only). 
1 = Transmit Sync2 register contents following an underrun. (Typically 7F16 for an HDlC abort). 
0= Abort transmit following an underrun and set Status register bit 23. (General only). 
1 = Enable abort interrupt and reset Status register bits 23 and 18. (General only!. 
o = Disable abort interrupt and reset Status register bits 23 and 18. (General only). 
1 = Enable data set change interrupts and reset Status register bits 29 and 20. 
o = Disable data set change interrupts and reset Status register bits 29 and 20. 
1 = Enable timer interrupts and reset Status register bits 25, 24 and 19. 
o = Disable timer interrupts and reset Status register bits 25, 24 and 19. 
1 = Enable Transmit buffer empty interrupts. 
o = Disable Transmit buffer empty interrupts. 
1 = Enable Receive buffer full interrupts and reset Status register bits 21 and 11. 
o = Disable Receive buffer full interrupts and reset Status register bits 21 and 11. 
1 = Enable Receive buffer full, Received Check Character buffer full and received abort interrupts. Reset Status register bits 21, 14, 11 and 9. 
0= Disable interrupts listed abov!J:!.eset Status register bits22.: 14, 11 and 9. 
o or 1 = Output complement via RTS and disable automatic RTS control logic. 
1 = Enable transmitter logic. 
o = Disable transmitter logic after transmitting available data. 
1 = Test mode. 0 = Normal operation. 
1 = load data at CRU bits 0 - 11 into Control register. 
1 = Load data at CRU bits 0 - 7 into Timer register. 
o = Move Timer register contents to timer and start timer. 
1 = Update the Receive CRC with the next output to CRU bits 0 - 9. Read Receive CRC at CRU bits 0 - 15. 



Let us begin by examining the Control register; bit interpretations are defined in Table 
3-12. 

When you write to a TMS9903, CRU bits 31 through 12 will always access the Control register. 

Control register bits may be divided into the following groups: 

Device reset 
Register select 

• Variations within mode specifications - which are made in the Parameter register 

Interrupt enable/disable 

Direct device control 

In most cases. when you set or reset a TMS9903 Control register bit. this bit setting - and 
its associated logic - remains in effect until you specifically change the bit setting. When 
setting a bit to select a data register. be sure to reset any select bits that were previously 
set. If two or more register select bits are set simultaneously. you will receive no error 
message. but the device will probably malfunction. 

Let us now examine Control register bits by group. 

There are three device reset CPU bits: 31. 30. and 29. 

When you write a 0 or a 1 to CRU bit 31. the entire device is reset; all interrupts are disabled 
and all flags and register select bits are reset to 0 (with the exception of Control register bit 14 
and Status register bit 22. which are set to 1). This causes the first data to be loaded into the 
Parameter register, while a transmit buffer empty condition is reported in the Status register. 

After resetting the TMS9903 by writing a 1 or 0 to CRU bit 31 and loading the 
Parameter register (CRU bits 0 to 11). you must next clear the transmitter and 
receiver by writing a 1 and then a 0 to CRU bit 30. (It does not matter whether you clear 
transmitter or receiver logic first so long as you do clear each set of logic before attempting 
to use it.) You must also initialize CRC accumulation logic at the transmitter and the 
receiver by writing 1 and then 0 to CRU bit 29. 

In summary. the following steps are required to reset and initialize a TMS9903: 

TMS9903 
CONTROL 
REGISTER 

TMS9903 
REGISTER 
SELECT 

TMS9903 
DEVICE 
RESET 

TMS9903 
INITIALIZE 
TRANSMIT/ 
RECEIVE 

INITIALIZE 
CRC 

1) Write 1 or 0 to CRU bit 31. This resets the entire device and enables loading of the Parameter register. 
2) Load the Parameter register (CRU bits 0-11l. establishing the operating mode and configuration. 

3) Write 11 to CRU bits 30 and 29. This initializes the transmitter and transmitter CRC logic. 

4) Write 00 to CRUbits 30 and 29. This resets the receiver and receive CRC logic. 

(Note that when you write to CRU bits 31, 30, and 29, you will always access Control register bits 30, 31, and 29; only 
CRU bits 0-11 have multiple destinations within the TMS9903.l 

After resetting the TMS9903 and initializing transmit/receive logic, you will next select addressable locations to read 
from or write to. 

Selecting the data location from which you will read is straightforward. Normally, CRU bits 0-8 
will contain the Receive buffer contents, while CRU bits 9-31 are taken from the Status register. 
But you can also read one of three 16-bit CRC characters. We may illustrate TMS9903 register ad­
dressing during a CPU read as follows: 

TMS9903 
READ 
REGISTER 
ADDRESSING 

,.--------------------------- From Status register 

message (Control register 
bit 12 = 1) ! ,._---------_- Computed CRC for received 

/..-___ -'A ..... _ .... --..... , ",.-----_ ... ~ ..... -------~ Received CRC for received 

3130· • ·17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SOLC frame (Control register 

I I I I I I I I I I I I I I I I I I I I I I I I ~i:~:u~e~)CRC for transmitted 
,,/ message (Control register '1 bit 24 or 25 = 1) 

T Otherwise: 

~------- From Receive buffer 

From Status register 

........ ~---..... T 
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Note carefully that in SDLC mode you can read two receive cyclical redundancy check characters: the first is 
computed under program control by receive logic for the received frame; the second is received at the end of 
the frame. 

The final 16 bits of the information field are the received 'cyclical redundancy character. To read the received cyclical 
redundancy character. set Control register bit 26 to 1. To read the cyclical redundancy character computed by receive 
logic for the received frame. set Control register bit 12 to 1. These two cyclical redundancy characters will be identical 
if a valid message was received. 

In Synchronous and Asynchronous modes there is no defined end-of-message. Rather. a control character in the 
received data stream is interpreted as an end-of-message indicator. in which case two previously received data charac­
ters are interpreted as the received cyclical redundancy character. Your program logic must compare the two data 
characters which are being interpreted as the received CRC character with the computed check character. read from 
receive logic after setting Control register bit 12 to 1. 

When the CPU reads from the TMS9903. if Control register bits 12. 24. 25. and 26 are all reset to O. then as the default 
case CRU bits 0-8 are taken from the Receive buffer; higher numbered CRU bits are taken from the Status register. as 
always. 

When writing to the TMS9903. Control register address bits used to select a data location 
for the low numbered CRU bits may be illustrated as follows: 

TMS9903 
WRITE 
REGISTER 
ADDRESSING 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ixlxlxlxl Ixlxlxl I I 
T 

1 

t 
Control Register Control Register Bits 

Sync2 register 
(up to 1 0 bits) 

Sync 1 register 
(up to 10 bits) 

Transmit buffer (9 bits) 
(also default location) 

Transmit CRC register 
(up to 10 bits) 

Parameter register 
(12 bits) 

Timer register 
(8 bits) 

Receive CRC register 
(up to 10 bits) 

High numbered CRU bits always go to the Control register. Low numbered bits go to the write location whose 
register select bit within the Control register is 1. 

Following a reset. Control register bit 14 is set to 1. therefore data written to CRU bits 0-11 loads the Parameter register. 
When you write into the high-order Parameter register bit (bit 11). Control register bit 14 is automatically reset. 
But this is an exception. When you set any other register select bit in the Control register it remains set until you 
specifically reset it. 

If the Parameter register select bit (Control register bit 14) is set and you want to write to another addressable location. 
then you must reset Control register bit 14 to 0 when setting another select bit to 1. 

If all select bits in the Control register are O. then as a default case data will be written to the Transmit buffer. 
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You can only write into the Sync2 register in Synchronous or SOLC modes. 

You can only write into the Sync1 register in Synchronous mode - and only in those variations of Synchronous mode 
that use the Sync1 register. Variations of Synchronous mode are described later. 

There are two Control register bits, 28 and 23, which you use to specify variations of mode specifications. We 
wi" describe these two bits together with Parameter register bit settings, since Control register bits 23 and 28 
are logica"y extensions of the Parameter register. 

Five conditions capable of requesting interrupts have separate enable bits; these are Con- TMS9903 
trol register bits 22 through 18. When you write a 1 to any of these Control register bits. the INTERRUPT 
associated interrupt logic is enabled; when you write a 0 to that Control register bit. interrupt ENABLE/DISABLE 
logic is disabled. In most cases. when you write a 0 or a 1 to an enable/disable bit. you reset 
any associated Status register bits. Exceptions are the Transmit buffer empty status and the Received CRC register full. 

We will discuss individual interrupts in more detail later when looking at TMS9903 interrupt logic in general. 

Direct device control bits consist of transmitter control and receiver controls. 

Looking first at the transmitter. you must enable transmit logic, after clearing it, by setting TMS9903 
Control register bit 16 to 1; transmit logic remains enabled until you reset this bit to O. Transmit TRANSMIT 
logic will not disable itself in the middle of transmitting a character; if you write a 0 to Control CONTROLS 
register bit 16 part way through a character's transmission. the character will be transmitted and 
transmit logic will then be disabled. 

If you never write to Control register bit 17 following a reset, then the RTS output signal level is automatically 
controlled by transmitter logic. As soon as you enable transmitter logic by writing a 1 to Control register bit 16. RTS is 
output low; RTS remains low until you disable transmitter logic by writing a 0 to Contro~ister bit 16. But if you !!!! 
write to Control register bit 17, you immediately disable the automatic control of the RTS output level. Now the RTS 
output level becomes the reciprocal of Control register bit 17. 

There are two ways in which you can include transmitted characters in any cyclical redundancy character com­
putation. 

If you select the Transmit buffer by setting Control register bit 25 to 1. then the character which you write to the 
Transmit buffer is also included in the transmit cyclical redundancy character computation. 

If you select the Transmit buffer as the default write location (j.e .. no address bits in the Control register are set to 1). 
then the character which you write to the Transmit buffer will not be included in the transmit cyclical redundancy 
character computation unless you set Control register bit 24 to 1 and then output the character to Transmit CRC logic. 
That is. using bit 24 of the Control register you can write to either the Transmit buffer or to Transmit CRC logic. but not 
to both at the same time. 

When a large sequence of contiguous characters is to be included in the transmit cyclical redundancy character 
computation, use Control register bit 25. 

When characters are to be selectively included and excluded in the transmit cyclical redundancy character com­
putation, use Control register bit 24. 

There is no receiver enable control equivalent to the transmitter enable (Control register bit 16). As TMS9903 
soon as you clear receive logic. it is enabled and will begin to sample data arriving via RxO. As RECEIVE CRC 
each character is assembled. it is transferred to the Receive buffer. If a received character is to be 
included in the computed receive cyclical redundancy character. program logic must output that character to Receive 
CRC logic after reading it from the Receive buffer. When you set Control register bit 12. data output to CRU bits 0-9 will 
go to Receive CRC logic. 

Note that CRC logic is not necessarily connected to the transmitter or receiver. The cyclical redundancy calculation 
registers may be used independently of transmit or receive logic. 

The Test mode bit (Control register bit 15) is normally left reset to O. When you set this bit TMS9903 
to 1 the following connections occur: TEST MODE 

1) TxD is connected to RxO. 

2) RTS is connected to CTS. and DSR is held low. 

3) TxC and RxC are both connected to the timer logic clock. which operates at 32 times its normal rate. 

This is similar to TMS9902 Test mode. with the exception that. in the TMS9903. the timer determines Receive and 
Transmit data rates in Test mode. 
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We will next describe the Parameter register. You will normally write into this register once TMS9903 
during any operation in order to define operating modes and options within these modes. PARAMETER 

After resetting the TMS9903 by writing to CRU bit 31. you simply output the parameter code to REGISTER 
CRU bits 0-11. Resetting the device automatically selects the Parameter register as the write loca-
tion for the data at CRU bits 0-11. You could also select the Parameter register by writing Os to CRU bits 27. 26. 25. 24. 
13. and 12. and writing a 1 to CRU bit 14. Parameter register contents are interpreted as follows: 

11 10 9 8 65432 o 4-- CRU Bit 

~~~~~Io... .... _ ... I_ ............. Io...""~""'''''''_'''''''''''1..-- Parameter register 

~~~L{ 
o 0 0 - 5 bits/character 
o 0 1 - 6 bits/character 
o 1 0 - 7 bits/character 
o 1 1 - 8 bits/character 
1 0 0 - 9 bits/character 

{ 
0 - Divide (j) by 3 to generate timer clock 

..... ---------- 1 - Divide <l> by 4 to generate timer clock 

Non-SOLC SOLC 

Point-to-point 
Loop master 

{ 

0 0 - No parity 
o 1 - No parity 

"-------------- 1 0 - Even parity Loop slave - inactive 
Loop slave - active 1 1 - Odd parity 

o 0 0 - Synchronous - general 
001 - SOLC 
o 1 0 - Monosync 
o 1 1 - Bisync 
1 0 0 - Unassigned 
1 0 1 - Asynchronous with two stop bits 
1 1 0 - Asynchronous with one stop bit 
1 1 1 - Unassigned 

01 -CRCC-12 (X12 + X11 + X3 + X2 + X + 1) L-___________________ 1 0 - Revised CRCC-16 (X16 + X14 + X + 1) 
{ 

0 0 - CRC-16 (X 16 + X 15 + X2 + 1) 

11 -CRC-CCIT (X16 + x12 + X5 + 1) 

{ 
0 - Transmit/receive at input clock rate 

..... ----------------------- 1 - Transmit/receive at input clock rate -7- 32. and 

use zero-complementing NRZI encoding. 

Parameter register bits 6, 7, and 8 determine the operating mode for transmit and receive logic, and some op­
tions within the selected mode. 

When you select Asynchronous mode, you also select either one or two stop bits. 

In Asynchronous mode, when you set Control register bit 23 to 1, then as soon as an un­
derrun occurs transmit logic will output a continuous low level (break) on TxO. But note 
carefully that setting Control register bit 23 to 1 does nothing until an underrun occurs. Once 
an underrun does occur. you cannot load new data into the Transmit buffer until you reset 
Control register bit 23 to 0 to end the break. 

TMS9903 
ASYNCHRONOUS 
BREAK LOGIC 

If Control register bit 23 is reset to O. then following an underrun a continuous high signal is output via TxD. You can at 
any time r'estart transmission by loading data into the Transmit buffer - in which case the high level output at TxD 
ends and the next character is transmitted according to the Asynchronous protocol options specified in the Parameter 
register. 

There are three Synchronous mode options and one SOLC mode option. These four options share Sync character 
logic, as shown in Table 3-13. This table applies to transmit and receive logic. 

Let us first consider SOLC transmit logic. 
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Table 3-13. TMS9903 Synchronous and SOLC Mode Sync 
Character and Underrun Options 

Parameter Underrun Fill Character 
Register SYNC 
CRU Bit MODE Character Control Register Control Register 

8 7 6 CRU Bit 23 = 0 CRU Bit 23 = 1 

0 0 0 Synchronous- None Abort [SYNC2] 
General 

0 0 1 SDLC 7E16 Abort [SYNC2] 

0 1 0 Synchronous- [SYNC1] [SYNC2] [SYNC2] 
Monosync 

0 1 1 Synchronous- [SYNC 11 - [SYNC2] [SYNC 1] - [SYNC 11 [SYNC21 - [SYNC 11 
Bisync 

[] Means: "contents of register named within brackets" 

Every frame must begin with a flag character, therefore 7E 16 is always output as the leading Sync 
character. You will subsequently reset Control register bit 23 to 0, since underruns are not allowed 
within an SOLC frame. Should an underrun occur, the transmitter will abort. outputting a con­
tinuous high signal and setting appropriate status bits. In order to transmit a valid end-of­
message, you must read the computed transmit check character (selected via Control register bit 

TMS9903 
SOLC 
TRANSMIT 
OPERATION 

24 or 25). set Control register bit 23 to 1, load a flag (7E 16) character into the Sync2 register, and output the computed 
transmit check character as two data bytes. Now allow an underrun to occur; the contents will be output when the un­
derrun occurs. Since Sync2 contains a flag character, you will have terminated the frame by transmitting the message 
check character and closing flag, as required by SOLC protocol. 

There is another way of ending a frame's transmission. 

Instead of allowing an underrun and outputting the frame's closing flag from the Sync2 register, you can suppress 
SOLe 0 insertion by writing a 1 to Control register bit 28, then outputting the clOSing flag (or flags) as a simple se­
quence of 8-bit data characters. 

If you are operating the TMS9903 using HOLC protocol. then you must output 7F16 as your TMS9903 
abort character. To obtain a valid HOLC abort following a transmit underrun you should write HOLC ABORT 
the HOLC abort character to the Sync2 register, then leave Control register bit 23 set to 1 while 
the frame is being transmitted. Now if an underrun occurs, an HOLC abort character will be output from the Sync2 
register. 

When detecting a new frame, SDLC receive logic synchronizes itself on flag character 7E16, 
which is also the specified Sync character. Consequently the setting of Control register bit 23 
and the underrun fill character options shown in Table 3-13 do not apply. When receive logic 
detects another flag character, it assumes it has received the frame's closing flag. SOLC receive 
logic can a Iso detect an abort. SOLC receive logic sets appropriate status flags and generates an 
interrupt request. if enabled. 

TMS9903 
SOLC 
RECEIVE 
LOGIC 

The three Synchronous modes shown in Table· 3-13, together with their underrun fill character options, allow 
you (under program control) to emulate any of the synchronous protocol options commonly encountered. 

External synchronization uses no leading Sync characters at the head of a message. You can 
emulate this protocol by choosing the general synchronous option. 

ForTMS9903 transmit logic, make sure that CTS is low before you enable the transmitter; then as 
soon as RTS goes low, message transmission begins. A station that receives this transmitted 
message can use the low RTS output as its external Sync input. 

TMS9103 
EXTERNAL 
SYNC LOGIC 

TMS9903 receive logic will use the OSR Modem input as its external synchronization signal. The station which 
transmits the signal to the TMS9903 must generate a low OSR input just before it starts transmitting a message. The 
program controlling TMS9903 receive logic must detect the low '[5'S'R' input by interrogating the appropriate Status 
register bit. and upon detecting OSR active should start receiving. 
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In Monosync mode a single Sync character occurs at the head of a new message. In Bisync mode two Sync 
characters occur at the head of a new message. Both of these options are allowed. 

The Monosync mode outputs the contents of the Sync1 register at the head of a transmitted 
message and synchronizes on a received message by matching received characters against the 
contents of the Sync1 register. 

In Bisync mode Sync1 contents are output twice at the head of a transmitted message. 
Receive logic assumes that a new message has been detected when two contiguous characters 
match the contents of the Sync1 register. 

By loading appropriate data into the Sync1 and Sync2 registers you can transmit and detect 
ASCII. EBCDIC. or any other Sync characters. 

TMS9903 
MONOSYNC 
lOGIC 

BISYNC 
lOGIC 

When an underrun occurs in Monosync mode. a single Sync character is output. By loading the appropriate character 
into the Sync2 register you can transmit and detect any underrun fill character. 

In the Bisync option greater underrun flexibility is needed. In some cases. following any underrun two Sync characters 
are transmitted; but in standard Bisync protocol DLE-SYN character combinations are output following an underrun. 
When Control register bit 23 equals 0 the TMS9903 will output two Sync characters from the Sync1 register. To meet 
the requirements of Bisync protocol you load the DLE character into the Sync2 register. load the SYN character into the 
Sync1 register. and leave Control register bit 23 set to 1. Other bisync logic (in particular. the generation and detection 
of special control character combinations) must be handled by a supervisory program. 

Control register bit 28 adds some flexibility to the options shown in Table 3-13. However. this control bit applies 
only to SOLC and Bisync modes. In SDLC mode, when Control register bit 28 is reset to O. TMS9903 transmitter logic 
will insert a 0 after every five consecutive 1 s transmitted. Setting Control bit 28 to 1 inhibits this zero bit insertion in 
SOLC mode. 

In Bisync mode. when Control register bit 28 is set to 1 any received character that matches 
the contents of the Sync1 register is discarded. This allows you to strip received underrun 
Sync characters. 

TMS9903 
SYNC STRIP 

Parameter register bits 5 and 4 serve different functions in Synchronous and SOlC modes. 
,..-----, 

In Synchronous and Asynchronous modes Parameter register bits 5 and 4 are used to TMS9903 
specify odd parity, even parity, or no parity. When parity is specified. parity bits will automat- PARITY 
ically be generated for data characters that are transmitted and will be tested for data characters OPTIONS 
received. But parity does not apply to the contents of the Sync1 or Sync2 registers. You must 
add your own parity bit to the contents of these registers if you want to transmit Sync characters with parity. The Sync 
registers are each ten bits wide so that you can add one parity bit to the longest specifiable character (nine bits). 
Receive logic will automatically check the parity of received Sync characters. since received logic treats all receive 
characters as data. 

InSOlC mode, Parameter register bits 5 and 4 specify Loop or Non-loop mode; in fact. they 
specify the way in which an EOP character (7F 16) is handled. 

In a point-to-point configuration the EOP character has no significance. and is ignored. 

TMS9903 SOlC 
CONFIGURATIONS 

As a loop master. transmit logic pays no attention to the EOP character; however. receive logic treats the EOP character 
as a frame's closing flag. This is necessary. since the polling EOP character which a loop master transmits around the 
loop will eventually be received as the closing flag for the last frame transmitted by a loop secondary. 

The loop slave inactive mode is selected for an SOlC loop secondary that is not transmitting data, but may be 
receiving data. The loop slave active mode, in contrast, is selected for a secondary station in the SOlC loop that 
wishes to transmit to the primary station. 

In loop slave inactive mode, a TMS9903 will initially retransmit received data without delay. But. upon detecting an 
EOP character in the received stream, the TMS9903 will introduce one bit delay before retransmitting received data. So 
long as you never electrically disconnect a secondary station in an SOLC loop. the inactive slave mode will take care of 
timing and protocol requirements of a secondary loop station coming on-line. But if you wish to electrically disconnect 
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a TMS9903 secondary station in an SOLC loop. you will require external logic which detours upstream data around the 
electrically disconnected secondary. while breaking the detour and including the secondary when it is electrically con­
nected. Here is the appropriate logic: 

Up-loop data ----.... -------------------1 
RxD 

Down-loop data 

IN LOOP ------..... -cJI 

TxD------------------------~ 

You will normally leave a TMS9903 operating in loop slave active mode if it is functioning as a secondary station in an 
SOLC loop. You will only switch to loop slave inactive mode when the secondary station has just entered the 
loop and is not yet synchronized (has not received EOP). In the loop slave active mode. TMS9903 receive logic will 
seek the next EOP character. Upon receiving an EOP character it will convert this character to a flag. which becomes 
the opening flag for the frame which the station wishes to transmit to the primary. So long as a TMS9903 is left 
operating in loop slave active mode, it will continue to trap receive EOP characters and transmit frames behind 
them. When a TMS9903 has no further frames to transmit. you should leave it in loop slave active mode. but turn off 
the transmitter by resetting Control register bit 16 to O. 

For a discussion of SDLC loop secondary station logic see Chapter C1 in Volume 3. 

Parameter register bits 0, 1, and 2 allow you to specify 5,6, 7, 8, or 9 data bits per received 
character. Note that if parity is enabled. the parity bit is not counted in this specification. 

If Sync and control characters are eight bits wide, then you cannot specify less than 8-bit 
characters in Synchronous mode. This is because receive logic does not automatically switch 
from the specified bits per character to eight bits per character when receiving Sync or control 

TMS9903 
RECEIVED 
CHARACTER 
SIZE 

characters. Moreover. a program controlling receive logic cannot make this switch. since it does not know it has 
received a Sync or special control character until the character is in the Receive buffer - by which time it is too late to 
make a change. 

Parameter register bit 11 allows you to transmit and receive data at the transmit and TMS9903 CLOCK 
receive clock rates, or at these clock rates divided by 32. This is normally a standard Syn- RATE OPTION 
chronous mode option. With the TMS9903 it is available in all modes: Synchronous. SOLC. NRZI SELECT 
and Asynchronous. This bit should be reset to 0 during operation as an SDLC loop slave. 

During synchronous or SDLC operation, if data is being sampled on every 32nd clock 
pulse (Parameter register bit 11 is 1) then NRZI encoding and decoding of serial data is assumed; that is. the data 
signal changes state to transmit a 0 or remains in the same state to represent a 1. 

Parameter register bits 9 and 10 are used to specify the cyclical redundancy character TMS9903 
algorithm which will be used by transmit and receive logic. eRC OPTIONS 

CRC-16 is the normal algorithm used by synchronous and asynchronous protocols. 

CRCC-12 is the algorithm used in synchronous and asynchronous protocols with 6-bit characters. 

Revised CRCC-16 is the protocol frequently used in standard Bisync protocol. 

CRC-CCIT is the standard SDLC algorithm. 

Parameter register bit 3 is used by interval timer logic. This bit will be discussed later when we describe the interval 
timer. 

We will now examine TMS9903 Status register bit settings, which are summarized in Table 
3-14. Status register bits may be divided into the following groups: 

• Interru pt status 

• Input signal levels 

• Transmit logic status 

• Receive logic status 

• Timer logic status 

3-106 

TMS9903 
STATUS 
REGISTER 



Cf 
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31 X X X 
30 X X X 
29 X X X 
28 X X X 
27 X X X 
26 X X X 
25 X X X 
24 X X X 
23 X X 
22 X X X 
21 X X X 
20 X X X 
19 X X X 
18 X X 
17 X X X 
16 X 

X 
x 

15 IX IX I X 
14 X 

X 
13 IX 

X 
12 I X 

X 

11 IX I X I X 
10 X X 

X 
9 IX IX 

x 

Table 3-14. TMS9903 Synchronous Communications Controller CRU Bit Assignments 
when Reading from the TMS9903 

Function 

1 = Any interrupt pending 
1 = One or more Register Load Control flags set. 
1 = 55ft or m or automatic RTS signal level change occurred 
Complement of ffi input 
Complement of DSR input 
RTS level under automatic control. Transmitter active state if"RTS is under program control 
1 = Timer decremented to 0 
1 = Timer error. Bit 25 was already 1 when timer decremented to 0 
1 = Abort followed an underrun (General only) 
1 = Transmit buffer empty 
1 = Receiver buffer full 
1 = Interrupt request accompanying RTS, DSR, or CTS signal level change (Bit 29 = 1) 
1 = Interrupt request accompanying timer time out (Bit 25 = 1) 
1 = Interrupt request accompanying an abort (Bit 23 = 1 )(General only) 
1 = Interrupt request accompanying a Transmit buffer empty 
1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) only 
1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) 
1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) or abort received 

(Bit 14 = 1) or Closing flag received and received check character ready to be read 
(Bit 13 = 1) 

RxD input level 
1 = Start bit detected 
1 = Abort received 
1 = First character data bit received 
1 = Closing flag has been received and check character may be read 
1 = Receive framing error detected 
1 = Overrun error detected - receive data overrunning previous frame's check character 
1 = Receive overrun error detected 
1 = Receive parity error detected 
1 = Zero insert error detected 
1 = Any receive error in most recently received character 
1 = Flag detected 

Reset Condition 

No interrupt pending 
No Control flag set 
Output to CRU bit 21 

Output to CRU bit 20 
Output to CRU bit 20 
Output to CRU bit 22 
Output 0 to CRU bit 25 
Output to CRU bit 18 
Bit 29 = 0 or Output to bit 21 
Bit 25 = 0 or Output to bit 20 
Bit 23 = 0 or Output to bit 22 
Output 0 to CRU bit 25 

~ No active interrupting 

~ condition 

Stopbit(s) received 
Output to CRU bit 18 
Stop bit(s) received 
Output 0 to bit 26 
Error free character received 
Output 0 to bit 26 
Output to bit 1 8 
Valid character received 
Output 0 to bit 26 
Valid character received 
Output to bit 1 8 



The interrupt status bits include CRU bit 31, which reports any active interrupt request. and CRU bits 20 through 
16, which identify individual interrupts. These status bits are self-evident. In non-vectored interrupt configurations you 
will test CRU bit 31 to find out if this particular TMS9903 has any active interrupt requests. In a vectored interrupt con­
figuration you can ignore CRU bit 31, since the interrupt acknowledge process will identify the TMS9903 as the device 
with the active interrupt request. I n each case, the interrupt service routine must examine CRU bits 20 through 16 in 
order to determine which interrupt requests are active. The interrupt service routine must resolve its own interrupt 
priorities. 

Input Modem signals OSR and CTS modify Status register bits 27 and 28, respectively. The camp lement of the 
input signal level is reported. Status bit 29 is set to 1 when either ~, CTS, or automatic RTS signal level 
changes. This signal level change can cause an interrupt request, in which case Status register bit 20 is set. In 
many serial I/O devices, CTS going high in the middle of a transmit operation forces a transmit abort. while DSR going 
high in the middle of a receive operation disables receive logic. The TMS9903 does not make such critical decisions; 
the supervisory program must respond appropriately. 

When RTS output level is being controlled automatically, the complement of RT$ is reported in Status register 
bit 26. But as soon as you start controlling RTS level by writing to Control register bit 17, Status register bit 26 reports 
the active state of the transmitter. 

The serial data input signal RxO has its level reported in Status register bit 15. 

There are two status bits associated with transmitter logic: bit 22 reports Transmit buffer empty and bit 23 re­
ports a transmitter abort (in those modes that can generate an abort). If interrupt logic for these conditions has been 
enabled, then Status register bits 18 andlor 17 will also be set. 

There are a number of Status register bit settings associated with receive logic, but there is only one interrupt status 
bit associated with receive logic - bit 16. Therefore you must use the various receive status bits in order to identify 
active error or non-error conditions within receive logic. 

In all modes Status register bit 21 is set when the Receive buffer is full - and should be read within one character 
time. 

In Synchronous mode, Status register bit 11 reports a receive overrun error, while Status register bit 10 reports 
a receive parity error. Either of these errors causes Status register bit 9 to be set. 

In Asynchronous mode, a receive framing error, overrun error, or parity error is reported in status bits 12, 11, 
and 10, respectively. Status bit 9 reports one or more of these error conditions. In Asynchronous mode, two status 
bits are also set at the beginning of each received character. Status bit 14 is set when a valid start bit has been 
detected for the character, while status bit 13 is set when the first valid data bit has been detected. 

In SOLC mode, a receive overrun is reported in status bit 11 and a receive zero insert error is reported in status 
bit 10. The receive zero insert error means that five contiguous 1 bits were received, followed by a flag character. with­
out the expected zero inserted between them. Thus, status bit 10 will be set when the sequence 01111110111112 is 
received. While a frame is being received, Status register bit 14 is set when an abort is detected and Status 
register bit 9 is set when any flag character is detected. 

An unusual and interesting error reported in SOLC mode is the receive CRC overrun error. If a new frame's data 
is received before you read the previous frame's cyclical redundancy check character, then status bit 12 is set. 

There are two timer logic status bits; bit 25 is set to 1 whenever the timer decrements to zero. If timer interrupts 
have been enabled, then status bit 19 is also set. You must acknowledge a time-out before another time-out occurs. 
You acknowledge a time-out by outputting to Control register bit 20. If you do not do so, then on the next time-out 
Status register bit 24 is set. 

You can examine Status register bit 30 at any time to see if one or more write location select bits are set in the 
Control register. 
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TMS9903 INTERRUPT LOGIC 
There are seven conditions that can generate interrupt requests within the TMS9903. Three of the seven condi­
tions combine to generate a single interrupt request status. Therefore, there are five interrupt request statuses for the 
seven interrupt generating conditions. This may be illustrated as follows: 

Control 
Status Register Status 

Register Interrupt Register 
Condition Enable Interrupt 

Bit No. Bit No. Bit No. Interrupt 

29 -- 21 -- 20 - DSR. CTS, or automatic RTS level change 
25 -- 20 -- 19 - Timer time out 

Receive buffer full 
End of SOlC frame 
Receive abort 

22 -- 19 -- 17 - Transmit buffer empty 
23 -- 22 -- 18 - Transmit abort 
21 
13 718 --16 - Receive interrupt 
14 

The TMS9903 has no internal interrupt priority arbitration logic. When one or more conditions capable of request­
ing an interrupt occur, if the interrupt has been enabled, then INT is output low and Status register bit 31 is set to 1. An 
interrupt service routine responding to the TMS9903 interrupt request must now interrogate Status register bits in 
order to determine which interrupt requests are active. Program logic is responsible for all interrupt priority arbitra­
tion. These are the interrupt priorities which normally apply in serial I/O devices: 

1) HIGHEST PRIORITY. Receive buffer full (Status register bits 16 and 21 set) 

2) Transmit buffer empty (Status register bits 17 and 22 set) 

3) Modem Signal level change (Status register bits 20 and 29 set) 

4) Receive abort detected (Status register bits 16 and 14 set) 

5) Transmitter abort (Status register bits 18 and 23 set) 

6) End of SDLC frame detected (Status register bits 16 and 13 set) 

7) LOWEST PRIORITY. Timer interrupt (Status register bits 19 and 25 set) 

TMS9903 INITIALIZATION PROGRAM LOGIC 
The first step in any TMS9903 operation is usually to initialize the device. Here are the necessary steps: 

~-....;...-----
1) Reset the device by writing 0 or 1 to Control register bit 31. 

2) Now output appropriate Parameter register settings. 

3) Output data to Control register bits 18 through 22 to enable appropriate interrupts. 

TMS9903 DEVICE 
INITIALIZATION 

4) In Synchronous and SDLC modes, load appropriate codes into the Sync2 and/or Sync1 registers. These two 
registers are not used in Asynchronous mode. 

5) To initialize receive logic, write 0 to Control register bit 30. If cyclical redundancy is being used, initialize receive 
CRC logic by writing 0 to Control register bit 29. As soon as this step is complete. receive logic becomes active and 
starts to assemble received data. 

6) To initialize transmit logic, write 1 to Control register bit 30. If cyclical redundancy is being used, initialize transmit 
CRC logic by writing 1 to Control register bit 29. Transmit logic is now initialized, but it is not yet enabled. 

7) Transmit logic will not become active until you enable the transmitter by writing 1 to Control register bit 16. When 
you enable the transmitter, you should also load data into the Transmit buffer. Refer to our earlier discussion of 
Control register bits 25 and 24, where data output to the Transmit buffer is described, with or without associated 
CRC accumulation. 

TMS9903 ASYNCHRONOUS OPERATIONS 
When you select Asynchronous mode, data will be transmitted with a parity bit if selected, TMS9903 
plus one or two stop bits, as specified by the Parameter register. Whenever the Transmit buffer ASYNCHRONOUS 
becomes empty. an interrupt request will be generated if the Transmit buffer empty interrupt TRANSMIT 
has been enabled, and appropriate status bits will be set - as described earlier. You have one 
character time within which to respond by outputting another character, or else an underrun will occur. Following an 
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underrun, a continuous high (marking) signal or a continuous low (break) signal will be output. depending on the set­
ting of Control register bit 23. See the break discussion given earlier for details. 

When beginning a receive operation, sample the start bit detected status (Status register bit TMS9903 
14) to identify the beginning of a new received message. This status cannot generate an inter- ASYNCHRONOUS 
ru pt request. To process received characters, use Receive buffer fu II interrupt request logic. As RECEIVE 
characters are received, program logic must read characters out of the Receive buffer within --------..... 
one character time, and check for any of the asynchronous receive error conditions by reading error Status register bits 
at the same time. Received data and status can be read together by reading CRU bits 0 through 15 from the TMS9903. 

There are no other special programming considerations associated with asynchronous operation of the TMS9903. Con­
versely, any other protocol requirements must be met by the supervisory program's logic. 

TMS9903 SYNCHRONOUS OPERATIONS 
Most of the logic associated with Monosync and Bisync protocols must be provided by the supervisory program 
that controls TMS9903 transmit and receive operations. The only logic capabilities provided by the TMS9903 itself 
are the various Sync register programmable options, the error and normal operation statuses reported, and the 
character length definition. 

For a discussion of the Sync character options, refer to our earlier description of the Parameter register. 

For a description of the statuses reported, see the Status register discussion and interrupt logic summary. 

TMS9903 SOLC OPERATIONS 
When discussing the Parameter register we explained how you will use the Sync2 register in order to transmit 
and receive frames; but there are additional SOLC protocol requirements and some common protocol variations 
which need to be discussed. 

SDLC and HOLC protocols are described in Chapter C1 of Volume 3. In SOLC protocol. the first byte of every frame is 
the address field, while the second byte is a control field. In HOLC protocol the address field can have any length, while 
the control field can be either one or two bytes long. Some variations of SOLC protocol insert a logical control field after 
the control field; the logical control field can have any length. Address field. control field. and logical control field 
characters are all eight bits wide. Information field characters can have any data bit width. The number of bytes 
in a multibyte address or logical control field is determined by examining a specific character bit. For example, a pro­
tocol may specify that the last byte of an address field will have a 1 in the low-order bit. while all prior bytes have a 0 in 
the low-order bit. 

The TMS9903 has no on-chip logic designed to handle address, control, or logical control fields. Device program­
ming can specify the number of bits per character - and this specification may change from character to character­
and that is all. Moreover, the supervisory program must take into account primary or secondary station logic. 

A supervisory program at a primary station must transmit secondary station addresses and must interpret received ad­
dresses as identifying a frame's source. 

At a secondary station, the supervisory program must always transmit its own address at the head of a frame and must 
examine the address at the head of a received frame to see if the rest of the frame should be read or ignored. 

When the last byte of the control field (or logical control field) has been received, program logic must change the bits­
per-character specification in the Parameter register before processing the first character of the information field -
should the information field use a different character length. Remember, the bits-per-character specification in the 
Parameter register applies only to receiver logic; you specify transmit character size by the number of bits you output 
to the Transmit buffer. Thus it is a simple matter to change character size from character to character as protocol may 
require. It is also possible for a received character to have a different number of bits than a simultaneously transmitted 
character. 

TMS9903 receive logic in SOLC mode does have one very useful end-of-frame capability: the received check 
character (which must be the 16 data bits preceding the frame's closing flag) is automatically loaded into a received 
CRC register. The microprocessor can read this received check character and compare it with a computed check 
character. 

But there are some additional uses for this received CRC logic. 

A valid SOLC frame must have at least 32 bits between the beginning and closing flags; these bits include an 8-bit con­
trol field, and a 16-bit cyclical redundancy check character. Frequently, 32-bit frames are transmitted and received to 
pass a command or response with no associated data. An error occurring within such a short frame can cause complex 
logic problems; it may be difficult to identify beginning and ending flags for subsequent frames, since the ending flag 
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for the short frame may go undetected. But you can use the TMS9903 receive CRC logic to identify short received 
frames. If you do not get a valid status indicator telling you that the received check character is available. then you 
know you have received a short frame. 

SOLe protocols allow frames to be separated by a single flag character. which serves as the closing flag for one 
frame and the opening flag for the next frame. Alternatively. a number of flag characters may separate two 
frames. Either case can be handled by the TMS9903. 

When describing the Parameter register. we explained how you can generate a frame's closing flag out of the Sync2 
register. after allowing an underrun. or inhibit zero insertion and transmit flag characters as data. Since you can in­
dividually specify characters that will or will not be included in cyclical redundancy check accumulations. processing 
non-data characters as though they are data characters presents no difficulties to a TMS9903. You can use either 
method of ending a frame to separate frames with one or more flag characters. 

If you have generated an end-of-frame using underrun logic. then loading the next frame's first address field byte while 
a single flag character is being transmitted will cause a single flag to separate the two frames. If you let the underrun 
last longer. then flag characters will continue to be output until you begin the next frame by writing the frame's first ad­
dress field byte as data to the Transmit buffer. If you are transmitting flags as data without zero insertion. then the num­
ber of flags separating frames is strictly a function of program control - but you must make certain that an underrun 
does not occur. 

Let us now examine programming requirements within an SOLC loop. 

There are no special programming requirements for the primary station in an SOLC loop. If you 
generate an abort at the end of a transmitted frame's closing flag. then the flag's trailing 0 bit. 
together with the first seven 1 bits of the abort. constitute an EOP character - which is transmitted around the loop in 
order to poll secondaries. When this EOP character returns to the primary station's receive logic. it is treated as a clos­
ing flag. (Refer to our discussion of the TMS9903 Parameter register for details.) 

Secondary stations within the SOLC loop should be run in the SOLC loop slave inactive mode until the secondary sta­
tion has become synchronized with the loop - that is. has received the EOP character and begun retransmitting with a 
one-bit delay. At this time. change the secondary station mode to SOLC loop slave active. In the active condition. the 
secondary station will seek the next EOP character arriving at RxO. If the transmitter has been enabled. the TMS9903 
will convert this received EOP character to the opening flag character for the frame which it wishes to transmit. The 
program controlling the secondary SOLC can end the transmission with a closing flag and then an abort. or with an 
EOP character. The closing flag and following abort generate an EOP character for the next downstream secondary -
and multiple flags between frames. A closing EOP character will be converted by the next downstream secondary to a 
flag or will be passed on to the primary. which interprets EOP characters at receive logic as closing flags. A closing EOP 
character. therefore. generates a single flag separating two transmitted frames. 

For a discussion of normal status and error status that may occur during transmit and receive operations. refer to 
our earlier description of the Status register. Also. refer to our earlier description of the Parameter register for logic 
which you will use to abort a mistransmitted frame. or to detect an abort in a received frame. But remember. it is en­
tirely up to the supervisory program to interpret status bits and to handle aborts as required by the local system logic. 

TMS9903 INTERVAL TIMER LOGIC 
The TMS9903 has an interval timer. You initialize the interval timer by loading a timer count into the Timer 
register. Remember. you set Control register bit 13 to 1 in order to select the Timer register as the destination for data 
output via CRU bits 0 through 7. As soon as you reset Control register bit 13 to 0 you enable the timer. which starts to 
decrement. The rate at which the timer decrements depends on Parameter register bit 3 and Control register bit 15. 

Parameter register bit 3 allows you to divide the <ii clock by either 3 (Parameter register bit 3 = 0) or 4 (Parameter 
register bit 3 = 1) in order to create a timer clock. The timer decrements once every 64 timer clock pulses. For ex­
ample. if<ii is a 3 MHz clock and Parameter register bit 3 is O. then the timer clock will be 3 MHz divided by 3. or 1 MHz. 
Therefore. the timer will decrement once every 64 microseconds. 

The contents of the Timer register itself are never altered. Rather. the Timer register contents are shifted into timer 
logic. where they are decremented. When a time-out occurs. Status register bit 25 is set; if timer interrupts have 
been enabled. Status register bit 19 is also set when the interrupt request occurs. As soon as the timer decre­
ments to 0 it reloads Timer register contents and starts decrementing again. Thus the value you load into the Timer 
register defines the interval between time-outs. which will apply until you load another value into the Timer register. 

You must acknowledge a time-out by writing a 1 to Control register bit 20. If this does not occur before another 
time-out. then a timer error will be reported and Status register bit 24 will be set. 

Timer logic is most frequently used with serial 1/0 in order to create default interrupts that alert a supervisory program 
to hangup or any error condition which is not identifying itself. 
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When you select the Test mode by writing 1 .to Control register bit 15, the timer operates at 32 times its normal 
speed. This allows you to speed up timer testing. In addition, the timer acts as both transmit clock and receive 
clock in Test mode; therefore you can specify automatic baud rates for testing the transmitter and receiver. 
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DATA SHEE"rS 

The following pages contain specific electrical and timing data for the following devices: 

" TMS9900 CPU 
• TMS9940 Microcomputer 
• TIM9940 Clock Generator/Driver 
• TMS9901 Programmable Systems Interface 
• TMS9902 Asynchronous Communications Controller 
• TMS9903 Synchronous Communication::; Controller 
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TMS9900 

TMS 9900 ELECTRICAL AND MECHANICAL SPECIFICATIONS 
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)* 

Supply voltage, VCC (see Note 1) 
Supply voltage, VDD (see Note 1 ) 
Supply voltage, VSS (see Note 1) 

All input voltages (see Not!" 1) 
Output voltage (with respect to VSS) 
Continuous power dissipation 
Operating free-air temperature range 
Storage temperature range. 

· -0.3 to 20 V 
· -0.3 to 20 V 
· -0.3 to 20 V 
· -0.3 to 20 V 

-2 V to 7 V 
1.2W 

O°C to 70°C 
. -55°C to 150°C 

·Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and 

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" 

section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliabilitY. 

NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply. Vee (substrate). unless otherwise 

noted. Throughout the remainder of this section. voltage values are with respect to VSS. 

RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX 

Supply voltage, Vee -5.25 -5 -4.75 

Supply voltage, Vee 4.75 5 5.25 

Supply voltage, VOD 11.4 12 12.6 

Supply voltage, Vss 0 
High-Iewl inPut voltage, V,H lall inputs except clocks) 2.2 2.4 Vee+1 

High-Iewl clock input voltage, V,HII/l) VDD-2 VDD 

Low-level input voltage, V,L lall inputs except clocks) -1 0.4 0.8 

Low-level clock input voltage, V'L(/b) -0.3 0.3 0,8 

Operating free-air temperature, T A 0 70 

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(UNLESS OTHERWISE NOTED) 

PARAMETER 

Data bus during OBIN 

WE, MEMEN, OBIN, Address 

" 

Input current bus, Data bus during HOLDA 

Clock 

Any other inputs 

VOH High-level output voltage 

VOL Low-level output voltage 

'BBlav) Supply current from VBB 

leClav) Supply current from Vce 

'OOlav) Supply current from VDO 

Ci 
Input capacitance lany inputs except 

clock and data bus) 

CiI",1) Clock-1 input capacitance 

Cilq:.2) elock·2 input capacitance 

Cilq,3) Clock-3 input capacitance 

Cilq:.4) Clock-4 input capacitance 

COB Data bus capacitance 

t All tYpical values are at T A = 2SoC and nominal voltages. 

*D.C. Component of Operating Clock 

TEST CONDITIONS MIN TYpt 

V, = VSS to Vee ±50 

V, = VSS to Vec ±50 

V, = -0.3 to 12.6 V ±25 

V, = VSS to Vec ±1 

10 = -0.4 mA 2.4 

10= 3.2 mA 

10= 2 mA 

0.1 

50 

25 

VBB = -5, f = 1MHz, 
10 

unmeasured pins at VSS 

VBB = -5, f = 1MHz, 
unmeasured pins at VSS 

100 

VBB = -5, f = 1MHz, 

unmeasured pins at VSS 
150 

VBB = -5, f = 1MHz, 

unmeasured pins at VSS 
100 

VBB = -5, f = 1MHz, 

unmeasured pins at VSS 
100 

VBB = -5, f = 1MHz, 

unmeasured pins at VSS 
15 

Data sheets on pages 3 -02 through 3 -D 1 7 are reprinted by permission of Texas Instruments Incorporated. 
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MAX 

±100 

±100 

±75 

+10 

Vec 
0.65 

0.50 

1 

75 

45 

15 

150 

200 

150 

150 

25 

UNIT 

V 

V 

V 

V 

V 

V 

V 

V 

°e 

UNIT 

fJ.A 

V 

V 

mA· 

mA· 

mA· 

pF 

pF 

pF 

pF 

pF 

pF 



TMS9900 

TIMING REQUIREMENTS OVER FUU RANGE OF RECOMMENDED OPERATING CONDITIONS 

PARAMETER MIN NOM MAX UNIT 

tc(!/» Clock cycle time 300 333 500 ns 

tr(cf» Clock rise time 5 12 ns 

tf(cf» Clock fall time 10 12 ns 

tw(cf» Clock pulse width, high level 40 45 100 ns 

ts(cf» Clock spacing, time between any two adjacent clock pulses 0 5 ns 

~l!/» Time between rising edge valid any two adjacent clock pulses 73 83 ns 

tsu Data or control setup time before clock 1 30 ns 

th Data hold time after clock 1 10 ns 

SWITCHING CHARACTERISTICS OVER FUURANGE OF RECOMMENDED OPERATING CONDITIONS 

PARAMETER 
TEST 

MIN TYP MAX UNIT 
CONDITIONS 

tpLH IBI or tpHL (Bl All other outputs 
CL = 200pF 

20 40 ns 

tpLH (C) or tpHL (C) Propagation delay CRUCLK, WE, MEMEN, WAIT, DBIN 30 ns 

;...:.I-----------tc(4)) ---------l ..... : 

: l+-td(4))--'': : 

: \--tw(4))-.l : : 
II I I I 

~ \~i------------------y~---'---
I _____ I 

\~-
CLOCK TIMING 

3-03 



TMS9900 
INPUTS 

~All~ YDlllllllOlIWOOlllOlM9~~Yfh~70Uillo/llllllllOlllllllll 
1-tsu -l I-th-.j 

~1~1,--; -----,\ /: \ 
I I ~-------------------------
I I 

~2 ___ ....;j ______ ---,! \ i ! 
I 
I 

\\..----
~3 ___ _+_--------~-------'1: \L __________ +-______ -+! ______ ~T: \\..----

I 
I 

I 
I 

~4l\._....;_-------'-____,______-'--------Jf: I \\.-...;._-+-_+--! ~I \ 
I tplH(C)--j i- -!:--tpHl (C) : 

CRUClK 1 i !~'---+--------~~\~i ______ ~! __ ~----~------~----------------
-1 i- i tplH(C)-I ~ 

WE---~--~\~~t_PH_l_(C_)+_------~--~----------------~!r---+--------+-----------------
:--tplH(C) ~ i--tPHl(C) 

WAIT 
fr--------------;---'-----,\~: _ 

I \~------+-----It MEMEN 

DB_,N ___________ ~ __ .,...i __ ...Jr'PLH
ICI 

0' 'PHL ICI ----: ('PLHICI ° "'PHL ICI 

All OTHER OUTPUTS -.j :-"'tplH(B) OR tpHl(B) 

OllllllllIIOOIWflt:..---1 _-----;V:AlIl~1----__ YUillllllOfIOWI 

TMS9940 

TMS 9940E EPROM PROGRAMMING 

ERASURE 

SIGNAL TIMING 

Before programming, the TMS 9940E is erased by exposing the chip through the transparent lid to 
high-intensity ultraviolet light (wavelength:253. 7 nanometers). The recommended exposure is 10 watt· sec­
onds per square centimeter. This can be obtained by, for instance, 20 to 30 minutes exposure of a filterless 
Model S52 shortwave UV lamp about 2.5 centimeters above the EPROM. After exposure all bits are in the 
"0" state. 

PROGRAMMING 

The TMS 9940E should be initialized by RESET before the programming sequence begins. The EPROM 
consists of 16K bits of program memory organized as 2K bytes (8 bits each) located at (starting) address 
000016. Data is transferred into the CPU for programming through P24(MSB)--P31 (LSB). Taking the PE 
signal active high (to VIP) initializes the internal address pointer of 000016 and inputs the first byte of data 
(see Figure 8). After a minimum delay of 40 clock cycles, PROG can be applied (VIP, 50 ms) and the data 
present on P24~P31 updated to the next byte. The falling edge of PROG inputs the new byte of data to the 
next location and after a minimum delay of 25 clock cycles the PROG pulse can be applied again. This 
sequence is continued until the entire 2K bytes have been programmed. Note that the memory is pro­
grammed in sequence starting at 000016; and the input data must be valid at the rising edge of PE or falling 
edge of PROG. 
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RECOMMENDED PROGRAMMINGITEST FUNCTION CONDITIONS 

PARAMETER ' MIN NOM MAX UNIT 

tr TST, PE, PROG input rise time 100 ns 

tf TST, PE, PROG input faU time 100 ns 

tsu Input data setup time to rising edge of PE, TST or to falling edge of PROG 0 ns 

ttl Input data hold time past rising edge of PE, TST 801c(<I» ns 

ttl(P-da) Input data hold time past falling edge of PROG 5OIc(<I» ns 

ttl(P-PE,T) PE, TST input hold time past falling edge of PROG 0 ns 

Isu(P-PE,T) PROG input setup time to rising edge of PE, TST 0 ns 

ttl(T-PL) PROG input pulse low past rising edge of TST, PE 801c(<I» ns 

tw(PL) PROG input pulse width low SOIc(<I» ns 

IwJPHP) PROG input pulse width high in the programming mode 50 ms 

lw(pHT) PROG input pulse width high in the.test mode 41c(<I» ns 

NOTE: Tming diagrams in Figure 8. 

V,P 

RsT/PE V,H 

V'L 

V,H 

DATA 

V'L 

V,P 

V,H 

M2/PROG 

VIL 

FIGURE 8 - EPROM PROGRAMMING TIMING DIAGRAM 

1~~ ~q~ 
V,P _-_____ ...... 1 firl, ------------------------:~ I 

~~ V; ,:~ 
I ~~ ~ , 

IsuH I -I --' I-~ Isu~ ;- 'h(PE.Todal I Isu I I I , I 

DATA _ - - - __ . 1 
V,H - X 
V,L - , 1 x--x I' X--X 

V'H 

jjijTz/PFlOO 

V'L -

1 
I 

i'SU(POPEOTI---j 

I tw(PHTI I I 
t- -i I--'f 

I-n x- -----I , 

I 

FIGURE 9 - TEST FUNCTION TIMING DIAGRAM 
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TEST FUNCTION 

This test function allows loading a program into the RAM area of the TMS 9940 through pins P24 through 
P31. This program can then be executed, and the results of this execution used to verify operation of the 
TMS 9940. The program could include error messages as well as a successful completion message sent to 
a peripheral device accessed through the CRU. 

The processor should be initialized by RESET before any test sequence begins. Data is directly loaded in 
sequence into the RAM through P24 (MSB)-P31 (LSB). Taking the TST signal high (to VIP) initializes the 
internal address pointer to 830016 (starting address of RAM) and inputs the first byte of data (see Figure 9). 
After a minimum delay of 40 clock cycles PROG can be applied (VIH, 4 clock cycles minimum) and the data 
present on P24-P31 updated to the next byte. The falling edge of PROG inputs the new byte of data to the 
next location and, after a minimum delay of 25 clock cycles, PROG can be applied again. This sequence is 
continued until the desired data has been loaded into the RAM. Taking TST inactive will then jump the 
processor to the address specified by the last 16 bits loaded. Note that the RAM is loaded in sequence 
starting at 830016, and the input data must be valid at the rising edge of TST or on the falling edge of PROG. 

TMS 9940 ELECTRICAL SPECIFICATIONS 

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS 
OTHERWISE NOTED)* 

Supply Voltage, VCC1 t .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 to 20 V 
Supply Voltage, VCC2 ........................................................... -0.3 to 20 V 
Programming Voltage, PE ........................................................ -0.3 to 35 V 
All Input Voltages .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 to 20 V 
Output Voltage ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 2 to 7 V 
Continuous Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.5 W 
Operating Free-Air Temperature Range ............................................. O°C to 70°C 
Storage Temperature Range ................................................... - 55°C to 150°C 

• Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of 

the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to 

absoIute-maximum-rated conditions for extended periods may affect device reliability. 

tAli voltage values are with respect to vss· 

RECOMMENDED OPERAnNG CONDITIONS 

PARAMETER MIN NOM MAX UNIT 

Supply voltage, VCC1 5 V 

Supply voltage, VCC2 5 V 

Supply voltage, VSS 0 V 

High-level input voltage, VIH 2 V 

Low-level input voltage, VIL 0.8 V 

Program/test input voltage, VIP 26 V 

Operating free-air temperature, T A 0 70 °C 

ELECTRICAL CHARACTERISTICS 

PARAMETER TEST CONDmONS MIN TYP MAX UNITS 

II Input current, any inputs VI = VSS to VCC ±10 p.A 

VOH, High-level output Voltage, any outputs 10 = 0.4mA 2.4 V 

VOL, Low-level output voltage, any outputs 10= 2mA 0.4 V 

leC1, Supply current from VCC1 10 mA 

leC2, Supply current from VCC2 150 mA 

Cj, Input capacitance, any inputs f - 1 MHz, unmeasured pins at VSS 15 pF 

Co, Output capacitance, any outputs f - 1 MHz, unmeasured pins at VSS 15 pF 
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CLOCK CHARACTERISTICS 

The TMS 9940 has an internal oscillator and a two-phase clock generator controlled by an external or 
crystal. The user may also disable the oscillator and directly inject a frequency source into the XT AL2 input. 
The crystal frequency and the external frequency source must be double the desired system CLOCK 
frequency. 

Internal Oscillator 

The internal oscillator is enabled by connecting a crystal across XTAL 1 and XTAL2. The system CLOCK 
frequency 1 /tc(~), is one-half the crystal oscillator frequency, fosc· 

PARAMETER 

fosc 

fosc 

fosc 

fosc 

fosc 

Note: lev "" 1 Ifosc 
le(d» == 2 . ley 

TIM9904 

PART NUMBER 

TMS 9940E, TMS 9940M 

TMS 9940E-40, TMS 9940M-40 

TMS 9940E-30, TMS 9940M-30 

TMS 9940E-20, TMS 9940M-20 

TMS9490E-10, TMS9940M-10 

ELECTRICAL SPECIFICATIONS 

TEST CONomONS MIN NOM 

0.5 5 

0.5 4 

TA = 0°Cto70°C 0.5 3 

0.5 2 

0.5 1 

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise 
Noted) 

MAX UNITS 

5.12 MHz 

4.10 MHz 

3.07 MHz 

2.05 MHz 

1.02 MHz 

Supply voltage: Vee (see Note 1) ................................................... 7 V 
VOO (see Note 1) .................................................. 13 V 

Input voltage: OSelN ............................................................ 5.5 V 
FFD ....................................................... -O.5Vt07V 

Operating free-air temperature range ......................................... O°C to 700 e 
Storage temperature range ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°e to 1500 e 

NOTE 1: Voltage values are with respect to the network ground terminals connected together. 

Recommended Operating Conditions 

MIN NOM MAX UNIT 

Supply voltages 
Vce 4.75 5 5.25 V 
Voo 11.4 12 12.6 V 

High-level output current, IOH 
4>1.4>2.4>3.4>4 -100 IlA 
All others -400 IlA 

Low·level output current. IOL 
4>1.4>2.4>3.4>4 4 mA 

All others 8 rnA 

Internal oscillator frequency. fosc 48 54 MHz 

External oscillator pulse width. tw(osc) 25 ns 

Setup time. FFO input (with respect to falling edge of 413). tsu 50 ns 

Hold time. F F 0 input (with respect to falling edge of 4>3). th -30 ns 

Operating free·air temperature. T A 0 70 'c 
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Electrical Characteristics Over Recommended Operating Free-Air Temperature Range 
(Unless Otherwise Noted) 

PARAMETER TEST CONDITIONS MIN 

VIH H'gh·level input voltage 2 

Low-level FFO 
VIL 

Input voltage OSCIN 

VT~ - VT_ HysteresIs FFO 0.4 

VIK Input clamp voltage VCC = 4.75 V, VOO = 11.4 V, II = -18mA 

VOH 
High-level </>1, <p2, </J3, </>4 Vce = 4.75 V, IOH = -100 IJA VOO-2 

outPut voltage Other outputs V DO = 11 .4 V to 12.6 V IOH = -400 IJA 2.7 

Low-level 
<pl, <p2, <p3, <1>4 IOL = 4 mA 

VOL Vce = 4.75 V, VOO = 11.4 V 10L = 4 mA 
output voltage Other outputs 

IOL=8mA 

Input current at FFO VI = 7 V 
II Vce = 5.25 V, VOO = 12'.6 V 

maxImum input voltage OSCIN VI = 5.5 V 

High·level FFO 
IIH 

OSCIN 
Vce = 5.25 V, VOO = 12.6 V, VI = 2.7 V 

Input curren t 

Low·level FFO 
IlL 

Input current OSCIN 
Vce = 5.25 V, VOO = 12.6 V, VI = 0.4 V 

Short·circult All except 
lOS 

output current+ 
Vce = 5.25 V -20 

</>1, <P2, <p3, <p4 

Supply current from Vce 
Vce = 5.25 V, FFO and OSCIN at GNO, 

ICC 
Outputs open 

100 Supply current from VO~ 
Vce = 5.25 V, VOO = 12.6 V, 

FFO and OSCIN at GNO, Outputs open 

t All typical values are at Vee = 5 V, VOO = 12 V, T A = 2S·'C. 

TYP+ MAX UNIT 

V 

0.5 
V 

0.8 

0.8 V 

-1.5 V 

VOO-l.5 VOO 
V 

3.4 

0.25 0.4 

0.25 0.4 mA 

0.35 0.5 

0.1 
mA 

0.3 

20 

60 
IJA 

-0.4 
mA 

-3.2 

-100 mA 

105 175 mA 

12 20 mA 

+ Not more than one outpu t should be shorted at a time. and duration of the short·circuit should not exceed one second. Outputs <pl, <1>2, <pl, 

and <P4 do not have short·circuit protection. 

OSCIN ~r------------------------------------------------------------------------------'~ 

OSC 

OSCOUT~~ ____ ~r-l~ ______ ~r-l~ ______ ~r-l~ ____ ~r-lL ______ ~r-l~ ______ ~r-l~ ____ ~~ 
~l-'~ ________________________________ ~ 
$2 ----.J 
$3 ______________ ~ 

~4 ________________________ ~ 

q;1---1 

~2 ---,L-____ --I 
q;3 

~ L..-__ ~.-

FFD 

FFQ -__ -__ -__ -__ -___ - __ - __ - __ - __ - __ -~~ I 

to--.. 
TIME 

TYPICAL PHASE RELATIONSHIPS OF INPUTS AND OUTPUTS (INTERNAL OSCI 
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Switching Characteristics, TA = 25°C, VCC1 = 5 V, VCC2 = 12 V, fosc= 48 MHz 

PARAMETER TEST CONDITIONS MIN TYP MAX 

fout Output frequency, any cp or cp TTL 3 

fout Output frequency, OSCOUT 12 

tc(<I» Cycle time, any cP output 330 333 340 

tr(cp) Rise time, any cp output 5 20 

tf(rp) F all time, any cp output 10 14 20 

t",(cp) Pulse width, any cp Olltput high 40 55 70 

tcplL,cp2H Oelay time, cp I low to <1>2 high 0 5 15 

t<l>2L, cp3H Oelay time, <1>2 low to <1>3 high 0 5 15 

trJ>3L cp4H Delay time, CP3 low' to 1/>4 h,gh 0 5 15 

tcp4L,cplH Delay time, </>4 low to .pl h'gh OutPllt loads: 0 5 15 

tcp1H,4>2H Delay time, cpl high to ,p2 h,gh rJ>l,cp3,cp4: 100pF toGND 73 83 96 

t.p2H,cp3H DeillY time, 1/>2 high to 'PJ high tP2: 200 pF to GND 73 83 96 

tr/>3H, tP4H Delay time, tP3 high to ,p4 hiqh Others: RL = 2 kH, 73 83 96 

tcp4H,<plH DI'lay time, cp4 high to <PI h,gh CL "15 pF 73 83 96 

t4>H,CPTL Delay time, 4>n high to <l>n TTL low -14 -4 6 

tC>L,<1>TH Delay time, CPn low to r/>n TTl. high -29 -19 -9 

tcp3L,OH Delay time, tP3 low to FFQ output high -18 -8 2 

ttP3L,QL Delay time, cp310w to FFQ output low -19 -9 1 

ttPL,OSOH Delay time, cp low to OSCOUT high -30 -20 -10 

tcpH,OSOL Delay time, FFQ high to OSCOUT low -27 -17 -7 

0.7'll 

. I 

~2 

~-t¢4l'¢IH f1 
~--4-~t¢-3'H-.-O-4H--~~. ----~:--------------~ :~-----------------------

a4V I I I 

I 0.7 V I I 0.7 V 0.7 V 

I I I 

I t¢3l,4~RI\ 
I ~ \~_.::.0.~7..:.V _______________ ..;...--~----....f--....... 1 L.. 

~ -1 t-tol,¢TH: 

tq,H, ¢TL ---I I-- I I 

U
lr------~I------------------------~\ i I 

13V 1.3V I Lf-1 

I I u 
I 

I 
I I 

--------------------~Wll i3 \JJ 
OSCOUT 

I u 
-+f tsu ...-

I -.I th t-­
: II 

tq,H,bsOl-l1-
'OL.OSOLh 

I 
I 

v 

~~N~F~~U~T ____________________ 1._3Jvf I \L'_3_V ____________ ~/ \~ __ ~ __ ~/ 
to3l, QH 4+--+t_----------------------------------.....!I:::;;:;;;;;, I t

o3l. QL 

of;;;;.~.;;.~.;.;p;..;U_T:..... _____________________ ----~l1.3 v 13 v \"' ________ _ 

SWITCHING CHARACTERISTICS, VOLTAGE WAVEFORMS 
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UNIT 
MHz 

MHz 

ns 

ns 

ns 
ns 
ns 
ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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EQUIVALENT OF D INPUT 

Vee ----4_--
20 kU NOM 

GNDt 

EQUIVALENT OF 
TANK INPUTS 

vee---.... -

I NPUT-..... - .... 

TMS9901 

EQUIVALENT OF OSCIN INPUT 

vee---.... --

INPUT 

'----..... GNDt 

TYPICAL OF 
1/)1, 1/)2,1/)3 AND 414 OUTPUTS 

-1~---,--,--VDD 

--.... ...,..,.. ....... -OUTPUT 

SCHEMATICS OF INPUTS AND OUTPUTS 

TMS 9901 ELECTRICAL SPECIFICATIONS 

EQUIVALENT QF XTAL 1 AND 
XTAL 2 INPUTS 

vee-....... _-

INPUT 

GND1 

TYPICAL OF OSCOUT, Q, AND 

ALL ~TTL OUTPUTS 

----....... --Vee 

l..--t--OUTPUT 

GNDt 

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)· 

Supply voltage, Vee ................. · ........................................... -0.3Vto 10V 
All inputs and output voltages ..................................................... -0.3 V to 10 V 
Continuous power dissipation ........................................................... 0.85 W 
Operating free-air temperature range ................................................. ooe to 700 e 
Storage temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 15Q"C 

"Stress. beyond those listed under '"Absolute Maximum Ratings'" may cause permanent damage to the device. This is a strMS rating only and functional operation of 
the device at IMM or any other conditions beyond those indicated in the '"ReoomrnencIed Operating Conditions'" section of this specification is not implied. Exposure to 
absolute maximum rated conditions for extended periods may affect device reliability. 

Recommended Operating Conditions· 

PARAMETER MIN NOM MAX UNIT 
Supply voltage. Vee 4.75 5.0 5.25 V 

Supply voltage. Vss 0 V 

High-level input voltage. VIH 2.0 Vee V 

Low-level input voltage. VIL VSS-·3 0.8 V 
Operating free-air temperature. T A 0 70 °e 
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Electrical Characteristics Over Full Range of Recommended Operating Conditions 
(Un .... 0therwI .. Noted)· 

PARAMETER TEST CONDmONS 

VOH High level output voltage 
IOH- -100pA 

IOH - -200pA 

VOL Low level output voltage IOL= 3.2mA 

II Input current (any input) VI=OVtoVCC 

ICC(avl Average supply current from Vcc te(4)1 = 330 ns. TA=70·C 

CI Small signal input capacitance, any input f= 1 MHz 

Timing Requirements Over Full Range of Operating Conditions 

PARAMETER 

fe(4)) Clock cycle time 

tr<4» Clock rise time 

tMi Clock fall time 

tw~ Clock pulse width (high level) 

tw(4)>L) Clock pulse width (~ level) 

tw(CC) CRUCLK pulse width 

tsu1 Setup time for CE, 50-S4, or CRUOUT before CRUCLK 

tsu2 Setup time for interrupt before if> low 

tsu3 Setup time for inputs before valid CRUIN 

ttl Hold time for CE, 50-54, or CRUOUT after CRUCLK 

·NOTE: All voltage values are referenced to Vss. 

Switching Characteristics Over Full Range of Recommended Operating Conditions 

PARAMETER TEST CONDITION 

tpd1 Propagation delay, ~ to valid CRUIN CL = 100pF 

tod2 Propagation delay, 50-S4 to valid CRUIN CL - 100pF 

tod3 Propagation delay, if; low to valid DiITREO, ICO-IC3 CL = 100pF 

tpd Propagation delay, ~ to valid data out (PO-P15) CL = 100pF 

3-011 

MIN TVP MAX UNIT 

2.4 Vcc V 

2.2 Vcc V 

Vss 0.4 V 

±100 pA 

150 rnA 
15 pF 

MIN TVP MAX UNIT 

300 333 2000 ns 

5 40 ns 

10 40 ns 

225 ns 

45 300 ns 

100 185 ns 

100 ns 

60 ns 

200 ns 

60 ns 

MIN TVP MAX UNIT 

300 ns 

320 ns 

110 ns 

300 ns 
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twltPU -l '- tr(t/» -I !.--II- tf(rp) '--- Ic(<t» 

------1 ... ~,..----':i'-f~ 'wlOH) jJ 
tsu2-+j t--

-IN-T-E-R-R-U-PT--~~~I __ I ______________________ ~ 
-I I-- tsu2 

J 

V 
I 

I 
Ipd3--.i 

I 

-I I+- tpd3 l-
INTREQ t I t 
CE 

I. .1 Isu1 
I I I-- Ipd1 ---I t I / t I 

I 
-I I- twlCC) 

CRUCLK t \ 
I I I 

tsu 1 I-- I- th -l t- Ipd2 ---+I 

SO-S4 

VAll 0 AOOR ESS 1fIIIlIIlIII'l,"'--V-A-L-1 O-A-O-D-R-E-S-S--~----------------X 

I I 
! I I !-- tsu3 -I 

1.. ____ --=-,V_A_L_1 0_1 N_P_U_T_O_A_TA ____ X 

INT1-INT16, PO-P1S 1 I I 
I I I 
I I I I 

".---VA-L-I-O-C-R-U-IN----.X 

CRUIN I I I 

t-ISU1~ ~ th -I 
-'Il/IIIIJI--- VA LI 0 OAT A 

CRUOUT 

NOTE 1: ALL TIMING MEASUREMENTS ARE FROM 10% and 90% POINTS 

SWITCHING CHARACTERISTICS 
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TMS 9902 ELECTRICAL SPECIFICATIONS 

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) ... 

Supply voltage, Vee ................................................. -0.3Vt010V 
All inputs and output voltages ..................................................... -0.3 V to 10 V 
Continuous power dissipation ........................................................... 0.55 W 
Operating free-air temperature range ..................•.............................. oce to 70°C 
Storage temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°e to 150°C 

·Stresses beyond Ihose listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of 
the device at these or any other conditions beyond Ihose indicated in the "Recommended Operating Conditions .. section of this specification is not implied. Exposure to 
absolute maximum rated conditions for extended periods may affect device reliability. 

Recommended Operating Conditions ... 

PARAMETER 

Supply voltage, VCC 

Supply voltage, VSS 

High-level input voltage, VIH 

Low-level input voltage, VIL 

Operating free-air temperature, T A 

Electrical Characteristics Over Full Range of Recommended Operating Conditions 
(Unless Otherwise Noted) ... 

PARAMETER TEST CONDmONS 

VOH High level output voltage 
IOH - -1oo~ 

IOH - -200pA 

VOL Low level output voltage IOL =3.2mA 

II Input current (any input) VI = OVtoVCC 

ICClav) Average supply current from VCC 1c(4)) = 330 ns, TA=70·C 

Cj Small signal input capacitance, any input f= 1 MHz 

Timing Requirements Over Full Range of Operating Conditions 

PARAMETER 

1c(4)) Clock cycle time 

tr(4)) Clock rise time 

tf(4)) Clock fall time 

tw(4)H) Clock pulse width (high level) 

tw(4)L) Clock pulse width (I~ level) 

tw(CC) CRUCLK pulse width 

tsu1 Setup time for CE before CRUCLK 

tsu2 Setup time for SO-S4, or CRUOUT before CRUCLK 

th Hold time for CE, SO-84, or CRUOUT after CRUCLK 

"NOTE: All voltage values are referenced to V ss. 

Switching Characteristics Over Full Range of Recommended Operating Conditions 

PARAMETER 
TEST 

CONDmON 

tpd1 Propagation delay, CE to valid CRUIN CL= 100pF 

tpd2 Propagation delay, SO-S4 to valid CRUIN CL -1oopF 

3-D13 

MIN NOM MAX UNIT 

4.75 5.0 5.25 V 

0 V 

2.0 Vee V 

VSS-·3 0.8 V 

0 70 ·C 

MIN TYP MAX UNIT 

2.4 Vee V 

2.2 Vee V 

VSS 0.4 V 

±10 pA 

100 mA 

15 pF 

MIN TYP MAX UNIT 

300 333 667 ns 

5 40 ns 

10 40 ns 

225 ns 

45 ns 

100 185 ns 

150 ns 

180 ns 

60 ns 

MIN TYP MAX UNIT 

300 ns 

320 ns 
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Ce 

SO-S4 

CRUCLK 

CRUOUT 

CRUIN 

... 1'0------ lel,;1 --------+1 

I !:=='W(4)H'---l'1 I 

01 W v 
--l I-- 1r(,;1 1t(,;1 --j I I Iw(4)LI 

\ \"---~I 
I 

ISU1-H 

UNKNOWN CRU BIT ADDRESS n 

I 

I su2 -h I 
I 

Isu2 i 'I 
UNKNOWN X CRU OAT A OUT n 

f---4- l
h 

,..-____ J......_ ..... I 

I 

""I.I---.... ,+i - Ipdl 

:J CRU BIT ADDRESS m C 
'--___ .,-----J i I I 

IWICCI~f-----+- Ih I I n il 
'---__ ---oJ I f f-f ___ I ____ r------

__ ----1-1 __ I Ih 

X CRO om oUO~, C:j'--__ UN_K_N_O,..W_N ___ L 
r- Ipd2 --1 

DON'T CARE DON'T CARE 

SWITCHING CHARACTERISTICS 

NOTE: ALL SWITCHING TIMES ARE ASSUMED TO BE AT 10% OR 90% VALUES. 

EQUIVALENT OF I/O INPUTS EQUIVALENT OF I/O OUTPUTS 

Vcc 

INPUT 
0 ___ ---1t---...J 

INPUT AND OUTPUT EQUIVALENTS 
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EQUIVALENT OF OUTPUTS EQUIVALENT OF INPUTS 

Vee 

I 

~ 
J , 
pUT 

~ , 
1 

~ 
INPUT Ii 0 [ 1 

TMS 9903 ELECTRICAL SPECIFICAnONS 

ABSOLUTE MAXIMUM RAnNG OVER OPERATING FREE AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)· 

I I 

II 
1 

Supply voltage, VCC (Note) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to 10 V 
All inputs and output voltages ..................................................... -0.3 V to 20 V 
Continuous power dissipation ............................................................ 0.7 W 
Operating free-air temperature range ................................................. O"C to 70"C 
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 15O"C 

0Sb'eeeel beyond thole listed under"AbIIoIuIe Maximum Ratings" may ca~ permanent damage to the devioa. This is a stress rating only and functionaJ operation of 
the deYIce at these or any other conditions beyond thole indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to 
IIbIoIuIe maximum rated conditions for extended periods may affect device reliability. 

RECOMMENDED OPERATING CONDmONS 

PARAMETER MIN 

Supply voltage, Vee 4.75 

Supply voltage, Vss 
High-level input voltage, VIH 2.0 

Low-Ievel input voltage, VIL Vss- .3 

Operating free-air temperature, T A 0 

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERAnNG 
CONDITIONS (UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONS MIN 

IOH= -100"A 2.4 

IOH = -2OO"A 2.2 
VOH High-level output voltage 

VOL Low-IeveI output voltage IOL = 3.2mA Vss 
II Input current (any input) VI=OVtoVee 

Icc(av) Average supply current from Vee tc(4)) = 330 ns, tA = 700 e 
Cj Capacitance, any input f - 1 MHz, all other pins at 0 V 

NOTE: All voltages are in reference to vSS. 

3-D15 

NOM MAX UNIT 
5.0 5.25 V 

0 V 

2.4 Vee V 

0.4 0.8 V 

70 "C 

TYP MAX UNIT 

Vee V 

0.4 V 

:!:10 pA 

150 rnA 
15 pF 
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SCR 
OR 
SCT 

RIN 

\ __ ----11 

RECEIVEDA_T_A ____ ~~~ ______ ~ ______ ~~~ ______________ ~~~ ______________ ~~ 
SAMPLE PULSE 

1 , 
TRANSMIT DATA :/\ ~ ~ __________________ ~I ~ ____________ _J ~------------~ ~--------

SHIFT PULSE I 

XOUT 

fc<OC) 
tw(I/)H) 
twjcbL) 

tr 
tf 

feu 
Itt 
let 

I 
1 I 
I-4-tcl--' 

190"10 

VALID DATA A/I<A/VVV\J,,- DON'T CARE V' ... ,'"" ... ,,..."'''',.r.I: 
~1~~~0--------------~ 

PARAMETER 
Receiver/transmit data clock cycle time 
Clock pulse width (high level) 
Clock pulse Width (loW leVel) 
Rise time 

f-81ltime 
Setup time for RIN before SCR (DRCK32 = 0)· 
Hold time for RIN after SCR (DRCK32 = 0)· 
Delay time. SCT to valid XOUT 

·No setup, hold, or data synchronization is required for pin in the divide-by-32 mode (DACK32 = 1), 

RECEIVE/TRANSMIT DATA CLOCK TIMING DIAGRAM 

3-016 

VALID DATA 

.... TYP MAX 

4 
2 
2 

12 
12 

~ 

l)U 

400 

VALID 
DATA 

UNIT 
lIS 

,."s 

,."s 

ns 
ns 
ns 
ns 
ns 
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nMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERAnNG CONDlnONS 

PARAMETER MIN 

tc(.) Clock cycle time 300 

tr<.) Clock nse time 

tf(.) ................. UI .... 

1w(.H) (;1OCk pulSe wtam (nlgn 18V8I) 225 

lw(4L) ClOck pulse width (lOw level) 45 

lw(CC) CRUCLK pulSe WIdth 100 

tau 1 ~UfT".'" 190 

Isu2 Setup time for 50-S4 or CRUOUl before CRUCLK 220 

lh Hold time for 50-S4, CE, or CRUOUT after CRUCLK 60 

SWITCHING CHAAACTERISnCS OVER FULL RANGE OF RECOMMENDED OPERAnNG 
CONDmoNS 

PARAMETER 
TEST 

CONDmoN 

tpOl Propagation delay, CE to valid CRUIN CL - 100 pF 

tpo2 Propagation delay, 50-S4 to valid CRUIN CL -100 pF 

I" tclol------.j 

-TTL 

I j+--'w!\',HI----i 
I I I 

90% 
I 

I I 14'. __ ..... ,- 'w(".'LI 

MIN 

TVP 
333 

5 

10 

185 

TVP 

300 
320 

MAX UNIT 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

MAX UNIT 

ns 
ns 

\~,O% -~, .. r~ 
i' I+-t-'h I 1 'III' --+t t-- I I 1...1 'po, 

___ .....:,;:90% ..... __ '_____ I I ::z1l0%, ! 
CRU-BIT CRU-8IT CRU-BIT 

SO-54 UNKNOWN ADDRESS n ADDRESS n+' ADDRESS m 

'0%, I I I 10%1 

: • .: 'WICCI-H ~ 'h 1001 .. _-....,.-.1:- 'PD2 

CRUCLK _____ :----:,~O%::.:3IY\~---.JII~~~ 1.:,:0%.::..:...1 __ -c, fol ______ 1_1 _____ _ 

I I 1 I 
I· ·1 I-+- til 

___ ......:;;110%' I 

UNKNOWN X-,:.I __ CR_~_~_:_TA _ ___JX'_ __ C_Ro_UU_~_~T_A __ ~ r---y UNKNOWN >C 
10% ~~~-------

I 

' .. 2 

CRUOUT 

, 
11,",1 cou,. {XX)(X)(X)(XXt&soD<XXXXXXX>O ~-"'-e---B-0"R-<X"'" .£oj --:'~~1':"'r~~"~->C 
''"' 

TIMING DIAGRAM 
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Chapter 4 
SINGLE CHIP NOVA MINICOMPUTER 

CENTRAL PROCESSING UNITS 

In this chapter we are going to look at two microprocessors which are the world's first single chip reproductions 
of established 16-bit minicomputers. We are going to describe two products which reproduce, on a single chip, 
the logic of a Nova Central Processina Unit. 
Nova minicomputers are built by Data General Corporation. 

Data General Corporation offer a set of LSI chips centered on the MicroNova microprocessor. These chips are 
described quite superficially in this chapter since Data General is not actively marketing them as LSI devices. 
Rather, Data General favor the sale of MicroNova microcomputer systems. 

Fairchild manufacture the 9440 microprocessor, which is sold primarily as an LSI device. The 9440 is therefore 
described in some detail, together with standard Nova 1/0 bus and typical memory bus interface bus logic. 

The Nova minicomputer was designed as a next generation enhancement of the PDP-8. The IM6100, which is de­
scribed in Chapter 13 of the Osborne 4 & 8-Bit Microprocessor Handbook is a single chip implementation of the PDP-B 
Central Processing Unit. 

If you compare the Nova architectures, which we describe in this chapter, with the IM1600, the two products will 
indeed look very different. But conceptually they are similar. Both the Nova and the PDP-8 Central Processing Units 
have few addressable registers; for computing power they rely upon instructions which may perform complex 
sequences of operations. Similarities between the Nova and the PDP-B will become more apparent if you compare 
these two devices with the CP1600 and the TMS990 - which we have described in Chapters 2 and 3, respectively. 

What is interesting about the Nova minicomputer is that it is one of the most popular in the world; and Data General 
Corporation is the second largest minicomputer manufacturer in the world. despite the fact that many aspects of the 
Nova Central Processing Unit may. on first inspection. appear to be very restricting. . 

The MicroNova is manufactured by: 

The 9440 is manufactured by: 

OAT A GENERAL CORPORATION 
Mail Stop 6-58 

Southborough. MA 01772 

FAIRCHILD SEMICONDUCTOR 
464 Ellis Street 

Mountain View, CA 94040 

The MicroNova and the 9440 are not the same; differences, however, are small. 

The MicroNova is equivalent to the Nova 3 minicomputer. The Nova 3 is a low-end minicomputer recently in­
troduced by Data General. Although it is a low-end product it includes a number of features not found in the basic 
Nova arch itectu reo 

The 9440 reproduces basic Nova architecture - that is, the lowest common denominator of architectural features 
found in any Nova Central Processing Unit. As such, the 9440 lacks a number of logic features provided by the 
MicroNova. The 9440, however. has higher instruction execution speeds. 

Because the MicroNova and the 9440 are very similar. we are going to describe them together in this chapter. 

The MicroNova is manufactured using NMOS LSI technology. The 9440 is manufactured using Isoplanar integrated in­
jection logic (l3U technology. 

Both products are packaged as 40-pin DIPs. 

The MicroNova requires four power supplies: -4.25V, +5V, +10V and +14V. The 9440 requires two power sup­
plies: +5V and +350 mA. 
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Using a 240 nanosecond clock. the MicroNova executes instructions in 2.4 to 10 microseconds. Using a 100 nanose­
cond clock. 9440 instructions will execute in 1 to 2.5 microseconds. 

A PRODUCT OVERVIEW 

Figure 4-1 illustrates that part of our general microcomputer system logic which has been implemented by the 
MicroNova and the 9440. 

Note that only the MicroNova has a Stack Pointer, and DMA logic. 

Most Nova minicomputers do not have a Stack; the 9440 is a reproduction of.the basic Nova architecture. which is why 
the 9440 lacks a Stack. 

The MicroNova and Nova 3 do contain Stacks. because the addition of the Stack is technologically straightforward. 
while the lack of a Stack had been one of the most distressing features of earlier Nova minicomputers. 

Both the 9440 and the MicroNova have DMA request and DMA acknowledge signals; however. in response to a DMA 
request. the 9440 does nothing except float the System Bus. It is up to you to provide any and all external logic needed 
to actually perform a data transfer via direct memory access. The MicroNova. on the other hand. executes the required 
sequence of I/O operations to actually perform the DMA transfer. That is why in Figure 4-1 DMA logic is shown as 
being present on the MicroNova but not the 9440. 

What about I/O ports? I/O ports interface logic is shown as absent in Figure 4-1 . The 1/0 port is a microcom­
puter concept. 

In any microcomputer configuration. you will look upon I/O ports as the ultimate interface between the microcomputer 
system and external logic. You need a conduit via which data bits or signals can be transferred to. or received from 
logic beyond the microcomputer system. Each conduit becomes an I/O port and an I/O port becomes a set of pins. 
which can be addressed as a unit on a support device. Minicomputers take a conceptually different approach to 110 
operations. To begin with. data is generally transferred to or from the CPU - not signals. The data finishes up on a 
System Bus. Therefore a minicomputer's interface with the outside world consists of an I/O System Bus and a memory 
System Bus. In some cases the two busses are one; in other cases. such as the Nova minicomputers. these two are sep­
arate and distinct busses. Conceptually. what is important is the fact that the minicomputer anticipates transferring 
data via its I/O System Bus to line printers. disk units. or other substantial devices each of which is capable of having a 
Significant amount of local logic. Thus the System Bus is as far as the minicomputer attempts to go when defining its 
interface to the outside world. 

Figure 4-1 , including bus interface logic within the logic of the Central Processing U nit, needs some clarifica­
tion. As we have just stated. the Nova minicomputer creates two separate System Busses: one for memory. the other 
for I/O devices. All the signals of these two busses originate at card edge pins. There is nothing very expensive about 
adding more pins to the edge of a card. as there is to adding more pins to a DIP. Therefore the Nova System Bus has 47 
Signals. Since neither the MicroNova nor the 9440 can have 47 signals. neither of these two devices creates standard 
Nova System Busses; but each device creates its own System Bus which could be used to drive external logic. That is 
why interface logic is shown as being present in Figure 4-1. 
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Logic to Handle 
Interrupt Requests 

from Extemal Devices 

Clock Logic 

Figure 4-1. Logic of the Data General MicroNova and the Fairchild 9440 

MicroNova anc:f~ 
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There is one further major difference between the MicroNova and the 9440 which is not evident from Figure 
4-1. The MicroNova provides transparent dynamic memory refresh logic. The 9440 has no dynamic memory 
refresh logic. 

The MicroNova, but not the 9440, contains an elementary interval timer capability. Providing interrupt timer logic 
is enabled, the MicroNova will generate an interrupt request every 20,000 instruction cycles. Using a standard 8.333 
MHz clock, this translates to an interrupt request occurring every 2.4 msec. 

Note that the MicroNova and the Nova 3 interval timer logic differ. The Nova 3 provides four programmable interval 
timer options; the MicroNova provides just one. 

NOVA PROGRAMMABLE REGISTERS 
These are the programmable registers of the MicroNova and the 9440: 

lS o 

I Stack Pointer } 

J Frame Pointer 

14 o 

ACO } Primary Accumulator 
AC1 

AC2 Accumulator and Index register 

AC3 Accumulator, Index register and 

Subroutine Return Address register 

MicroNova Only 

Data General literature numbers registers and memory words from left to right. rather than as illustrated above, from 
right to left. Also Data General is one of the few minicomputer manufacturers that uses octal numbering. In order to re­
main consistent with the rest of this book, we will use hexadecimal numbers, and we will number registers from right to 
left; where confusions may arise, we will show both our standard numbers and Data General equivalents. 

ACO and AC1 are typical primary Accumulators. AC2 and AC3 may be used as Accumulators or as Index 
registers. The Jump-to-Subroutine instruction automatically stores the return address in AC3. If one subroutine 
is going to call another (j.e., you are nesting subroutines). then the calling subroutine must save the contents of AC3 
before itself calling another subroutine. 

Only the MicroNova has a Stack Pointer. The only instructions that access the Stack Pointer are "Push" and "Pop" 
instructions. 

The MicroNova, but not the 9440, also contains a Frame Pointer register. The Frame Pointer register is an address 
buffer used to access the Stack. This may be illustrated as follows: 

Stack Pointer identifies 

current top of Stack 

e Pointer Use Fram 

to hold im 

Stack ad 
portant 

dresses 

MEMORY 

The Frame Pointer is a buffer register; it is not a Data Counter. There are no instructions that access the memory loca­
tion addressed by the Frame Pointer. 

Observe that we show no programmable registers identified as Data Counters, even though in Figure 4-1 we show 
Data Counter logic as being present. This is because the Data Counter is another microcomputer concept - in effect. a 
subset of the Index register. If a memory reference instruction specifies direct. indexed addressing with a zero displace­
ment. then Index Registers AC2 and AC3 are equivalent to Data Counters. 
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NOVA MEMORY ADDRESSING MODES 
Both the MicroNova and the 9440 offer the following standard Nova memory addressing modes: 

1) Base page, direct addressing 

2) Program relative, paged, direct addressing 

3) Indirect addressing 

4) Indirect addressing with auto-increment 

5) Indirect addressing with auto-decrement 

6) Direct, indexed addressing 

7) Pre-indexed, indirect addressing 

These addressing modes have been described in Volume 1. Chapter 6. 

Nova memory addressing modes are heavily influenced by the fact that every Nova instruction generates a single 16-
bit object code - just as the predecessor PDP-8 instructions each generated a single 12-bit object code. Even memory 
reference instructions are confined to 16 bits of object code; therefore the memory reference instruction can only pro­
vide a short address displacement. Whereas PDP-8 memory reference instructions provide a 7-bit address displace­
ment. the Nova provides an.8-bit address displacement. which is handled in a much more intelligent fashion. 

Nova instructions that use simple, direct addressing treat the 8-bit displacements as a direct, page zero ad­
dress, or as a signed binary, program relative displacement. Thus you can directly address the first 256 words of 
memory. or you can address any location within +127 to -128 words of the memory reference instruction itself: 

yy can directly address 
base page 

Memory reference instruction 

yy can be added, as a 
signed binary number, 

to xxxx, to address 
program relative page 

~
MEMORY 0000 

0001 

0002 
0003 . 

§§
i 1000E 

I 

I 
~" 
I 

I I 

OOFF 
0100 

(xxxx) + 
(xxxx) + 
(xxxx) + 

, -"-~ , , )O(x-1 

IVY xxXx 
xxxx+ 1 

(xxxx) + 

(xxxx) + 
(xxxx) + 

FFSO (FFSO = -SO) 
FF81 (FF81 = -7F) 
FF82 (FF82 = -7E) 

Address displacement 
equals vy 

70 

7E 
7F 

Remember. in microcomputer applications. program relative direct addressing is fine for Jump instructions. but is of 
limited value when accessing data memory. When a microcomputer program is stored in read-only memory. program 
relative. direct addressing can be used to read constant data only. 

Nova instructions that specify direct, indexed addressing, compute the effective memory address as the con­
tents of either AC2 or AC3, plus the 8-bit displacement provided by the instruction object code. The 8-bit dis-
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placement is treated as a signed binary number. Since the Index registers are 16 bits ·wide, direct indexed addressing 
allows you to address any memory word. This may be illustrated as follows: 

Accumulator AC2 or AC3 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ~Bit No. 

Ixlxlxlxlxlxlx~xlxlxlxlxlxlxlxlxl 

Instruction Code 

9 8 7 6 

ex x x x x x x x x x x x x x x x 
z z z z z z z z y y y y y y y y 

Sum is the effective memory.address 

'--------..... 0 selects AC2 
1 selects AC3 

Indirect addressing may be superimposed on any of the memory addressing options de­
scribed thus far. Indirect addressing is identified by a "1" in bit 10 of the Memory Reference in­
struction's object code. When indirect addressing is specified, the effective memory address is the 
contents of the directly addressed memory word. 

Let us examine the various indirect addressing options. First there is page zero indirect ad­
dressing: 

8 5 2 O~BitNo. 

~~~~~~~~~~~~~~ 

~----~----------P~Z«o 

'--------+-------- Indirect addressing 

Arbitrary 
Memory 

I~I:-0001 
0002 

0003 

i I 
0024 

1------1 0025 

1236 0026 ..... ~----..... 
0027 

t-----t 0030 

1235 
1-----1 1236 

1237 
1----....... 

1240 

NOVA 
DIRECT 
MEMORY 
ADDRESSING 

NOVA 
INDIRECT 
PAGE ZERO 
ADDRESSING 

In the illustration above. arbitrary, real memory addresses have been selected to make the illustration easier to unders­
tand. 
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Program relative, indirect addressing may be illustrated as follows: 

This instruction 

fetched from this 

memory location 

MEMORY 

736~ 

1216 
~----------__ ~ ____ ~·55 

126B 

~------------- Program relative 

----------------Indirect 
Arbitrary 

Memory 

Address 

1215 

1216 

1217 

1220 

1221 

1222 

126A 

126B 

126C 

1260 

126E 

12GF 

1270 

7362 

7363 

7364 

7365 

7366 

7367 

7370 

7371 

7372 
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Indirect. indexed addressing may be illustrated as follows: 

Accumulator AC2 

15 1<4 13 12 11 10 9 8 7 6 5 <4 3 2 1 0 ~ Bit No. 

10101010101011101110101011111111' 

Instruction Code 

MEMORY 

736" 

6 5 <4 3 2 

028F 

------..... -0020 
02BC 

..... ------------ Index via AC2 

..... --------------Indirect 

Arbitrary 
Memory 
Address 

02~ 

0288 
02BC 
0280 
02BE 
02BF 

7362 
7363 
7364 
7365 
7366 
7370 

NOVA 
INDIRECT 
INDEXED 
ADDRESSING 

The illustration above arbitrarily uses indexed addressing via Accumulator AC2. Also the computed effective memory 
address is identical to that which was obtained in the indirect. program relative addressing illustration. 

Observe that Nova indirect addressing logic results in pre-indexed indirect addressing. As described in Volume 1. 
Chapter 6. this is less desirable than post-indexed indirect addressing. 
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If. and only if indirect addressing has been specified by a "1" in bit 10 of a Memory Reference in­
struction's object code. then the contents of the data fetched from memory are treated as a direct 
address. providing the high-order bit of the direct address is O. If the high-order bit of the address 
is 1. then the address is treated as another indirect address pointer. This may be illustrated as 
follows: 

Interpret as. last memory adciIr.a 

NOVA 
MULTIPLE 
INDIRECT 
ADDRESSING 

Note carefully that multilevel indirect addressing will occur only when indirect addressing is specified in the first place. 
If you execute a direct memory reference instruction. data will never be interpreted as an address. 

The Nova indirect addr~ssing logic means that. given a 16-bit indirect address. only 15 bits actually address memory; 
therefore you are limited to a 32.768 word memory address space: 

l' 14 13 12 11 10 9 8 7 6 .5 4 3 i 1 0 ~.No. 

I I II I I I I I I I g--1ncInIc:t MIiNIry ~ 

1 
The Nova minicomputers and microcomputers also provide indirect addressing with auto-increment and auto­
decrement addressing. If you indirectly address one of the eight memory locations. 001016 through 001716. then the 
contents of the addressed memory location are incremented at the beginning of the memory access. Thus you have in­
direct addressing with auto-increment. 

If you indirectly address anyone of the locations. 001816 through 001 F16 then the contents of the addressed memory 
location will be decremented at the beginning of the memory access. Thus you have indirect addressing with auto­
decrement. 

Neither the MicroNova nor the 9440 provide memory mapping logic. Memory mapping is a technique whereby 
more than 32.768 words of addressable memory may be accessed. The Nova 3 minicomputer is capable of supporting 
memory mapping as an option. 

Nova minicomputers have separate memory and I/O device spaces. I/O instructions include six 
bits which identify one of 64 I/O devices. Because Nova minicomputers and microcomputers treat 
I/O devices in a manner that differs significantly from the typical microcomputer. we will defer our 
discussion of I/O addressing until we have looked at pins. Signals and System Busses. 
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NOVA STATUS FLAGS 
Nova minicomputers contain just one status flag, as we would define it, and that is the Carry status. Instruc­
tions are able to test for a zero or nonzero condition occurring at the conclusion of an instruction's execution, 
but no permanent zero status flag exists. 

MicroNova also has these interrupt related status flags: 

• Interrupt Enable } 
• Real Time Clock Enable 
• Real Time Clock Request MicroNova Only 
• Stack Overflow Request 

The interrupt related status flags do not occur as addressable locations in any Status register; rather they represent flip­
flops which are set or reset during the course of interrupt handling. 

The interrupt enable bit is a master enable which is set to 1 in order to enable all interrupts. Specific instructions allow 
all interrupts to be enabled or disabled. 

The MicroNova has a Real Time Clock interrupt enable bit and a Real Time Clock request bit. The Real Time Clock ena­
ble bit must be set to 1 in order to enable Real Time Clock interrupts; as soon as a Real Time Clock interrupt occurs. the 
Real Time Clock enable bit and the Real Time Clock request bit are reset to O. 

The Stack Overflow request bit is only present in the MicroNova. since only the MicroNova has a Stack. A Stack over­
flow condition occurs if. following a push operation. the incremented contents of the Stack register have zeros in the 
eight low-order bits. What this implies is that the Stack must reside within a 256-word memory page: 

Arbitrary 

Memory 

I~RYI:~ 
0801 

0802 
0803 · . 

§: :08FD 

08FE 

08FF~ 
'0900 

0901 
• • Pushes that increment Stack Pointer · . 

~
= . from XXFF to XYOO will cause a Stack 

09FD Overflow interrupt 

09FE / 
09FF~ 
OAOO~ 
OA01 
OA02 

When a Stack overflow occurs. the Stack Overflow request bit is set to 1 and an interrupt is requested. 

MICRONOVA AND 9440 CPU PINS AND SIGNALS 
As we stated earlier in this chapter, minicomputer Central Processing Units are implemented on cards, not 
DIPs; therefore they usually have System Busses containing more than 40 signals. The standard Nova System 
1/0 Bus contains 47 signals; furthermore, the Nova System Bus is, in effect, two busses: one communicating 
with memory, while a separate and distinct bus communicates with 1/0 devices: 

NOVA 
ME MORY BUS 

CPU 
I/OB US 

MEMORY 
I/O DEVICES AND 

EXTERNAL LOGIC 
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Table 4-1 briefly defines the functions of bus signals. The I/O Bus is standard for ali Nova line computers, while the 
Memory Bus is different for each model. We give the Memory Bus signals of the Nova 2 in Table 4-1. 

Table 4-1. Nova System Bus Signals 

STANDARD NOVA SYSTEM I/O BUS 

SIGNAL DIRECTION FUNCTION OR INDICATION 

DsO-DS5 To Device Device selection 

DATAo -i5Ai'Ai5 Bidirectional Data and address lines 
DATOA To Device Data out to device's A buffer 

DAnA To Device Data in from device's A buffer 

DATOB To Device Data out to device's B buffer 

DATIB To Device Data in from device's B buffer 

DATOC To Device Data out to device's C buffer 

DATIC To Device Data in from device's t: buffer 

STRT To Device Start device-clear Done flag, set Busy flag and clear devi.ce's INT REO 
flip-flop 

CLR To Device Oear device's Busy and Done flags and INT REO flip-flop 

10PLS To Device I/O Pulse - user-defined function 

Sllii To Processor Selected device's Busy flag is set 

SELi5 To Processor Selected device's Done flag is set 

RciENB To Device Enable interrupt or DMA requests 

iNTR To Processor Interrupt request 
iNi'P To Device Interrupt priority 

INTA To Device Interrupt acknowledge 

MSKO To Device Interrupt mask out 

50iR To Processor Data channel request (DMA request) 

OCHP To Device Data channel priority 

OCHA To Device Data channel acknowledge 
DcHMo,DcHMi To Processor Data channel mode: 

l5CHMo DCHMI 

H H Data out 

H L Increment memory 

L H Data in 

L L Add to memory 

DCHI To Device Data channel in 

OCHO To Device Data channel out 
OVFLO To Device Overflow: result of memory increment or add exceeds FFFF II 
10RST To Device Clear all I/O devices 

THE NOVA 2 MEMORY BUS 

SIGNAL DIRECTION FUNCTION OR INDICATION 

AO-A14 To Memory Memory address lines 
DATAO - DATA15 Bidirectional Memory data lines 
INHIBIT SELECT To Memory Inhibits selection of memory module 

BMEMEN To Memory Starts memory cycle 

WRITE To Memory Memory write 
BRMW To Memory Causes pause between read and write 

WE To Memory Enable write after pause in read-pause-write cycle 
SYNC ENABLE To Processor CPU hold control 

RELOAD DISABLE To Memory Inhibits loading of memory buffer 
WAIT To CPU Disables other memory modules during write portion of memory cycle 

MEM CLOCK To Memory Memory Clock 
EXTERNAL SELECT To Memory Allows module to be selected despite contents of address lines 
EXTERNAL MBLD To Memory Allows data to be stored in memory buffer without starting a memory 

cycle 

If you are using the MicroNova or 9440 in a new product. then there is no reason why you should create the standard 
Nova System Busses. Providing the signals generated by the MicroNova or the 9440 are adequate for your needs, you 
can interface external logic directly to these two devices. 

Let us first look at the MicroNova pins and signals, which are illustrated in Figure 4-2. 

Two clock signals, <1>1 and <1>2, must be input to synchronize all MicroNova logic. 

4-11 



The Memory Bus consists of a 16-bit Address/Data Bus, plus three control signals: SAE, P 
and WE. 

The Address/Data Bus connects to pins MBO - MB 15. P is a synchronization signal. SAE is a read 
enable and WE is a write enable. 

The I/O Bus consists of just four signals: 

I/O CLOCK synchronizes I/O transfers. 

I/O DATA1 and I/O DATA2 are bidirectional data and control signals. 

I/O INPUT identifies the direction of data transfers occurring via-:"I/~0~D-:"A~T~A~1 and I/O DATA2. 

MICRONOVA 
MEMORY BUS 

MICRONOVA 
I/O BUS 

As compared to other microcomputers described in this book. the MicroNova I/O interface is very unusual. Only the 
TMS 9900 I/O logic is at all similar. A 16-bit I/O data transfer occurs as two 8-bit serial units. This may be illustrated as 
follows: 

I/O CLOCK 

~~~ __ ~I_B_IT_O~I~~_T_1~I~B_IT __ 2~I_B_rr_3~I_B_rr_4~I_BI_T_5~I_B_rr_6~1_~_T_7JI 

\ ~ 0 I ~ 1 I ~T 2 I ~T 3 1 ~ 41 ~ 5 1 ~ 6 1 ~T 7 I 

Eight serial bits are input in less than one microsecond: therefore this method of handling I/O is as fast as the parallel 
data input operations described for other microcomputers. 

Each data transfer is preceded by one of four_codes generated by levels output via I/O DATA 1 and I/O DATA2. These 
are the four codes: 

1/0 DATA1 

1 

o 
o 

I/O DATA2 INTERPRETATION 

o 
1 
o 

Accompanying I/O low pu Ise may be used to synchronize interrupt requests 
and DMA requests. 

DMA request acknowledge. 

I/O data transfer. The transfer direction is specified by I/O INPUT. 

I/O command out. 

Thus every I/O operation will begin with I/O DATA 1 and I/O DATA2 being output during a low I/O CLOCK pulse. I/O IN­
PUT will be low at this time since data is being output via I/O DATA1 and 110 DATA2. Providing 110 DATA1 andl70 
DATA2 specify a data transfer to follow. the actual data transfer will occur via I/O DATA 1 and I/O DATA2 with I/O IN­
PUT identifying the data transfer direction. 
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VBB 40 Vss (GROUND) 
P 39 nc 

WE 38 VDD 
SAE 4 37 HALT 

DCH INT 5 36 nc 
'OOiNT 6 35 CLAMP 

VGG 7 34 nc 
VSS(GRO~ 8 33 PAUSE 

MOO 9 32 11>1 
Mii1 10 31 11>2 
Mii2 11 MICRONOVA 

30 I/O DATA1 
MB3 12 29 I/O DATA2 
MB4 13 28 i70iNPUT 
Ma5 14 27 I/O CLOCK 
MB6 15 26 Vss (GROUND) 
MB7 16 25 MiT5 
VCC 17 24 Mei4 
MB8 18 23 Ma1'3 
MB9 19 22 Me12 

MiiO 20 21 Mi1i' 

PIN NAME DESCRIPTION TYPE 

11>1. cJI2 Clock Signals Input 

MeO-'MBi5 Address/Data Bus Bidirectional 

P Memory Synchronization Output 

SAE Memory Read Enable Output 

WE Memory Write Enable Output 

I/O CLOCK I/O Synchronization Bidirectional 

I/O DATA1. I/O DATA2 Data and Control Bidirectional 
i70iNfiijT Transfer Direction Output 

Ci:AMP Power-On Reset Input 

HALT CPU Halted Output 

i5CHiNT DMA Request Input 

00iNf External Interrupt Request Input 

PAUsE Memory Bus Grant Output 

VBB VDD. VGG. Vss Power and Ground 

Figure 4-2. MicroNova CPU Signals and Pin Assignments 

There are two CPU control signals which are not part of either the Memory Bus or the I/O Bus. 

Following power-up, the MicroNova CPU will not perform any operation until a high input occurs at CLAMP. 
When CLAMP goes high. interrupts are enabled. Real Time Clock and Stack Overflow interrupt requests are cleared. 
and the CPU is halted. Once CLAMP has been input high. it is ignored until the MicroNova is powered down and then 
powered up again. 

The HALT signal is output by the MicroNova as a high pulse while the MicroNova CPU has been halted - either in 
response to execution of a Halt instruction. or following CCAi\iiP going high. 

There are two MicroNova signals associated with interrupt logic. DMA requests are made via DCH INT while 
any external interrupt is requested via EXT INT. Both the DMA request and the interrupt request must be. syn­
chronized with instruction execution timing. This synchronization is provided by I/O DATA1 and I/O DATA2. as we 
have already described. The DMA acknowledge occurs via 1/0 DATA1 and I/O DATA2. There is no external interrupt 
acknowledge signal; however. such a signal can be derived from the Memory Bus. as we will describe later in this 
chapter. 

PAUSE is output low by the CPU when devices other than the CPU· are permitted to access memory. 

Now look at 9440 pins and signals, which are illustrated in Figure 4-3. 

These pins and signals create a single System Bus. No attempt is made to create separate Memory and I/O 
Busses. 

You may connect a crystal across CP and XTL in order to create a master clock signal, or you may input a clock 
signal via CPO 
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C3 1 40 MO 
C2 2 39 M1 
C1 3 38 M2 
CO 4 37 CLK OUT 

DCH REO 36 CP 

00 6 35 XTL 

i'Nf'REa. 34 MA 
01 8 33 SYN 

INTON 9 32 MBUSY 

GND 10 
9440 

31 VCC 

RUN 11 30 GND 

IINJ 12 29 iBf5 (low-order bit) 
CARRY 13 28 iii14 

(high-order bit) 180 14 27 iii13 
iB1 15 26 IB12 

iB2 16 25 IB11 

IB3 17 24 IB10 

184 18 23 iB9 
iSs 19 22 iBii 
iB6 20 21 iB7 

PIN NAME DESCRIPTION TYPE 

xn.cP Cock Signals Input 

SYN Synchronization Signal Output 

ClK OUT System Cock Output 

iBO -iBiS Data/ Address Bus Bidirectional 

MO-Mi Memory Controls Output! Input 

MBUSY Memory Busy Input 

00.01 I/O Control Output 

iNiiiEQ Interrupt Request Input 

INTON Interrupt Enable Output 

OCHREQ DMA Request Input 

RUN CPU Running Output 

CARRY Carry Status Output 

CO-C3 Front Panel/Console Control Signals Input 

MR Master Reset Input 

IINJ. vcc. GND Power and Ground 

Figure 4-3. 9440 CPU Signals and Pin Assignments 

The 9440 generates a single synchronizing output (SYN). The CPU clock is output to the 
system via ClK OUT. 

IBO - IB15 provides the 9440 with a multiplexed 16-bit Data and Address Bus. This bus car­
ries addresses to memory and I/O devices. and it carries bidirectional data between the CPU and 
memory or I/O devices. IBO - IB 15 are low true; a low signal level represents a 1 bit. 

9440 
SYSTEM 
BUS 

IBO is the high-order bus line while IB15 is the low-order bus line. This agrees with Nova conventions. This 
chapter, and this whole book describe the low-order bit as bit 0 - exactly the reverse of IBO - IB15. 

There are three control signals on the 9440 CPU-memory interface. 

MO is output low to identify a memory read. 
M1 is output low to identify a memory write. 
M2 is output low to identify a memory address being output. 

MO - M2 have open-collector outputs; you can use these lines as inputs to make the timing of a non-memory machine 
cycle conform to the timing of a memory cycle. We will discuss this further when we discuss 9440 timing and instruc­
tion execution. 

External memory interface logic inputs MBUSY low while it is responding to any memory access. MBUSY is similar to 
the WAIT signals that we have described for other microcomputers; it can be used to make the CPU wait for slow 
memory to respond to a CPU access request. 
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The 9440 has two I/O control signals 00 and 01. These two control signals define I/O and memory accesses as follows: 

01 
01 
01 
01 

o 00 
o 00 
1 00 
1 00 

o Instruction Fetch 
1 Data Channel Access 
o Execute I/O Operation 
1 No I/O 

There are two signals associated with 9440 interrupt logic. 

An external interrupt is requested by inputting INT REO low. 

INT ON indicates whether or not interrupts are enabled. This signal is high when interrupts are enabled: if this sig­
nal is low. interrupts are disabled. 

A DMA request is made by inputting DCH REQ low. The DMA request is acknowledged by 01 and 00 being output 
low and high. respectively. 

There are seven signals provided by the 9440 specifically to support a front panel or console. 

Two of the front panel or console signals are outputs; these are the RUN and CARRY signals. 

RUN is output high while the CPU is executing programs: it is output low while the CPU is halted. RUN is used to gener­
ate an appropriate front-panel display light: it is also equivalent to a Halt acknowledge. as described in this book for 
many other microcomputers. 

CARRY represents the condition of the Carry status. This signal is output specifically to drive a front-panel light. 

Five input control signals are provided for switches on a front-panel. Four of these signals are CO. C1. C2 and 
C3; they perform the following operations: 

C3 C2 C1 CO FUNCTION 

0 0 0 0 Display ACO contents at console 
0 0 0 1 Display AC 1 contents at console 
0 0 1 0 Display AC2 contents at console 
0 0 1 1 Display AC3 contents at console 
0 1 0 0 Increment Program Counter and then display contents of addressed memory word 
0 1 0 1 Display contents of addressed memory word 
0 1 1 0 Load memory from console switches 
0 1 1 1 Halt 
1 0 0 0 Deposit switches into ACO 
1 0 0 1 Deposit switches into AC1 
1 0 1 0 Deposit switches into AC2 
1 0 1 1 Deposit switches into AC3 
1 1 0 0 Load Program Counter from console switches 
1 1 0 1 Continue/Run 
1 1 1 0 Increment Program Counter and then load memory from console switches 
1 1 1 1 No Operation 

The first 9440 devices decoded the C lines in a slightly different manner. The following combinations were 
different operations: 

C3 C2 C1 

o 0 
o 1 
1 0 
1 1 

CO FUNCTION 

o Load Program Counter from console switches 
o Not used 
1 Load memory from console switches 
o Continue/Run 

MR is the Reset input to the 9440. When this line is pulled low: the 9440 halts immediately and clears the Interrupt 
Enable flip-flop. Once MR goes high. the CPU will remain in the Halt state until it receives the "Run" command from 
lines C3 - CO. Reset has no further effect on the 9440. It is up to your hardware to load the Program Counter by 
manipulating lines C3- CO and the Information Bus. 
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The following sequence is sufficient to start operation of a 9440 system with a "bootstrap" 
program in non-volatile memory: 

SYN 

C3 - CO NO OP I LOAD PC I NOOP X RUN I 
iBO -1815 ( STARTING ) ( ADDRESS 

RUN I 

9440 
INITIALIZATION 

NO OP 

The hardware must provide the program starting address while issuing the "Load Program Counter" command via the 
Clines. C line codes other than "No Operation" are held for two machine cycles to ensure that the CPU reads them. The 
"No Operation" code between "Load PC" and "Run" gives the CPU time to finish executing the C line command. See 
the data sheets at the end of this chapter for more detailed timing information. 
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r-Da-ta-D-u-tP-ut-T-o-~-s-tin-a-tio-n---------------------------------------------------------------------, ~ 
Inhibit data output option ~ 

t r 
Data output • r--:=:--l-..J·~D~.t~a~ou~tpu~t .... ~--....... L--... 

Second source 
and destination Jo. _----..... 

ACO Arithmetic 

and 

Shifter Test 

~ ACI 1 First source .... 
~1~~A~C~2~~~---~~-J~ 
I AC3 

Boolean 
Logic 

.. and 
Byte Swap 

Logic 

... 
, ..... __ .- Data 

for 
Skip 

~T~~=l--------J I Program Counter I 

i I Carry 

I I :~ ~ 

h~lc-~~--_J 
1514 13 12 11 10 8 7 6 5 4 3 2 1 0 ___ Bit No. 

'II I I I I I I I I I I I I I I I 
It. _________________________________ Arithmetic And Logic Instruction Code 

Figure 4-4. The Nova Arithmetic and Logic Unit 

1514 13 12 1110 9 8 7 6 5 " 3 2 1 0 ~Bit No. 

Arithmetic/Logic instruction IllS SID DITITITIH Hie elLlKIKIK 

LoooNo,"' 
001 Always skip 
010 Skip if Carry is Zero 

011 Skip if Carry is One 
100 Skip on Zero result 
101 Skip on nonzero result 

110 Skip on either Carry or result zero 
111 Skip on Carry and result both nonzero 

o Store result in destination Accumulator 
1 Discard result 

'---------- 00 Preserve current Carry status 
01 Zero Carry 
10 Set Carry to 1 

11 Complement current Carry 
Thase operations are performed on Carry before 
entering the ALU 

'---------- 00 No operation 
01 Left rotate one bit position 
10 Right rotate one bit position 
11 Swap bytes 

These operations are performed pn the ALU output 

'------------- 000 Complement 
001 Twos Complement (Negate) 
010 Move 

011 Increment 

100 Add Complement 
101 Subtract 

110 Add 

111 AND OOACO 

Destination ACCUmUlator} 01 AC1 

'------------------------- Source Accumulator 10 AC2 
11 AC3 

Figure 4-5. Arithmetic/Logic Instruction Object Code Interpretation 
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CPU LOGIC AND INSTRUCTION EXECUTION 

The manner in which the Nova CPU executes instructions differs markedly from microcomputers described 
earlier in this book. We will therefore begin our discussion of CPU operations by looking at overall CPU architec­
ture. 

Our discussion of Nova CPU logic is tied to instruction object code bit patterns; this happens to be the simplest way of 
describing the Nova CPU. We will look at instructions from a programmer's perspective when we eX'amine the Nova in­
struction set. 

Nova instructions may be divided into these three groups: 

1) Arithmetic. Boolean and logical operations which are essentially internal to the CPU. 

2) Memory reference instructions which offer a variety of memory addressing modes and very little else. 

3) I/O instructions which are designed to allow a considerable amount of intelligence in I/O devices. 

Let us examine each group of instructions and associated CPU logic. 

ARITHMETIC/LOGIC INSTRUCTIONS 
The power of the Nova CPU lies in the fact that many logic functions are implemented sequentially along a 
single data path through the CPU. This is illustrated in Figure 4-4. This figure shows how individual bits of 
arithmetic and logic instruction object codes directly identify the many options available as data makes a single tour 
through the CPU. Figure 4-5 provides specific arithmetic and logic instruction object code interpretations. 

Data to be operated on is always fetched from the Accumulators. Results are always returned to an Accumulator. For 
two-operand instructions. such as binary addition. the Destination Accumulator also serves as the second Source Ac­
cumulator. For one-operand instructions. such as a complement. there will be one Source Accumulator and one 
Destination Accumulator; the same Accumulator may serve as source and destination. 

As the source and destination definitions would imply. the Nova has no Secondary Memory Reference (or Memory 
Operate) instructions as we define them; for example. you cannot directly add the contents of a memory word to the 
contents of an Accumulator. 

In addition to one or two 16-bit data words. the Carry status is input to the Arithmetic and Boolean logic unit. You may 
input the Carry status as is. or you may complement it. reset it to 0 or set it to 1. If you modify the Carry status. then the 
modified Carry status becomes the new input to the Arithmetic and Boolean logic. 

You may specify one of eight Arithmetic and Logic operations. The Move operation serves both as a Move and a No 
Operation. By specifying the same Accumulator as the source and destination for a Move. Arithmetic and Boolean logic 
is bypassed. Notice that only one Boolean operation. the AND. is provided. This is an inconvenience rather than a prob­
lem. As discussed in Volume 1. Chapter 2. you can combine the AND and complement operations to generate an OR or 
an Exclusive-OR. The following Nova instruction sequences substitute for the OR and Exclusive-OR: 

;OR the contents of ACX with ACY. Leave the result in ACY 
COM ACX.ACX Complement ACX 
AND ACX.ACY AND ACX with ACY. Result to ACY 
ADC ACX.ACY Add original ACX. Result to ACY 

;Exclusive-OR ACX with ACY. Leave the result in ACY. 
;ACZ is needed for temporary data storage 

MOV ACY,ACZ Save ACY in ACZ 
ANDZL ACX.ACZ Store twice ACX AND ACY in ACZ 
ADD ACX.ACY Add ACX to ACY 
SUB ACZ,ACY Subtract twice ACX AND ACY 

The 16-bit output from the Arithmetic and Boolean logic. together with the Carry status. passes to the Shifter and Byte 
Swap logic; here the 17-bit data unit may be rotated left or right. high and low-order bytes of the 16-bit data unit may 
be swapped. or this logic may be bypassed. 

The Shifter and Byte Swap logic outputs 16 bits of data. plus the Carry status. The data and the Carry status may be 
tested separately. and based on one of eight identifiable conditions. the Program Counter contents may be incre­
mented; this provides conditional skip logic. Figure 4-5 defines the eight conditions that may cause a skip. 

Finally you have the option of preventing results from being stored in the Destination register; this enables conditional 
branch logic without modifying the contents of any Accumulator. 
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In summary, the five operations that can be specified by a single arithmetic/logic instruction may be illustrated 
as follows: 

<D CARRY 

A) Leave as is 

B) Complement 

C) Set to 1 

D) Reset to 0 

OPERATION 

A) Complement 

B) Negate 

C) Move 

D) Increment 

E) Add Complement 

F) Subtract 

G) Add 

H)ANO 

t 
SHIFT 

A) Shift left 

B) Shift right 

C) Swap bytes 

D) None of the above 

t 
SKIP 

® 
RESULT 

A) On Carry = 0 A) Discard 
B) On Carry = 1 B) To destination 
C) On Result == 0 

0) On Result '" 0 
E) Either Carry or Result is 0 

F) Neither Carry nor Result are 0 
G) Always skip 

H) Do not skip 

It would take four or five typical microprocessor instructions to perform the same operations that a single Nova instruc­
tion can perform. 

Arithmetic/logic instruction options are specified in the source program using compound mnemonics. The mnemonics 
are created as follows: 

CD 0) ® CD 0 
A) COM A) A) L A) # A) SZC 
B) NEG B) Z B) R B) B) SNC 

C) MOV C) a CVS C) SZR 

~) :~~ D) C~ to) ~) ~~R 
A SUB A SBN 
G) ADD G) SKP 

H) ~ ~. "Hl-:-

\.-/ oP7:xyz ACs.ACd.~ '-/ 
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The numbers CD . ® . (3) . 0 and (5) and the letters Al. Bl. Cl. Dl. El. Fl. G) and H) are keyed to the previous 
illustration. ACs represents ~urce Accum~or" while ACd represents "Destination Accumulator". Thus the instruc­
tion "set carry to O. then add AC 1 contents to AC2. shift the resu It left one bit. keep the resu It. but skip on carry set 
"will create the mnemonic: 

ADDZL AC1.AC2.SNC 

All logic associated with the execution of arithmetic/logic instructions is provided by the MicroNova and the 
9440 chips. 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15~ Information Bus line 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ~ Bit No. 

IZ I Z I z I A A I I I X I X I 0 10 I 0 I 0 I 0 101 0 I 0 Memory Reference instruction 

... -

T -'" T 
.... ----- Displacement 

00 Page 0 addressing 

01 Current page addressing 
10 AC2 indexed addressing 

11 AC3 indexed addressing 

'--------------- 0 Direct addressing 
1 Indirect addressing 

----------------00 Select ACO 
01 Select ACl 
10 Select AC2 

11 Select AC3 

'--------------------001 Load selected Accumulator from memory 
010 Store selected Accumulator conteRts 

in memory 

Figure 4-6. Load and Store Instruction Object Codes 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15~ Information Bus line 

8 7 6 5 3 2 0 ~ Bit No. 

Jump and Modify Memory instruction 

T --------Displacement 

'"--------------00 Page 0 addressing 

01 Current page addressing 

10 AC2 indexed addressing 
11 AC3 indexed addressing 

.... ---...... -----------0 Direct addressing 
1 Indirect addressing 

~----------------------------OOJump 

01 Jump to subroutine 
10 Increment memory and skip if zero 

11 Decrement memory and skip if zero 

Figure 4-7. Jump and Modify Memory Instruction Object Codes 
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o 1 2 3 .. 5 6 7 8 9 10 11 12 13 104 15 ~Information Bus line 

15 14 13 12 11 10 9 8 7 6 5 .. 3 2 1 0 ~Bit No. 

,011 111 AIAITIT ITlclclvlvlv Ivlv IVt---lnput/output instruction 

- t 
I/O device 
00000o Not Used 

000001 l . . 
111111 f CPU InstructIons 

...... ---------.... 00 No operation 
01 Clear Done and set Busy to start device 
10 Clear Done and Busy to idle device 
11 PUlS6 I/O control line 

------------- 000 No I/O operation 
001 Input data from A 
010 Output data to A 
011 Input data from B 
100 Output data to B 
101 Input data from C 
110 Output data to C 
111 Skip 

~--------------- Source/Destination register 
OOACO 
01ACl 
10AC2 
11 AC3 

Figure 4-8. GenerallnputlOutput Instruction Object Code Interpretation 

MEMORY REFERENCE INSTRUCTIONS 
Since the four Accumulators of the Nova CPU must provide data sources and destinations for all arithmetic and 
logic instructions. you will constantly move data between memory and one of the four Accumulators. We have 
already described the Nova addreSSing modes. Figure 4-6 illustrates memory reference instruction object codes 
and addressing mode specifications. You can load data into any Accumulator. or you can store the contents of any 
Accumulator in memory. 

There are four Jump and Modify Memory instructions. Object codes are given in Figure 4-7. The memory ad­
dressing options described earlier in the chapter apply also to the Jump and Modify Memory instructions. 

The Jump-to-Subroutine instruction requires special mention: this instruction stores the subroutine return address 
in Accumulator AC3. If you are going to nest subroutines then you must write your own subroutine to create a 
software stack. Note that even the MicroNova. which has a stack, does not use it when a Jump-to-Subroutine 
instructiqn is executed. 

MicroNova and 9440 chips provide all effective memory address computation logic and reduce memory 
reference instructions, as external logic sees them. to typical address and data transmissions with accompany­
ing control strobe signals. 

But remember. there is no such thing as a "standard" Nova memory bus. 

INPUT IOUTPUT INSTRUCTIONS 
Figure 4-8 illustrates input/output instruction object code interpretations. 

Every I/O device that communicates with a Nova minicomputer must have a Busy status 
and Done status. These are bidirectional statuses: they are modified by the CPU to control the 
liD device and they are modified by the 1/0 device to indicate the status of the I/O operation. 
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This is how the Busy and Done statuses are interpreted: 

BUSY 

o 
1 
o 

DONE 

o 
o 
1 

o 

Device Idle 
CPU "starts" device by setting Busy to 1. 
Device resets Busy to 0 and sets Done to 1 when device 
operation is complete. 
CPU resets Done to idle device. or sets 
Busy for next device operation. 
Illegal 

o 12 3 .. 5 6 7 B 9 10 11 1213 1"15~ Information Bus line 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ~ Bit No. 

10 f 1 11 I 0 I 0 11 11 111 C I c I vi V Iv I V I V I y f..- Input/Output Skip instruction 

-~~ 

~1/OdeVice 
00000o Not Used 
000001 Not Used 
111111 CPU Skip instruction (see Figure 17-10). 

------------ 00 Ski" if Busy is One 
01 Skip if Busy is Zero 
1 0 Skip if Done is One 

11 Skip if Done is Zero 

Figure 4-9. Input/Output Skip Instruction Object Code Interpretation 

You start and stop I/O devices by manipulating device Busy and Done statuses. 

Every I/O device may optionally have up to three individually addressable registers, referred 
to as Registers A, Band C. 

You transfer data between one of the four CPU Accumulators and one of the three I/O device 
registers. 

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 ~ Information Bus line 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 _____ Bit No. 

,011 11 I A I A I TIT I Tic I c 11 11 11 11 11 11 f..- CPU I/O instruction 

f ...... __________ 00 No operation 

01 Enable interrupts 
10 Disable interrupts 

11 No operation 
1...-_____________ 000 No operation 

001 Read Console switches 

010 Clear I/O devices (MicroNova) 
011 Acknowledge interrupt 
100 Output interrupt mask 
101 Clear I/O devices (9440) 
110 Halt 
111 Skip as follows: 

00 Skip if interrupt request true 

0" Skip if interrupt request false 
10 Skip if power fail flag is 1 

11 Skip if power ·fail flag is 0 
'--________________ Source or Destination Accumulator 

OOACfJ 
01ACl 
10AC2 
l1AC3 

NOVA 
I/O DEVICE 
REGISTERS 

Figure 4-10. CPU Device 3F16 Input/Output Instruction Object Code Interpretation 
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Both a status manipulation and a data transfer may be specified by a single I/O instruction; these two operations occur 
in parallel and are supported by appropriate control signals on the I/O bus. 

The Nova CPU must be able to poll the Busy and Done statuses of an I/O device. just as most microprocessors read the 
contents of an I/O device Status register. The Nova CPU responds to status condition tests by optionally performing a 
Skip (which means the Program Counter contents are incremented). This variation of 1/0 instructions is illustrated in 
Figure 4-9. 

Six bits of every 1/0 instruction object code are used to identify the 1/0 device being ad­
dressed. This gives you a total of 64 devices in the 1/0 device address space. But in order to 
enhance its instruction set. the Nova uses selected I/O device numbers to encode instructions in­
ternal to the CPU. I/O device numbers O. 1 and 3F16 are reserved for this purpose. 1/0 device 
3F 16 selects a number of interrupt related instructions whose object codes are defined in 
Figure 4-10. 1/0 device numbers 0 and 1 implement instructions illustrated in Figure 4-11. 

NOVA 1/0 
DEVICE 
ADDRESS 
SPACE 

You will have to add considerable logic beyond the 9440, or the MicroNova, if you are going to execute all 1/0 
instructions described in Figures 4-8, 4-9, 4-10 and 4-11. The only logic provided by the CPU chips themselves sup­
ports that part of the I/O operation which is exclusively internal to the CPU - and that is not much. The CPU will route 
data to or from the selected Accumulator. if needed. and it will increment the Program Counter in response to a Skip 
true condition. Everything else is the responsibility of logic beyond the CPU chip. 

o 1 2 3 4 S 6 7 8 9 10 11 12 13 14 1S ~ Information Bus line 

lS 14 13 12 11 10 9 8 7 6 S 4 l 2 1 0 ~ Bit No. 

1011 11 1 xl X Ix I xl xl xl xl 0 I 0 I 0 I 0 I 0 11 ~ CPU I/O instruction 

~ 1011001 Divide 
1011011 Multiply 

0010110 Retum 
0010100 Save 
YVOOOOO Move to Frame Pointer MicroNova 
YVOOO10 Move from Frame Pointer only 

YV01000 Move to Stack Pointer 
YV010l0 Move from Stack Pointer 

YVOll00'Push Accumulator 

Accumulator specification 

OOACO 
01 ACI 
10AC2 
11 AC3 

Figure 4-11. CPU Device 1 Input/Output Instruction Object Code Interpretation 

A NOVA CPU SUMMARY 
If you compare Nova CPU logic with microprocessors described earlier in this book, a number of minicomputer 
characteristics become self-evident. These characteristics have important implications when we look at bus 
signals, interfaces and timing; therefore they must be clearly defined. 

Minicomputer Central Processing Units are more complex than their microprocessor counterparts. Look at the number 
of operations which may be performed during execution of a single Nova instruction; only the 8X300 makes any at­
tempt to provide such serial logic. The microprocessor CPU architect has been severely restricted by the fact that only a 
limited amount of logic can be put on a chip without drastically affecting chip yield - and therefore the price of the 
microprocessor. When minicomputers were designed. making CPU logic more complex increased the size of the CPU 
card. or cards. which had some effect on eventual product price. but nothing like the microprocessor price escalations 
that result from low chip yields. 

Thus unconstrained by logic limitations. minicomputer CPU architects also designed complex system busses. requiring 
equivalently complex logic within I/O devices attached to the system busses. For example. consider the fact that Figure 
4-5 defines 32.768 different Register-Register Operate instructions. while the instruction format in Figure 4-8 
assumes an I/O System Bus that can simultaneously manipulate I/O device status while transferring data. 
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These are formidable burdens placed on the designer of a chip which is supposed to reproduce the Nova CPU - with 
the result that chip designers have elected to tackle only part of the task. Both the MicroNova and the 9440 terminate 
at 40-pin DIPs; their busses are. in consequence. less than the standard Nova System Busses. 

9440 TIMING AND INSTRUCTION EXECUTION 

We will now examine 9440 instruction timing in detail. 

9440 instructions and internal logic are timed by a master 10 MHz clock signal. Instructions are executed in 
machine cycles. This is the number of clock periods per machine cycle: 

Memory read/instruction fetch - 15 clock periods }Depends on actual 
Memory write - 15 clock periods memory timing 

I/O data in - 10 clock periods 
I/O data out - 10 clock periods 

Let us begin by looking at timing for an instruction fetch or a memory read; these two 
machine cycles have the timing illustrated in Figure 4-1 2. 

At the end of clock period 2. the three memory control signals MO. M1 and M2 are output with 
levels that identify the memory access which will be performed during the current machine cycle. 
For a memory read or instruction fetch. MO and M2 are output low while lVIT remains high. 

cp 

9440 
INSTRUCTION 
FETCH 

9440 
MEMORY 

-READ 

00 - 01 00 for instruction fetch. 1:1 for memory read __ ~ __ ~~ __ ~-' ___ I ________ ~ ______ ~ __________ -A ______ _ 

Figure 4-12. 9440 Memory Read/Instruction Fetch Timing 

An instruction fetch and a memory read are differentiated by signals 00 and 01; these signals are both low for an in­
struction fetch and both high for a memory read. The address of the memory location to be accessed is output on the 
Information Bus (lBO - iB15) beginning at the end of clock period 8. At the end of clock period 9 SYN is output low; ex­
ternallogic must use the high-to-Iow transition ofSYi\i as a strobe to latch an address off the Information Bus. External 
logic must also use the high-to-Iow transition of SYN as a trigger to input MBUSY low to the 9440. MBUSY must be in­
put low until addressed data has been read from memory and is stable on the Information Bus. At that time MBUSY 
goes high again. When MBUSY goes high. the 9440 will read data off the Information Bus. If the Memory Read 
machine cycle is to execute in the minimum 15 clock periods. then MBUSY must be low for one clock period only. 
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Figure 4-12 shows the CPU driving the Information Bus during the first two clock periods of the machine cycle follow­
ing the Read or Instruction Fetch cycle. Following an Instruction Fetch. the 9440 will output the instruction address: 
after any other memory read. the CPU will output the data just read. 

During a memory read that is not an Instruction Fetch. data should be available slightly beyond the ending transition 
(low-to-high) of SYN. During an Instruction Fetch. the CPU reads the instruction one clock period after it detects 
M'BOS'Y high: however. during any other memory read. the 9440 reads the data two clock periods later. on the same 
clock edge that generates the low-to-high transition of SYN. This may be illustrated as follows: 

CPU detects If cycle is an 
MiiOSv high Instruction Fetch. 

CPU reads data here 

If cycle is a non-Fetch 
memory read. CPU reads 
data here 

Thus. on a non-Instruction Fetch memory read, data should be available 15 to 20 nanoseconds beyond the low· 
to-high transition of SYN. 
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MBUSY is a signal used by external memory interface logic to synchronize itself with the CPU. If MBUSY is low while 
SYN is high early in any memory access machine cycle, then the high-to-Iow transition of SYN will be delayed until 
MBUSY goes high. For a Memory Read or Instruction Fetch machine cycle, the trailing edge of the low MBUSY pulse 
also acts as an end-of-machine-cycle trigger. Three clock periods after MBUSY's low-to-high transition, the machine 
cycle ends and SYN goes high again. Here is an example of MBUSY and SYN interaction during termination of a Memo­
ry Read or Instruction Fetch machine cycle: 

10 11 N+l N+2 I N+'I 
cp 

MBUSY and SYN interaction at the high-to-Iow SYN transition may be illustrated as follows: 

N is ·greater than 9 

N N+ 1 I N+2 M M+1 

CP 

I" 

Figure 4-13. 9440 Memory Write Timing 

Every instruction's execution will begin with an instruction fetch machine cycle. This machine cycle will be 
followed by internal operations, another memory read, a memory write, an 1/0 read, or an 1/0 write. 

If the instruction to be executed requires internal operations only, that is. it is an arithmetic/logic instruction. then 
internal operations are executed during clock periods 1 through 8 of the next machine cycle - which must be 
another instruction fetch machine cycle. 
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If a memory read operation is to be performed. then another machine cycle is executed. exactly equivalent to 
Figure 4-12. 

If a memory write is to be performed. then two machine cycles must follow the instruction fetch. During the first 
machine cycle the external memory address is output. During the second machine cycle data to be written to memory 
is output. Timing is illustrated in Figure 4-13. This figure is self-evident. During the first machine cycle only'M7is low 
since a memory address is being output without a read or a write operation occurring during the same machine cycle. 
During the second machine cycle only l\iiT is output low since a memory write operation alone will occur. 

During both machine cycles of a Memory Write operation. MBUSY acts as a synchronizing signal. however only the 
high-to-Iow transition of MBUSY can modify instruction execution time. If~ is low prior to"SYN making its high­
to-low transition. then the SYN high-to-Iow transition will be delayed untillVrnUS'Y' goes high. Once SYN goes low. the 
processor waits for MBUSY to go low; three clock periods after the MBUSY high-to-Iow transition. the memory write 
machine cycle will end. The subsequent low-to-high transition of MBUSY has no effect on the SYN signal. or on inter­
nal CPU operations. 

The only memory addressing modes that change instruction execution time are indirect addressing and indirect 
addressing with auto-increment or auto-decrement. 

Each level of indirect addressing is equivalent to an additional memory read and an additional memory write. In order to 
compute instruction execution times for memory references with indirect addressing. therefore. add one memory read 
machine cycle and one memory write machine cycle for each level of indirection. 

Recall that memory locations 1016 through 1 F16 are used to store addresses which. when accessed indirectly. will be 
incremented or decremented. When you use indirect addressing and specify a memory location from 1016 through 
1716. the address fetched from the specified location will be incremented. An indirect address fetched from locations 
1816 through 1 F16 will be decremented. The increment or decrement operation requires the memory address to be 
loaded into the CPU. incremented or decremented. then written back out. Loading the address into the CPU is a routine 
part of any indirect addressing sequence; however. writing the address back out represents an additional step requir­
ing an additional memory write machine cycle. This may be illustrated as follows: 

Machine Cycle 1 
Instruction 

fetch 

Machine Cycle 2 Machine Cycle 3 Machine Cycle 4 
Fetch address Increment or Perform memory 
from location decrement access 
1016 - 1 F16 address and (read or write) 

write address 
back 
~ 
Memory Write 

The increment or decrement and Skip-if-Zero instructions require an instruction fetch. a memory read and a 
mem~ry write machine cycle. Timing may be illustrated for direct memory addressing as follows: 

Machine Cycle 1 Machine Cycle 2 Machine Cycle 3 Machine Cycle 4 
Instruction Fetch data Increment or Increment 

fetch from memory decrement data Program Counter 
and write if needed 
data back 
~ 
Memory Write 

Let us now look at I/O instruction execution. 

There are no special I/O device select or control signals output by the 9440. rather external 1/0 devices must 
have select logic which is created by decoding instruction object codes on the Information Bus. This is done by 
decoding the three high-order Information Bus lines during an instruction fetch. as characterized by 00 and 01 both 
low. The three high-order Information Bus lines will at this time be 011 if the instruction to be executed is an I/O in­
struction. If these conditions are met. then the six low-order Information Bus lines must be decoded by device select 
logic. If the device code is 3F16. then all 1/0 devices must be selected simultaneously; for this to occur a special over­
riding device select signal must be created in response to device code 3F. If device code 0016 occurs. then no device 
should be selected; this requires no special select logic. rather it means that no external device srlOuld have the address 
0016. If any device code other than 0016. or 3F16 appears on the six low-order Information Bus lines. then one external 
device's select logic should go true. 
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An actual example of I/O device logic is given later in this chapter. 

If devic-e.~()de 3F16 has been output. then one of the operations defined by Figure 4-10 is about to occur. A significant 
amount of e-x-ternal logic associated with execution of these instructions may be required. A specific implementation 
consistent with standard Nova 1200 liD interface logic is given later in this chapter. Alternatively. you may create a 
variety of individual control signals unrelated to the standard Nova liD bus by suitably decoding I/O instruction object 
code bits 10 through 6. 

An I/O instruction which identifies a specific device further identifies the I/O operations which are to occur. via bits 10 
through 6 of the instruction object code (Information Bus lines IB5 through IB9). Figures 4-8 and 4-9 ishow the liD 
operations which may be specified. If data is to be input or output, then timing will conform to Figures 4-14 and 
4-15. ' But a significant amount of parallel control logic will accompany any liD data transfer. We will shortly describe 
logic which implements a typcial liD device interface. 

If you wish to slow down 9440 I/O machine cycles. you can do so by using anyone of the lines MO 9440 I/O 
- ~. Normally. the CPU outputs a high level on these three lines during an I/O machine cycle. WAIT 
However. if external logic pulls one of these lines low early enough in the I/O cycle. the 9440 will STATES 
require the interaction of SYN and MBUSY to complete the machine cycle. just as if it were a 
memory cycle. You must pull the M line low before the sixth clock period of the I/O machine cycle. 

2 3 4 

CP 

Ma.Mi'. orM2 

5 6 

Pull Mo: Mi. or M2 
low before this clock 

to extend length of 
I/O cycle. 

7 8 9 

9440 CPU reads the 

M lines at this time. 

You can complete the machine cycle by manipulating MBUSY or by releasing the M line. 

An I/O Skip on Busy or Done instruction. as illustrated in Figure 4-9. requires the addressed I/O device to return Busy 
and Done statuses to the CPU. The addressed I/O device returns these statuses on the two high-order Information Bus 
lines ii30 and i§1'. respectively. with timing conforming to Figure 4-14. 

See Table 4-4 for the sequences of machine cycles involved in 9440 command execution. 
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01 

180 -IBI5 

MO-M'1\. 

01 

180 -IBI5 

I , I I , I I I I 

I/O Data In 

CPU reads data 

Figure 4-14. 9440 I/O Data Input Timing 

I ' , 

Figure 4-15. 9440 I/O Data Output Timing 
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MICRONOVA AND 9440 INTERRUPT PROCESSING 

At the most elementary level, the MicroNova and the 9440 respond to interrupts in a very simple way. 

External logic requests an interrupt by inputting a low signal via INT REO. 

Providing interrupts are enabled, the CPU acknowledges the interrupt upon completing execution of the current 
instruction; the CPU disables its own interrupt logic, saves the Program Counter contents in memory location 
0000, then jumps indirect via location 0001. Thus memory location 0001 must contain the address of the first inter­
rupt service routine instruction. 

Return address following interrupt service 

Starting address for interrupt service routine 

xxxx + 1 

YYYY 

I 

0000 
0001 

0002 

0003 

0004 

0005 

Interrupt acknowledged here xxxx ==§
I : xxxx-l 

This instruction will be executed xxxx + 1 

follOWing interrupt service xxxx + 2 

xxxx + 3 · . · . · . 

~
• ·YYYY-l 

Interrupt service routine starts here YYYY 

YYYY + 1 

YYYY +2 

A single interrupt service routine will be executed in response to any external interrupt. In order to discriminate 
between interrupts. the interrupt service routine must identify the source of the interrupt. then jump to an appropriate 
individual program. This may be illustrated as follows: 

Initial 
yyyy 

In!errupt 

Service 

Routine 

I l 

t I t 
Device 1 Device 2 Device 3 Device 4 Device 5 

Interrupt Interrupt Interrupt Interrupt Interrupt 

Service Service Service Service Service 

Routine Routine Routine Routine Routine 
etc ... 

l J 

J 1 
Return 
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There will be a separate device interrupt service routine for every I/O device capable of representing an interrupt. 

There are many ways in which the initial interrupt service routine may identify the interrupting 1/0 device in a 
multiple interrupt configuration. 

The most primitive method used to identify an interrupting I/O device is to test the device's Done status. Standard 
Nova protocol requires an I/O device to request an interrupt when it sets its Done status. This may be illustrated as 
follows: 

Interrupt 
Request 

False 
False 
True 

Busy Done 

o 0 
l' 0 
o 1 

Device idle 
Start I/O operation 
End I/O operation 

Primitive I/O device interface logic will request an interrupt by applying a low signal at INT REQ when it sets its Done 
status high. Now the initial interrupt service routine will execute a sequence of "Skip on Done False" instructions in 
order to identify the highest priority interrupting device. This may be illustrated as follows: 

SKPDZ DEVl 

JMP IDEVl 

SKPDZ DEV2 

JMP IDEV2 

SKPDZ DEV3 

Done =0 

Done ';'0 

Jump to Device 1 

Interrupt routine 

Jump to Device 2 

Interrupt routine 

etc etc. 

Done =0 

The order in which the initial interrupt service routine program logic tests device Done statuses becomes interrupt 
priority. You can modify this priority sequence at any time simply by changing the program. 

A faster method of identifying an interrupting device is to daisy chain the interrupting devic~s. Daisy chain logic 
has been described in Volume 1. and again in Chapter 6 of the Osborne 4 & 8-Bit Microprocessor Handbook (in con­
junction with the 8048). Daisy chains are resolved by an interrupt acknowledge signal: but there is no interrupt 
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acknowledge signal output by the MicroNova or the 9440: rather an interrupt acknowledge instruction is 
executed. This is an I/O instruction addressing device 3F16: bits 10. 9. and 8 (lB5. IB6. and IB7) of the instruction object 
code must be decoded in order to create an interrupt acknowledge signal. Here is appropriate logic: 

00 

01 

iiiiO 
iim --a.--..... 
iBi2 
iii3 
iBi4 --o--~ 
iBiS 

D Q INTA 

CK 

Recall that the Information Bus is low true: that is. a low logic level represents a bit value of 1. To ensure that INTA is 
generated only when a valid instruction code is on the Information Bus. it should be qualified by SYN low and MBUSY 
low-to-high transition. This is illustrated in Figure 4-16. 

The highest priority interrupting device identifies itself by placing its device code on the Information Bus lines. The 
CPU stores the device number in one of the four Accumulators. Thus the interrupt acknowledge instruction is an I/O 
Data In instruction. Interrupt acknowledge timing is illustrated in Figure 4-16. 

Interrupt enable and disable logic exists separately at the CPU and at external 1/0 devices. 

At the CPU all interrupts are disabled as soon as an interrupt is detected. You can disable interrupts at any other time 
by executing a disable interrupt instruction (NIOC CPU). 

In order to enable interrupts you must execute an interrupt enable instruction (NIOS CPU): when an NIOS CPU instruc­
tion is executed. interrupts are enabled following execution of the next instruction. This next instruction will usually be 
a Return instruction: 

NIOS 
JMP 

CPU 
@O 

:Enable interrupts 
:Return from interrupt service routine 
;Interrupts are now enabled 

When nested interrupts are not allowed. all interrupts are disabled following the interrupt detection: interrupts remain 
disabled until the end of the interrupt service routine. You terminate the interrupt service routine with the two instruc­
tions illustrated above: one re-enables interrupts. the other returns from the interrupt service routine. Interrupts are not 
actually re-enabled until after the Return instruction has been executed: this prevents pending interrupts from being 
acknowledged before you have finally exited the current interrupt service routine. 
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Machine Cycle 1 Interrupt Acknowledge Instruction Fetch Machine Cycle.2 Data In 

MO 

MT\. 

M2 

~ 01 Co) 
Co) 

00 

180 - 'iBiS 

SYN 

MBUSY 

INTA 

Figure 4-16. 9440 Interrupt Acknowledge Instruction Execution Timing 



If you want to nest interrupts then you must execute an interrupt enable instruction within the interruptable interrupt 
service routine. But make sure that you do not re-enable interrupts until the initial interrupt service routine has ex­
ecuted; remember, the initial interrupt service routine is determining the source of the interrupt - and it makes no 
sense to allow another interrupt to occur until this determination has been completed. 

You can disable interrupts selectively at external devices that have local interrupt disable logic. This is done 
using the Mask Out instruction (MSKO); MSKO is another I/O instruction addressing device 3F16. The MSKO in­
struction outputs data from one of the CPU Accumulators onto the Information Bus. Every I/O device capable of having 
its interrupt logic disabled must be connected to one of the Information Bus lines. When the MSKO instruction is ex­
ecuted, the I/O device must first decode the ~SKO instruction in order to activate its interrupt disable logic; subse­
quently. if the Information Bus line to which device interrupt disable logic is connected is low, then interrupt request 
logic must be disabled locally. Timing is illustrated in Figure 4-17. 

In order to re-enable interrupts at any external device you output a new mask with a high level on the Information Bus 
line to which the device's interrupt disable logic is connected. 

Interrupt logic again demonstrates the minicomputer emphasis of the Nova. We have assumed that an external 
device capable of requesting interrupts can decode I/O instruction object codes on the Information Bus and have a con­
siderable amount of logic associated with Busy, Done and Interrupt request flags. 

01 

00 

MSKO 

Figure 4-17. 9440 Mask Out Instruction Execution Timing 

MICRONOVA AND 9440 DIRECT 
MEMORY ACCESS LOGIC 

MicroNova and 9440 direct memory access logic differ markedly. 

I 
I 
I 
I 

Disable Interrupt if is line is low (1) 

Enable interrupt if iii line is high 10) 

In both cases external logic represents a DMA access by inputting a low signal via DCH REO . 
..,...,.,,....,,,......,.,..,...,. 

The MicroNova responds by acknowledging the DMA request. This is done by outputting a high I/O DATA 1 with a low 
I/O DATA2 signal. External logic then identifies the direction of the data transfer via the I/O INPUT control signal. Sub­
sequently. MicroNova logiC performs the entire DMA transfer by creating appropriate I/O Bus and Memory Bus signal 
sequences - but only data may be transferred in only one direction. 
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The 9440 has a more primitive DMA capability. It responds to DCH INT by outputting lines 01 and 00 low and high. 
respectively. and floating the Data Bus. External logic must implement the actual DMA transfer. 

Standard Nova protocol allows four DMA operations to be defined by external logic via the DCHMO and DCHM1 1/0 
bus signals. These are the four DMA operations that may be defined: 

DCHMO 

o 
o 
1 
1 

DCHM1 

o 
1 
o 
1 

Add to memory 
Data in 
Increment memory 
Data out 

The MicroNova. as we have already stated. handles data in and data out only: increment memory and add to memory 
are not available. 

The 9440 on the other hand. does nothing in response to a DMA request other than float the Information Bus. All 
external logic associated with DMA operations must exist outside the 9440 chip. We will describe suitable 
logic later in this chapter. 

THE MICRONOVA AND 9440 INSTRUCTION SETS 

Table 4-2 summarizes the instruction sets for the MicroNova and the 9440. Observe that there are some instruc­
tions available with MicroNova that the 9440 lacks. 

The power of the Nova instruction set is derived from the fact that many instructions perform multiple operations. 
Register Operate instructions. for example. allow you to set. or reset or complement a Carry status before the specified 
operation is performed. Primary Memory Reference and Register Operate instructions allow you to also perform data 
shifts. or to swap the high and low-order bytes of the data word being moved or generated. 

Primary Memory Reference and Register Operate instructions also allow you to perform a conditional skip based on the 
results of the operation. 

It is the ability of the Nova instruction set to perform a combination of operations. during a single instruction's execu­
tion. that makes the instruction set so effective. 

THE BENCHMARK PROGRAM 
Our benchmark program may be illustrated as follows for the MicroNova and the 9440: 

LDA 2.CNT LOAD WORD COUNT COMPLEMENT INTO AC2 
LDA O.IOBUF LOAD 10BUF BASE ADDRESS INTO AUTO-
ST A 0.10 INCREMENT LOCATION 
LDA O.@TABLE LOAD ADDRESS OF FIRST FREE TABLE WORD 
STA 0.11 INTO AUTO-INCREMENT LOCATION 

LOOP LDA 0.@10 LOAD NEXT BYTE FROM 10BUF 
STA 0.@11 STORE IN NEXT TABLE WORD 
INC 2.2.SZR INCREMENT WORD COUNT SKIP IF ZERO 
JMP LOOP RETURN FOR MORE 
LDA 0.21 RETURN NEW ADDRESS OF FIRST FREE TABLE 
STA O.@TABLE WORD 

This benchmark program uses indirect addressing with auto-incrementing in order to sequentially access IOBUF and 
TABLE. We begin the program by loading the word count (CNT) into Accumulator 2. and table base addresses into 
memory words 1016 and 1116. We assume that the address of the first free word in TABLE is stored in the first word of 
TABLE: thus we can fetch the address of the first free TABLE word by executing a load to Register 0 with indirect ad­
dressing. 

Data is moved by a four-instruction loop. Two instructions load data from 10BUF and store data in TABLE using indirect 
addreSSing with auto-increment. Next we increment the counter stored in Register 2 and skip the following instruction 
upon detecting a zero count. The following instruction is a jump back to the beginning of the loop. 

The final two instructions simply restore the new address for the first free TABLE word into the first word of the TABLE. 

The benchmark program makes no assumptions. The source and destination tables may be any size and any number of 
data words may be transferred. limited only by the available memory space. 
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The following notation is used in Table 4-2. 

An "X" in the column labeled "9440" indicates that the instruction is available on the 9440 CPU. 

AC 

ACX 

C 
D 
DEV 

DEVX 

DEVBD 

EA 

FP 

ION 

PC 

PM 

S 
SP 
(CS#) 

(f) 

Any of the four Accumulators. 

A specific Accumulator. For example, AC1 is Accumulator 1. 

Carry status 

An Accumulator which serves as the destination for the results of an operation. 

A 6-bit device code. 

A specific device register. For example, DEVA is Device Register A. 

Device Busy-Done flags. 

Effective address determined by @DISP UX ). 

Frame Pointer (not present in 9440). 

Interrupt ON flag 

Program Counter 

Priority Mask 

An Accumulator which serves as the source of an operand. 

Stack Pointer (not present in 9440). 

Represents three options which are used by the Register-Register operations. 

C is a 2-bit field which determines the carry state prior to the ALU operation. 

Coded Character Result Bits Operation 
option omitted 00 No operation 

Z 01 Set carry to 0 
o 10 Set carry to 1 
C 11 Complement carry 

For example, ADDO 2,2 would set carry to 1 before adding AC2 to AC2. 

S is a 2-bit field which determines how the result of the ALU will be shifted. 

Coded Character 
option omitted 

L 

R 

S 

Result Bits 
00 
01 

10 

11 

Operation 
No shift 
Shift result and carry left 
one bit 
Shift result and carry right 
one bit 
Swap resu It bytes 

For example, MOVS 1,2 would swap the bytes of AC 1 and store into AC2. 

# is a 1-bit field which determines whether the resu It is stored in ACD. 

Coded Character Result Bits Operation 
option omitted 0 Load result into ACD 

# 1 Do not load result into ACD 

For example, NEGOL# 1,2 wou Id set carry to 1 then negate AC 1, shift the resu It and carry left one bit 
but would not store into AC2. 

A 2-bit 1/0 command whose meaning depends on whether the CPU or another device is being 
referenced. 

CPU 
No operation 
Set Interrupt 
On to 1 
Set Interrupt 
On to 0 
No operation 

f Device 
00 No operation 
01 Start device by setting Busy to 1 

and Done to 0 
10 Idle device by setting Busy to 0 

and Done to 0 
11 Pulse a special device dependent 

line 
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CSKCND) A 3-bit skip-on-condition field which is used by the Register-Register Operate instructions. 

Coded Character Result Bits Operation 
option omitted 000 No operation 

SKP 001 Always skip 
SZC 010 Skip if Carry = 0 
SNZ 011 Skip if Carry = 1 
SZR 100 Skip if result = 0 
SNR 101 Skip if result =1= 0 
SEZ 110 Skip if either carry or resu It = 0 
SBN 111 Skip if both carry and result =#= 0 

(@ ) DISP (.IX) Generates the address EA 

(t) 

x<y,z> 
[ ] 

[[]] 

A 

@ is the indirect bit. If @=1 then indirection is specified. 
DISP is an 8-bit address value. 
(IX) is a 2-bit field which indicates the addressing Mode: 
Bits are Mode 

00 Zero page addressing. DISP is an unsigned address 
between 0 and 256. 
EA = DISP 

01 PC relative addressing. DISP is a signed two's 
complement address displacement. 
EA = DISP+ [ PC] 

10 Indexed addressing via AC2. DISP is a signed 
two's complement address displacement. 
EA = DISP+ [ AC2] 

11 Indexed addressing via AC3. DISP is a signed 
two's complement address displacement. 
EA = DISP+ [ AC3] 

A 2-bit 1/0 test field whose meaning depends on whether the CPU or another device is referenced. 
CPU t Device 

Test for lr;te';TUpt On=1 00 'TeStTor Busy=1 
Test for Interrupt On=O 01 Test for Busy=O 
Never skip 10 Test for Done= 1 
Always skip 11 Test for Done=O 

Bits y through z of the quantity x. [AC] <5,0> is the low six bits of the specified Accumulator. 

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets, 
then the designated register's contents are specified. If a memory address is enclosed within the 
brackets, then the contents of the addressed memory location are specified. 

Implied memory addressing; the contents of the memory location designated by the contents of a 
register. 

Logical AND 

Data is transferred in the direction of the arrow. 

Under the heading of STATUS in Table 4-2, an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X, it means that the status maintains the value it had before the instruction was ex­
ecuted. 
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Table 4-2. MicroNova and 9440 Instruction Set Summary 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES 9440 OPERATION PERFORMED 

C 

NIOIfl DEV 2 X [DEVBD) -f 

DIA(f) AC,DEV 2 X 
Set the device's Busy and Done flags according to I/O command. 

[AC) - [DEVA) 
[DEVBD) -f 

Read device's A buffer into Accumulator, Set the device Busy arid Done fla9s, 
DIB(f) AC,DEV 2 X [AC) - [DEVB] 

[DEVBD] -f 

Read device's B buffer into Accumulator, Set the device Busy arid Done. flags, 
DIC(f) AC,DEV 2 X [AC] - [DEVC] 

~ [DEVBD) -f 

w 
CD g Read device's C buffer into Accumulator, Set the device Busy and Done flags, 

DOA(f} AC,DEV 2 X [DEVA) - [AC) 
[DEVBD) -f 

Write Accumulator into device's A buffer. Set the device Busy and Done flags, 
DOB(f) AC,DEV 2 X [DEVB) - [AC) 

[DEVBD) -f 

Write Accumulator into device's B buffer. Set the device Busy and Done flags. 
DOC If) AC,DEV 2 X [DEVC) - [AC) 

[DEVBD] -f 

Write the Accumulator into device's C buff~r. Set the Busy and Done flags. 
SKP(t) DEV 2 X If T is true for DEV, [pc) - [pc) + 1 

Skip if I/O test true, 
10RST X [PM]-O 

liON) -102 

The Busy and Done flags in all I/O devices are set to O. The Priority Mask is set to 0 and 
interrupts are turned on. 

~ _L--



Table 4-2. MicroNova and 9440 Instruction Set Summary (Continued) 

STATUS 
tyPE MNEMONIC OPERAND(S) BYTES 9440 OPERATION PERFORMED 

I 

C 

w 
LOA AC,( ",) DISP (.IX) 2 X [AC]- [EA] »u ex:ex:z 

Load contents of memory to Accumulator. «Ow 
::!:::!:II: 

STA AC,( Ii) OISP (,IX) 2 X [EA]- [AC] f~~ Store contents of Accumulator into memory. II: 

ADD(CS#) S,D(SKCND) 2 X X [0]- [0]+ [S] 

Add contents of Source register to contents of Destination register. Perform the specified 
options. 

SUB (CS#) S,OtSKCNO) 2 X X [0]-[0]- [5] 
w Subtract contents of Source register from contents of Destination register. Perform the ~ 

.J:o 
W 
CD 

« specified options. ex: 
[0] - [Si + 1 (twos complement) w NEG (CStJ) S,DtSKCND) 2 X X a. 

0 Place twos complement of the Source register contents in the Destination register. Perform ex: 
the specified options. w 

~ 
ADC(CSti) S,OI.SKCNO) 2 X X [0]- [0]+ [5] III 

C; 
Add the ones complement of the Source tegister contents to contents of Destination register. w 

ex: 
Perform the specified option. ci: 

w MOV(CS") 5,0 (.SKCND) 2 X X [0]-[5] 
~ 
III Move contents of Source register to Destination register. Perforj'Tl the specified options. C; 

INC (CS fI) 5,0 (.SKCND) 2 X X [0]-[5]+1 w II: 

COM (CStt) S,Oi.SKCNO) 2 X X 
Place incremented Source register contents into Destination register. Perform specified options. 

[0]-[5] 

Complement the Source register contents, then move to Destination register. Perform 
specified options. 

AND (CS fI) S,OtSKCNO) 2 X X [0]- [0] A [5] 

AND the Source register contents with the Destination register contents. Perform specified 
options. 



Table 4-2. MicroNova and 9440 Instruction Set Summary (Continued) 

STATl,IS 
TYPE MNEMONIC OPERANDIS) BYTES 9440 OPERATION PERFORMED 

C 

a: 
[ACO] -(( [ACl] * [AC2])+ [ACO)) <31,16> w MUL 2 I-

sw~ [Acll-l( [ACl] * [AC2])+ [ACO}) < 15,0> 
wI-;:) Multiply contents of AC 1 by contents of AC2 and add contents of ACO to result. a:<Cz ,11:- DIV 2 X [ACll-( [ACOJ.[ACll)/[AC2] (quotient) IIIwl-
WQ.Z [ACO] -( [ACOl,[ACl])/ [AC2] Iremainder) 1-00 S g Divide the 32-bit quantity contained in ACO (high order) and AC1 (low order) by the 
w contents of AC2. II: 

.1=0-

8 
PSHA AC 2 [SP] - [SP] + 1; [[SP)) - [AC) 

Push the Accumulator onto the Stack. 
POPA AC 2 [AC] - [[SP]; [SP] - [SP] - 1 

Pop the top of the Stack to the Accumulator. 
SAY 2 [(SP] + 1]- [ACO] 

[(SP] +2] - [ACll 
~ [(SP]+3] - [AC2] CJ 
<C [(SP] +4] - [AC3] 
l-
I/) ([SP]+5] <14,0> - [PC] 

[(SP] +5] <15> - [C) 

[SP] - [Spj + 5 

[FP] - [SP] 

Save a return block in the Stack. 
MTSP AC 2 [SP] - [AC1<14,0> 

Move the low 15 bits of the Accumulator to the Stack Pointer. 
MTFP At: 2 [FP] - [AC] <14,0> 

Move the low 15 bits of the Accumulator to the Frame Pointer. 



f" 
~ 

TYPE 

Q 
w 

~~ Uz 
:!i= 
cn Z 

0 y 

Q, 

:E 
~ 
"') 

w 
2~ i=g 
,J,J 

~u 
a: 

MNEMONIC OPERAND(S) 

MFSP AC 

MFFP AC 

JMP (u)DISP(,IX) 

JSR (u)DISP(,IX) 

RET 

RTCEN(f) 

RTCDS(f) 

Table 4-2. MicroNova and 9440 Instruction Set Summary (Continued) 

STATUS 
BYTES 9440 OPERATION PERFORMED 

C 

2 [AC] <14,0> - [SP] 
[AC] <15>-0 

MOve the Steck Pointer to low 15 bite of Accumulator. 
2 [AC] <14,0> - [FP] 

[AC] <15>-0 

Move the Frame Pointer to the Accumulator. 

2 X [PC]-[EA] 

Branch unconditIoneI. 
2 X [AC3]-[PC]+1 

[PC] ...... [EA] 

Branch to subroutine. 

2 X [SP] - [FP] 

[C) - [[SP)) <15> 
[PC] - [[SP)) <14,0> 

[AC3] - [(SP] - 11 

[AC2] - HSP] - 21 
[ACl] - HSP] - 31 
[AC2] - HSP] - 4] 
[SP] - [SP] - 5 

Return from subroutine end pop e retum block off the Stick. 

2 X [ION] -f 

Eneble Reel Time Clock then let ION vie I/O commend. 
2 X [ION] -f 

DiAbIe R_I Time Clock then let ION vii I/O commend. 



Table 4-2. MicroNova and 9440 Instruction Set Summary (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES 9440 OPERATION PERFORMED 

C 

c ISZ (II)DISPI.IX) 2 x [EA] - [EA] + 1 
~~z~ If [EA] =0 then [PC] - [PC] + 1 
owO!-

Increment memory contents and skip if zero. ~!-ci.Q 
wc(-z DSZ (II)DISPI.IX) 2 X [EA]- [EA]- 1 
~~~8 If [EA] = 0 then [PC] - [PC] + 1 

0 
Decrement memory contents and skip if zero. 

INTEN 2 X [lON]-1 

Enable interrupts. Same as NIOS CPU. 

~ INTDS 2 X [lON]-O 

1 Disable interrupts. Same as NIOC CPU. 
N INTA(f) AC 2 X [AC] <5,0> -DEV 

!- [lON]-f 
a. 

The 6-bit device code of the device closest to the CPU that is requesting an interrupt is loaded :;) 
I:£: 

into the low six bits of the Accumulator. Set ION via I/O command. a: w 
MSKO(f) AC X [PM]- [AC] !-

:!!: [ION]-f 

Move contents of Accumulator to Priority Mask. Set ION via I/O command. 
TRAP 2 [26,.] - [PC] 

[PC]- [27,.] 
Performs a software interrupt. 

SKPIt) CPU 2 X If t is true. [PC]- [PC] + 1 

If interrupt or power fail condition satisfied. skip next instruction. 
I 

HALT(fI 2 X [lON]-f 

I Set ION via I/O command. then halt. 



Table 4-3. MicroNova and 9440 Instruction Set Object Codes 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

9440 
PERIODS 

ADC(CS#) S,DI.SKCND) 1 ssdd 1 OOrrccnwww 2 5/7 X 
ADDlCS#) S,DI.SKCND) 1 ssdd 110rrccnwww 2 5/7 X 
ANDlCS#) S,DI.SKCND) 1 ssdd 111 rrccnwww 2 5/7 X 

COMICS#) S,DI.SKCND) 1 ssddOOOrrccnwww 2 5/7 X 

OlAf AC,DEV 011 aaOO1 ffpppppp 2 15 X 

DIBf AC,DEV 011aaOllffpppppp 2 15 X 

DICf AC,DEV 011aal0lffpppppp 2 15 X 

DIV 7641 2 123 

DOAf AC,DEV 011aa01Offpppppp 2 10 X 

DOBf AC,DEV 011aa l00ffpppppp 2 10 X 
DOCf AC,DEV 011aallOffpppppp 2 10 X 

DSZ (f1:)DISPI,IX) 000llixxbbbbbbbb 2 8/10" X 
HALTf 011aallOffllllll 2 10 X 
INC(CS#) S,DI.SKCND) lssddOllrrccnwww 2 5/7 X 
INTAf AC 011aaOllffllllll 2 15 X 
INTDS 60BF 2 10 X 
INTEN 607F 2 10 X 
IORST 011aa01Offllllll 2 10 X 
ISZ ( f1i)DISPI,IX) 000 10ixxbbbbbbbb 2 8/10" X 
JMP ('f1;) DISP I,IX) OOOOOixxbbbbbbbb 2 6/8· X 
JSR ( f1i)DISPI,IX) 00001 ixxbbbbbbbb 2 7/9* X 
LOA AC (· f1i),DISP (,IX) 011aaixxbbbbbbbb 2 6/8* X 
MFFP AC 011 aaOOO 1 00000o 1 2 8 
MFSP AC 011aaOl010000001 2 7 
MOV(CSIf) S,DI.SKCND) lssddOl0rrccnwww 2 5/7 X 
MSKOf AC 011aal00ffll1111 2 10 X 

MTFP AC 011aaOOOOOOOOOOl 2 6 

MTSP AC 011aaOl000000001 2 6 
MUL 76Cl 2 86 
NEG(CS11) S,DI.SKCND) 1 ssddOO 1 rrccnwww 2 5/7 X 

NIOf DEV 01100000ffpppppp 2 10 X 
POPA AC 011aaOl110000001 2 7 

PSHA AC 011aaOl100000001 2 7 
RET 6581 2 15 
RTCDSf 0110101Offl11111 2 10 X 
RTCENf 011100lOffllllll 2 10 X 
SAY 6501 2 16 
SKPt 01100111ttpppppp 2 15/17 X 
SKPT DEV 01100111ttllllll 2 15/17 X 
STA CPU 010aaixxbbbbbbbb 2 6/8* X 
SUB(CS#) AC,( ,,) DISP (,IX) 1 ssdd 101 rrccnwww 2 5/7 X 
TRAP S,DI.SKCND) 1 ssddqqqqqqq 1000 2 9 

*Direct addressing. For indirect addressing, add two clock periods for each level of indirection. For auto­

increment or auto- decrement locations, add three clock periods, plus two for each level of indirection. 

The following symbols are used in Table 4-3: 

aa Two bits selecting an Accumulator 

bbbbbbbb 8-bit signed two's complement address displacement 

cc Two bits selecting the carry option 

dd 

ff 

n 

pppppp 

rr 

ss 

Two bits selecting the destination Accumulator 

Two bits selecting the I/O command 

One bit selecting indirect addressing 

One bit choosing the no load option 

Six-bit device number 

Two bits determining the shift option 

Two bits choosing the source Accumulator 
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tt 
www 

xx 

Two bits choosing the I/O test 

Three bits selecting the skip-an-condition option 

Two bits selecting the index option 

Execution times shown are for MicroNova. Where two execution times are shown (for example. 5/7). the second is the 
instruction time if the skip or branch is taken. See Table 4-4 for 9440 execution times. 

Table 4-4 shows the sequences of machine cycles by which the 9440 executes instructions, interrupt and 
data channel requests, and commands received via lines C3 - CO. 
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Table 4-4.9440 Instruction Execution 

INSTRUCTION CYCl E TYPE AND SEQUENCE·· EXECUTION 
OR 

NO. OPERATION FETCH READ WRITE 

1 Jump 1 

2 Jump Indirect 3 1 2 

3 Jump to Subroutine 1 

4 JSR Indirect 3 1 2 

5 Increment and Skip if Zero 3 1 2 

6 ISZ Indirect 5 1,3 2,4 

7 Decrement and Skip if Zero 3 1 2 

8 DSZ Indirect 

9 Load Accumulator 

10 LOA Indirect 

11 Store Accumulator 

12 STA Indirect 

13 Complement 

14 Negate 

15 Move 

16 Increment 

17 Add Complement 

18 Subtract 

19 Add 

20 AND 

21 ALU with Skip 

22 I/O Data In 

23 1.0 Data Out 

24 Skip on Busy or Done 

25 Interrupt 

26 Data Channel 

27 Wait 

28 Examine Accumulator 

.29 Deposit Accumulator 

30 Load PC 

31 Examine Memory 

32 Examine Next 

33 Deposit Memory 

34 Deposit Next 

35 Continue 

·For 9440 System using 
a 10 MHz oscillator. 

5 1,3 2,4 

2 1 

4 1.3 2 

3 1 2 

5 1,3 2,4 

1 

1 

1 

1 

1 

1 

1 

1 

1,2 

2 

2 

2 

5 3 2.4 

2 

2 

2 

3 

3 

2 

··e.g., No.6, ISZ Indirect: 
1 st cycle - READ 

LD MAR I/O OUT I/O IN 

.;A~!I{ 

1 

1 

1 

1 

2 1 

2 1 

1 

1 

1 

2 1 

2 1 

1 

2nd cycle - WRITE 
3rd cycle - READ 

Reprinted by permission of Fairchild Camera and Instrument Corporation. 

4-45 

TIME" 
WAIT DCH (/JS) 

1.5 

4.5 

1.5 

4.5 

4.5 

7.5 

4.5 

7.5 

3.0 

6.0 

4.5 

7.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

3.0 

2.5 

2.5 

2.5 

7.5 

1 1.0 

1 1.0 

2.0 

2.0 

2.5 

2.5 

2.5 

4.0 

4.0 

2.5 

4th cycle - WRITE 
5th cycle - FETCH 
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Figure 4-18. 9440 Information Bus Demultiplexing Logic 
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9440 - NOVA BUS INTERFACE 

We will now examine logic which expands the 9440 pins and signals to the standard Nova 1/0 bus and to a typi­
cal microcomputer memory bus. Table 4-1 identifies the Nova 1/0 bus that is created. 

We will also illustrate that part of 1/0 device interface logic which is common to any 1/0 device - that is, logic 
associated with Busy, Done and Interrupt flags. 

Our discussion of logic needed to create a memory bus is quite general. reflecting the fact that there is no standard 
Nova memory bus. We will therefore limit ourselves to demonstrating. in general. how typical memory bus signals may 
be created from 9440 signals. But we will be specific in describing logic that expands the 9440 interface to a standard 
Nova I/O bus. 

The 9440-Nova bus interface description is divided into three parts: 

1) ExpanSion of the Information Bus into various Address and Data Busses required by the I/O and memory 
references. 

2) Creation of I/O interface control signals. 

3) Creation of memory interface control signals. 

We will examine each of the three logic expansions in turn. 

9440 INFORMATION BUS EXPANSION 
These four busses must be created out of the bidirectional 16-bit Information Bus: 

1) A bidirectional. 16-bit Memory Data Bus. 

2) An output only. 15-bit Memory Address Bus. 

3) A bidirectional. 16-bit I/O Data Bus. 

4) An output only. 6-bit I/O Device Address Bus. 

We must also latch I/O instruction object codes into a buffer out of which I/O instruction code bits can be read by I/O 
control signal logic. 

The 9440 Information Bus is low true; this means a low signal level represents a binary 1, while a high signal 
level represents a binary O. Standard Nova 1/0 Data and Address Busses are also low true; we therefore do not 
need to invert signals during multiplexing and demultiplexing. 

There are many ways in which the 9440 Information Bus may be multiplexed to create the four required busses. 
We illustrate one possibility in Figure 4-18. This logic uses LS245 8-bit bidirectional tristate buffers to generate the 
two bidirectional Data Busses. while 8-bit and 6-bit gated. edge-triggered flip-flops create the Address Busses and the 
Instruction Object Code register. 

The Data Bus buffers each have a gate (output enable) input and a data direction input. The gate inputs are low true. 
Logic shown in Figure 4-18 selects the LS245 buffers while valid memory data or valid I/O data can exist. Within 
these select periods a data direction control signal is created to ensure that data flows in the correct direction. 

For the Memory Data Bus. MDO - MD15. the LS245 buffers must be selected either during a read or a write operation. 
as identified by MO or M1. But these two signals span addr~ and data occurring on the Information Bus. Valid data 
exists on the Information Bus when MBUSY is high while SYN is low: 

CPU drives address here 
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This timing is also illustrated in Figures 4-12 and 4-13. The logic of Figure'4-18 uses an LS74 flip-flop clocked by 
the low-to-high transition of MBUSY. This ensures that data is not driven in the time shaded in the preceding illustra­
tion - between the high-to-Iow transition of SYN and the high-to-Iow transition of MBUSY. 

MO is used as the Memory Data Bus data direction control. 

The I/O Data Bus buffer logic is somewhat simpler. The Information Bus is dedicated to transferring I/O data for the en­
tire duration of a data input or data output machine cycle, as defined by 01 high and 00 low: these two signals are 
therefore used to create gate (output enable) logic. The direction of the I/O data transfer is taken from IR7: this bit of the 
I/O instruction object code defines the direction of an I/O data transfer, as illustrated in Figure 4-18. 

For the Address Busses we do not use buffers: rather. we use gated-clock, edge-triggered flip-flops. This allows the ad­
dress being output to be held stable on the Memory Address Bus, or the I/O Address Bus, after it is no longer on the In­
formation Bus. 

In the case of the Memory Address Bus, the gate inputs are tied to M2, which will be low whenever a memory address 
is being output on the Information Bus. The high-to-Iow transition of SYN is intended to act as a memory address 
strobe: therefore it is inverted to clock the Memory Address Bus flip-flops when M2 is low. Observe that there are only 
fifteen lines on the Memory Address Bus: the high-order bit of a 16-bit memory address is reserved to indicated an in­
direct address. Note also that the LS377 outputs are not tristate: therefore the Memory Address Bus will always hold 
the address of the most recently accessed memory location. 

Two LS378 6-bit gated-clock flip-flops are used to latch the lower 12 bits of instruction object codes off the Memory 
Data Bus, c~ati~ the I/O Address Bus and the Instruction register. The six low-order output lines provide the I/O Ad­
dress Bus, SO - S5. As you can see in Figure 19-8, only the low-order 11 bits of the I/O instruction need to be decoded 
by I/O logic: therefore we use the 16-pin LS378 parts, rather than the 20-pin LS377s which we used for the Memory 
Address Bus. Like the Memory Address Bus, the Instruction register and I/O Address Bus will always hold the most re­
cently latched data. The Instruction register flip-flops are clocked by the low-to-high transition of M'imSY whenever an 
instruction object code is on the Memory Data Bus. This condition is guaranteed by logic which enables the clock only 
when 01 and 00 are both low, signifying an Instruction Fetch machine cycle. If we wished to latch only I/O instruc­
tions, we could change the gate logic as follows: 

MDT 
- ------~ ~---..... ~ to G of each LS378 MOO P Mg~ ; 

Latching the instruction object code only when its upper three bits are 011 (MOO high, MD1 and MD2 low) means that 
the I nstruction register will only hold I/O instructions. Latching all instructions is sufficient since an I/O execution 
machine cycle (01 high and 00 low) follows the fetch of an I/O instruction. Our logic will use lines 01 and 00 to indi­
cate execution of an I/O instruction. 

Let us now examine I/O bus control signal logic. 

9440-NOVA I/O BUS INTERRUPT SIGNALS 
Three signals on the standard Nova I/O bus are used by interrupt logic: INTR. INTA and INTP. 

INTR is the standard interrupt request signal. This signal can be tied directly to the9440 INT REO input. 

The interrupt acknowledge signal INTA is created in response to execution of the interrupt acknowledge instruction. 
We will describe logic which creates INTA along with other I/O bus control signals when we discuss Figure 4-19. 

INTP is the initial input to the highest priority device in an interrupt daisy chain. This may be illustrated as follows: 

INTA 

T I T 
Device Device Device 

at c. 
1 2 3 

j 4 4 
"PQij'f 

PiN = Priority In POUT = Priority Out 
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INTP may be connected to the complement of the 9440 output INT ON. in which case priorities within a daisy chain will 
not be resolved while interrupts are disabled. Frequently the initial j5jj\j'input to a daisy chain will be tied to ground and 
INTP will not be used. Now interrupt priorities will be arbitrated whether or not interrupts have been enabled. 

As you will see. it takes very little logic to expand the 9440 interrupt signals to standard Nova I/O bus interrupt lines. 
But a considerable amount of interrupt-related logic must be present at external device controllers -logic which we 
will describe later in this chapter. 

9440-NOV A DMA CONTROL SIGNALS 
The only DMA logic provided by the 9440 consists of a DMA request signal. DCH REO. When input low. this signal 
causes the 9440 to complete the instruction currently being executed. then to disable interrupts and wait. The DMA re­
quest is acknowledged by outputting 01 low and 00 high. 

All logic which actually implements any DMA transfer must be implemented external to the 9440. We will discuss 
briefly what logic would be required. 

The Request Enable line. ROENB. goes true to permit both interrupt and DMA requests. Central DMA control logic 
would contain an Enable flip-flop. analogous to the CPU's Interrupt Enable flip-flop. The output of this flip-flop. ANDed 
with INT ON from the 9440. would I\)rovide ROENB as follows: 

DMAenable D 
INT ON ---------1 ------ RciENB 

The DMA request line DCHR may be connected to the 9440 DCH REO input. Thus requests will be accepted and 
granted by the 9440 CPU. DCHA. the acknowledgment signal. is simply decoded from lines 01 and 00: 

g~--------9C::)o------~ 
DCHP is a priority line just like INTP. DMA daisy chain priorities would be implemented similarly to interrupt priorities. 

The 9440 surrenders control of the System Bus when it acknowledges a DMA request; therefore external logic must 
perform all signal manipulations and data transfers. DCHI and DCHO. which indicate the direction of data transfer. are 
signals output by external DMA control logic. 

The DMA control logic will input DeHMO and DCHM1 from the device requesting memory access. Of the four encoded 
modes shown in Table 4-1. "Data Out" and "Data In" can be handled with relative ease. especially if you use an LSI 
chip designed for DMA control. Implementing the other two functions. "Increment Memory" and" Add to Memory". re­
quires much more logic since some arithmetic is required. Indeed. a one-chip microcomputer might supply this logic. 

Since OVFLO is true when an "Increment Memory" or an "Add to Memory" operation produces a result greater than 
FFFF16. this signal would be produced by the logic which performs those operations. 

Figure 4-19 shows 3-to-8 and 2-to-4 decoders creating Ndva I/O Bus control signals. The signal logic directly 
interprets I/O instruction object code bits illustrated in Figures 4-8, 4-9, and 4-10. Note that the Instruction 
register bits from Figure 4-18 are low true. and that Instruction register lines are numbered according to Nova conven~ 
tion. where the low-order line is IR15. 
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Figure 4-19. Creation of Nova I/O Bus Control Signals from 9440 Signals 
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Instruction object code bits are continuously read out of the Instruction register an -IR15), but I/O control sig­
nals are created only during an I/O Execute machine cycle (when 01 is high and 00 is low). 

The logic of Figure 4-19 may be divided into these four sections: 

1) Creation of simple data transfer control signals 

2) Creation of I/O skip logic. 

3) Creation of interrupt control signals. 

4) Creation of control signals STRT, CLR and 10PLS. 

Let us first consider simple data transfer control signals. There are six signals: DATIA, DATIB, DATIC. DATOA. 
DATOB. and DATOC. These are created by the LS138 3-to-8 decode.r in Figure 4-19. and enabled when the I/O 
device address is other than 3F 16. 

If you look at Figure 4-8 you will see that instruction bits 10 and 9 (iR5 and iR'6) select one of the three registers that 
may exist at an I/O device, while bit 8 (iR7) differentiates between I/O data input and I/O data output. These three bits 
are input to the LS138 decoder so that the six data transfer signals and the Skip signal are decoded at the outputs. The 
decoder is enabled only during an I/O Execute machine cycle - that is. when 01 is high and 00 is low. However. if the 
I/O device address is 3F16. thef\ CPU OP will be true and no data transfer signal will go true. It is not strictly necessary 
to disable the signals with CPU OP; sirrce none of the I/O devices will be assigned the address 3F16. none of them will 
respond to I/O instructions with that address. 

The Skip control. SKP. output from the LS138 decoder. is used to enable ma and SELD onto Information Bus 
lines IBO and IB1. This is done using three-state buffers enabled by SKP low; the buffers in Figure 4-19 might be part 
of an LS 125 or an LS367 chip. SELB and SELD are inputs to the buffers. while the outputs are connected to Information 
Bus lines IBO and iBi'. We assume that as soon as any I/O deviCe is selected. it immediately connects its Busy and Done 
statuses to the SELB and SELD control lines of the I/O bus. However. SELB and SELD will not appear on Information Bus 
lines IBO and iBi unless a Skip I/O instruction has been executed. 

When an I/O instruction is executed specifying device 3F16. a set of interrupt-related I/O instructions is executed. 
as illustrated in Figure 4-10. Most of the instructions illl;lstrated in this figure specify events internal to the CPU. For 
example. "enable interrupts" and "disable interrupts" apply to CPU interrupt logic; moreover. the Skip instructions in­
terrogate interrupt request status and power fail status within the CPU. "Acknowledge Interrupt" (lNTA). "Output 
Interrupt Mask" (MSKO) and "Clear All I/O Devices" (lORST) are the only instructions which require control 
signals to be generated on the I/O bus. These control signals are generated by qualifying the decoder of the in­
struction bits with a device 3F16 select code. The device 3F 16 select code. CPU OP. is created by ANDing the low­
order six instruction bits (lR10 through.IR15). Thus the gates producing INTA. MSKO. and 10RST are effectively 
switched on and off by CPU OP Note that 10RST is generated either by execution ofa "Clear I/O Devices" instruction. 
or by the master system Reset signal. RESET. 

Let us next consider logic needed to create STRT. CLR. and 10PLS. 

These control signals should be activated after the appropriate I/O transfer has taken place. Thus the logic in Figure 
4-19 provides a gating signal. PLS. which goes low on the low-to-high transition of SYN. PLS is the IT output of the 
LS74 flip-flop in Figure 4-19. The timing for STRT, CLR. or. 10PLS results as follows: 

10PlS. STRT. 
or ClR 

01 

00 

I 

Instruction Fetch ~~4"'----------1/0 Execute----~I-------_tl ... 
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The LS 139 2-to-4 decoder decodes instruction object code bits 7 and 6 (iFrn and imil. providing that the I/O instruction 
being executed is not an I/O Skip instruction. (The other half of the LS139 chip could be used to decode lines 01 and 
00. instead of the gating logic shown in Figures 4-18 and 4-19.1 
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Figure 4-20. Busy. Done. and Interrupt Status Logic Required by I/O Device Controllers on the Nova I/O Bus 

NOVA I/O DEVICE CONTROLLER LOGIC 
Interface logic which an external device needs in order to connect to the standard Nova I/O bus depends on the 
nature of the external device. A minicomputer device controller may be very complex, even costing more than 
the minicomputer itself; that is because minicomputer devices that connect to the I/O bus are peripherals, such 
as printers, disks. etc. When we reduce the Nova to microprocessor terms. however. external devices con­
nected to the I/O bus reduce to such primitive elements as parallel I/O ports or serial data lines. Within this 
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reduced context we can synthesize the minimum necessary elements of an I/O interface as consisting of three 
status flags: Busy, Done, and an Interrupt request. We can implement these three status flags using three LS74 
flip-flops, as illustrated in Figure 4-20. Device select logic in this figure is limited to showing a select signal 
which will be generated true when the appropriate device code appears on the I/O device Address Bus. We 
have discussed I/O device select logic at various points earlier in this chapter. 

Let us look at the BUSY and the DONE status logic. These are the operations which may affect the condition of the 
BUSY and DONE statuses: 

1) At the start of an I/O operation BUSY must be set while DONE is clear. This condition is identified by 01 in bits 7 
and 6 (lR8 and iR9) of the I/O instruction object code, which generates the STRT control signal of the I/O bus. 

2) At the completion of an operation BUSY is cleared and DONE is set. This change in status setting must be imple­
mented automatically by I/O device interface logic: it alone knows when the I/O operation has been completed. 

3) BUSY and DONE may be cleared by the CPU. This is specified by 10 in bits 7 and 6 (lR8 andl"R9) of the I/O instruc­
tion, which generates the CLR control signal on the I/O bus. 

4) There is a "Clear All I/O Devices" instruction. This instruction generates 10RST on the I/O bus: it clears BUSY and 
DONE statuses at all I/O devices. 

5) A Master Reset must also clear the BUSY and DONE statuses. This Master Reset signal can also create 10RST, as il-
lustrated in Figure 4-19. 

Two D-type flip-flops implement the BUSY and DONE status logic. These two D-type flip-flops are clocked by an 
"I/O Complete" signal which local device logic must generate. The BUSY and DONE statuses are generated by the flip­
flop Q outputs which must connect to SELB and SELD, as required by I/O skip logic, which we have already described. 

The BUSY flip-flop uses its Set and Clear logic to control the BUSY status. The BUSY status is set by STRT and SELECT 
both true. This combination of STRT and SELECT sets the device BUSY status while it resets the DONE status. 

Either CLR and SELECT both true or 10RST true will activate the Clear input of the BUSY flip-flop. 10RST 
Neither of these conditions will be present when BUSY is set by the STRT pulse. Subsequently, CLR 
when STRT or SELECT goes false, BUSY will stay true until it is reset by "I/O Complete" or by an 
active Clear input. which will occur when either 10RST or both CLR and SELECT are true. STRT 

The DONE status is set by the "I/O Complete" pulse after BUSY has been set. Once DONE is set. it will remain true until 
the flip-flop is cleared. These conditions are provided by OR logic at the D input to the DONE flip-flop. The Clear input is 
Clctivated by anyone of the following conditions being true: 

1) STRT and SELECT both true: thus the DONE status is reset at the same time as the BUSY status is set. 

2) The master Reset. 10RST. 

3) CLR and SELECT both true. 

The device interrupt may be individually disabled by a Mask Out instruction's execution: this creates the MSKO control 
signal used to permit the clocking of the interrupt mask flip-flops. Accompanying execution of the Mask Out instruc­
tion, a 16-bit data value is output on the I/O Data Bus. An I/O Device's interrupt logic is controlled by one bit of this 
mask, the bit transmitted via I/O Data Bus line DATAn. Therefore DATAn becomes the D input to the interrupt mask 
flip-flop. A 1 in the mask bit (DATAn low) disables interrupts from the I/O device. In Figure 4-20, the Q output of the 
flip-flop becomes the interrupt enable signal. INT ENABLE. which gates the device's interrupt request onto INTR. 

The bottom flip-flop in Figure 4-20 implements interrupt logic for the I/O interface. Let us summarize the con­
ditions that can affect I/O interface interrupt logic. Providing interrupts are enabled at the I/O interface, an interrupt 
will be requested whenever an I/O operation is completed, as identified by the DONE status going true. If INT ENABLE 
is true, INTR will go low as soon as the DONE status is set. 

Interrupt logic may be enabled by a master I/O reset therefore 10RST is connected to the flip-flop Preset input. 

9440 MEMORY BUS 
There being no standard Nova Memory Bus, we will look at the signals available to you when you interface 
memory to the 9440. 

First return to Figure 4-18. This figure shows how stable Data and Memory Busses may be demultiplexed off 
the 9440 Information Bus. In order to create a Memory Bus of any type, all you need is control signals to accom­
pany the Memory Data Bus and the Memory Address Bus. 

Figure 4-21 presents an example of memory control signals derived from 9440 signals, and Figure 4-22 
shows the timing for these signals. The four D-type flip-flops of an S175 chip, along with some combinatorial logic. 
constitute a state machine to generate Signals required by memory and the 9440 CPU. The four flip-flops are triggered 
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by MEMORY CLOCK. In order that all worst-case delay times be satisfied. the frequency of MEMORY CLOCK should not 
exceed 23.8 MHz; if LS parts are used. the maximum worst-case MEMORY CLOCK frequency is 10.8 MHz. The com­
mon clear of the four flip-flops will be activated if none of the lines MO. M1. or M2 is true. 

MEM ENABLE 
SYN ------e_---------------c. 

MEMORY CLOCK -----+--------------e_~ CK 

1/4 S175 

J----------+---t D Q t------ ADDRESS VALID 

M2 ---------~~ 
MT -------4~_t 
Mo--~ ..... - ..... -

CK 

)--------+---ID 114 S175 Q 

CK 

a t-----1~- MBtiSY 

114 S175 

~~~D Qt----~ 

CK 

ENABLE 
ot-------, 

WRITE 

READ 

Figure 4-21. Memory Controls Derived from 9440 Signals Using State Machine Logic 
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Figure 4-22. Timing for 9440-Based Memory Controls 

Provided that either Mi. M1 or MO is low (signifying a memory access machine cycle) the MEM ENABLE signals 
will go true on the first MEMORY CLOCK after SYN goes low. MEM ENABLE will stay on until the first MEMO­
RY CLOCK after SYN goes high again. 

On the rising edge of MEMORY CLOCK after MEM ENABLE goes on, MBUSY and ADDRESS VALID will go true. 

Memory control logic must return MBUSY to the CPU. since the 9440 requires interaction of the MBUSY and SYN sig­
nals in order to complete memory access cycles. We discussed this earlier in this chapter. in the text accompanying 
Figures 4-12 and 4-13. A more complex memory interface could use MBUSY to lock out CPU memory accesses while 
the memory is busy -for example. while memory is responding to a direct memory access. 

The memory logic itself may require some signal to be true as long as a valid address is on the Memory Address Bus. 
Thus. our logic provides the signal ADDRESS VALID. which goes on after the contents of the Memory Address register 
(shown in Figure 4-18) have had time to settle. and remains until the end of the memory cycle. In Figure 4-18. the 
Memory Address register is clocked by the high-to-Iow transition of SYN. but a system might use the leading edge of 
ADDRESS VALID to clock the Memory Address register. 

On the MEMORY CLOCK after MBUSY goes on. the ENABLE flip-flop clocks on. If MO or Ml is low at this time, 
then READ or WRITE will go on and stay on until the MEMORY CLOCK after MEM ENABLE goes off. The signals 
READ and WRITE tell the memory chips the direction of the data transfer. 

Of course. different system signal and timing specifications would require different implementations of memory Sig­
nals. A memory system might use one-shots or delay lines to create pulsed Signals. and simple combinatorial logic for 
signal levels. A state machine implementation could use a Counter or Shift register. or perhaps a field-programmable 
logic sequencer such as the Signetics 82S105. 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• MicroNova 
·9440 
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MICRONOVA 

ABSOLUTE MAXIMUM RATINGS· 
Supply Voltage Range Vaa 

Supply Voltage Range V CC 

Supply Voltage Range VDD 

Supply Voltage Range V GG 

Input Voltage Range V I 

Input Current Range II 

Operating Temperature Range T A 

Storage Temperature Range T stg 

Average Power Dissipation 

-2 to -7 Volts 

-0.3 to + 7 Volts 

-0.3 to ~Volts 

-0.3 to + 17 Volts 

-0.3 to + 7 Volts 

o to _6_mAmps 

o to +70 °c 

-55 to + 125°C 

1 Watt 

NOTES All voltage8 in this document are 
referenced to V 88 (ground). 

*Subjecting a circuit to conditions either 
outside these limits or at these limits for an 
extended period of time may cause irreparable 
damage to the circuit. As such, these ratings 
are not intended to be u-sed during the 
operation of the circuit. Operating 
specifications are given in the DC (STATIC) 
CHARACTERISTICS ,TABLE. 

Data sheets on pages 4-02 through 4-03 reprinted by permission of Data General Corporation. 
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MICRONOVA 

D. C. (STATIC) CHARACTERISTICS 
mN601 

OPERATING SPECIFICATIONS 

TA range_O_to~C VGG =14.1.0Volts ICC ~mAmps Average IBB 

~mAmps Average ISS Vee 5,0.25 Volts V BB = -4.25 t .25 Vol!s 100 

Voo = 10 • 1.0 Volts Vss = 0 - 0.0 Volts ~mAmps Average 

~mAmps Average 

LIMITS 
CHARACTE R1STIC SYMBOL UNITS PINS 

MIN. 

121,3 and 122,4 -2.0 

MB 0-1> , CLAMP -1.0 
INPUT L(YN VOLTAGE VIL Volts EXTINT. DCH INT 

10 CLOCK. I 0 DATA I, -1.0 
I o DATA 2 

al,3 and 122,4 

MB 0-1. 
INPUT CURRENT FOR IlL mAOlps EXTINT. 0CIflN't, CLAMP -2.0 

L(YN STATE 
I 0 CLOCK. I 0 DATA I, 

I o DATA 2 -2.0 

01,3 and '02,4 +13.0 
MB 0-1. , co;m; 

+4.25 
INPUT HIGH VOLTAGE VIH Volts EXTINT, IlClr'lNT 

I 0 CLOCK. I 0 DATA I, 
+2.5 I o DATA 2 

al,3 and 02,4 

MB 0-1. 
INPUT CURRENT FOR 

IIH mAmps 10 CLOCK. 10 DATA I, I 0 DATA 2 
HIGH STATE EXTIN' . OCR INC 

co;m; 

MB 0-1. 

OUTPUT LOW VOLTAGE VOL Volts I 0 INPUT: PAUSE, 
SAEG. WEG. PG 

1/0 CLOCK JlO DATA 1 1/0 DATA 2 
PG. I 0 INPUT +4.0 

OUTPUT CURRENT FOR 
10L mAntps 

MB 0-1. . 1 o CLOCK 

LOW STATE I o DATA I,. o DATA 2 +2.0 
~. SAEG. PG. HALT 

MB 0-1. 
I 0 CLOCK. I 0 DATA 1, 10 DATA 2 

+4.25 
OUTPUT HIGH VOLTAGE Volts I 0 INPUT. PAUSE. 

VOH SAEG. WEG. PG 

HALT C -0. 

M80-1. 
OUTPUT CURRENT FOR 10H mAnl~ I o INPUT. PG HIGH STATE 

10 CLOCK. I 0 DATA 1, I 0 DATA 2, 
PAUSE SAEG. WEG 

01,3 and .2,4 

CLAm> 
INPUT CAPACIT ANCE CI pF MB 0-1. ,I o CLOCK 

I 0 DATA 1, I 0 DATA 2 
Eiffiij'f. 0CIflIrr 

NOTE 
Logic "I" is defined as the more positive voltage as are the maximum 
figures given under voltage limits. Logic "0" is defined as the more 
negative voltage as are the minimum figures given under voltage limits. 

Positive current, in the conventional sense, is defined as flo'wing into 
t,he pin. 

On power-up. VBB must be within its specified operating range (with 
respect to V ss) before any of the other power supply voltages are ap­
plied to the circuit. 
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MAX. 

.0.5 

+1.0 

.0.5 

+.01 

-2.0 

-4.0 

-4.0 

+15.0 

+5.8 

+5.8 

-.01 
-.06 

-1.0 
-.02 

+.001 
+3.0 

.0.4 

+0.5 

-.01 
-.06 
-.02 

-.01 

100 
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9440 

ABSOLUTE MAXIMUM RATINGS (beyond which the useful life of the device may be impaired) 
Storage Temperature _65° to 15O"C 
Ambient Temperature Under Bias -55 to +125°C 
Vee Pin Potential to Ground Pin -0.5 to +6.0 V 
Input Voltage (de) -0.5 to +5.5 V 
Input Current (de) -20 to +5 mA 
Output Voltage (Output HIGH) -0.5 to +5.5 V 
Output Current (de) (Output LOW) +20 rnA 
Injector Current (IINJ) +500 rnA 
Injector Voltage (VINJ) -0.5 to +1.5 V 

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (0 to 75°C) 

hNJ(min) = 300 rnA. hNJ(max) = 400 rnA. Vee(min) = 4.75 V. Vee(max) = 5.25 V 

LIMITS 

SYMBOL CHARACTERISTIC MIN TYP MAX UNITS TEST CONDITIONS 

VIH Input HIGH Voltage 2.0 V Guaranteed Input HIGH Voltage 

VIL Input lOW Voltage 0.8 V Guaranteed Input lOW Voltage 

Vco Input Clamp Diode Voltage -0.9 -1.5 V Vee = 4.75 V. liN = -18 rnA 
IINJ = 300 mA 

VOH Output HIGH Voltage 2.4 3.4 V Vee = 4.75 V. IOH = -4OO,.,.A 
RUN. CARRY. INT ON. SYN. ClK OUT. 0 0• 0 1 IINJ = 300 mA 

Q.utput .!'IGH Voltage 2.4 3.4 V Vee = 4.75 V.IOH = -1.0 rnA 
IBo - IB15 IINJ = 300mA 

ICEX Output leakage Mo. M1• M2 1.0 mA Vee = 4.75 V. VOH = 5.25 V 
IINJ = 300mA 

VOL Output lOW Voltage 0.25 0.5 V Vee = 4.75 V. 10L = 8.0 mA 
IINJ = 300 mA 

IIH Input HIGH Current _______ 1.0 20 ,.,.A Vee = 5.25 V. VIN = 2.7 V 
Co-C3. DCH REO, INT REO, MBSY, MR IINJ = 300 mA 

Input HIGH Current 2.0 40 ,.,.A Vee = 5.25 V. VIN = 2.7 V 
CP IINJ = 300mA 

!!!put H..!.GH Current 5.0 100 ,.,.A Vee = 4.75 V. VIN = 2.7 V 
IBo - IB15 (3-State) IINJ = 300 mA 

Input HIGH Current 1.0 mA Vee = 4.75 V. VIN = 5.5 V 
All Inputs IINJ = 300mA 

IlL Input lOW Current -0.21 -0.36 mA Vee = 5.25V. VIN = 0.4 V 
All inputs except CP IINJ = 300 mA 

Input lOW Current -0.42 -0.72 mA Vee = 5.25 V. VIN = 0.4 V 
CP IINJ = 300 mA 

10ZH OFF State (Hig.!!.lmp~ance) 100 ,.,.A Vee = 5.25 V. VOUT = 2.4 V 
Output Current IBo - IB15 IINJ = 300mA 

10ZL OFF State (Hig~lmp~ance) -0.21 -0.36 mA Vee = 5.25 V. VOUT = 0.4 V 
Output Current IBo - IB15 IINJ = 300 mA 

los Output Short CircuiLCu~nt_ -15 -100 mA Vee = 5.25 V. VOUT = 0.0 V 
All Outputs Except Mo. M1• M2 IINJ = 300 mA 

Icc Supply Current 150 200 mA Vee = 5.25 V 

VINJ Injector Voltage 1.0 V IINJ = 300 mA 

Data sheets on pages 4-04 through 4-010 reprinted by permission of Fairchild Camera and Instrument Corporation. 
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9440 

AC CHARACTERISTICS: T A = 0 to 75° C - Figures 8 & 9 

LlMITS-ns 
SYMBOL CHARACTERISTIC NOTE 

MIN TYP MAX 

tCPSYL Propagation Delay, CLOCK to SYN going LOW 150 

tCPSYH Propagation Delay, CLOCK to SYN going HIGH 160 

tMBSYL Propagation Delay, MBSY going HIGH to SYN gOing LOW 70 

tMBw MBSY Min Pulse Width (HIGH) 30 

tMBS Set-up Time, MBSY HIGH to CLOCK -40 

tMBHO Hold Time, MBSY HIGH after CLOCK 60 

tCPMH Propagation Delay, CLOCK to M2, M1, Mo going HIGH 160 

tCPML Propagation Delay, CLOCK to M2, M1, Mo going LOW 170 

tCPOH Propagation Delay, CLOCK to 01, 00 going HIGH 160 Fig.90nly 

tCPOL Propagation Delay, CLOCK to 01, 00 going LOW 170 Fig. 8 Only 

tCPAH Propagation Delay, CLOCK to ADDRESS 180-15 going HIGH 170 

tCPAL Propagation Delay, CLOCK to ADDRESS 180-15 going LOW 180 

tMBAF Propagation Delay, CLOCK toADDRESS 180-15 gOing 3-state 110 

tos Set-up Time, DATA 180-15 to CLOCK -110 

tOHO Hold Time, DATA 180-15 after CLOCK 130 

tcs Set-up Time, C3, C2, C1, Co to CLOCK -110 

tCHO Hold Time, C3, C2, C1, Co after CLOCK 130 

tCPRH Propagation Delay, CLOCK to RUN HIGH 160 

tCPRL Propagation Delay, CLOCK to RUN LOW 170 

tocs Set-up Time, DCH REO to CLOCK -110 

tOCHO Hold Time, DCH REO after CLOCK 130 

tiS Set-up Time, INT REO to CLOCK -100 

tlHO Hold Time, INT REO after CLOCK 120 
Fig. 8 Only 

tCPCYH Propagation Delay, CLOCK to CARRY HIGH 160 

tCPCYL Propagation Delay, CLOCK to CARRY LOW 150 

tCPIOH Propagation Delay, CLOCK to INT ON HIGH 200 

tCPIOL Propagation Delay, CLOCK to INT ON LOW 190 

NOTES: 
1. The Information Bus is driven as a result of the previous cycle. 
2. The Fetch and Read cycles will be stretched out for slower memories. 
3. Applies to console operation using this cycle type. 

4-05 



9440 

I ... ·-----------------FETCHCYCLE-----------------~.I 

CLKOUT ~ I LrL'n..1-t.ru-t-" 
tcPSYL~ 

" -~ __ I ... S -l ~ 
-+l "'BSYL 14-

,. , 
I4--tcPSYH---l 

MBSY .... \\\\lil " 1-1-
I ... w~ k- " --- "'.HO ~ ..... 

"I- " 
~tcP"H~ 

-lk-
I--- tcPML----.J " 

'- JL 

" 
00 i 

I4--ICPOL -...j " 
0, '-

\.G) _lcjAH_1 tMBAF:i los -+I 4-tDHD~ 

ADDRESS OUT IV/, DATAl/,( DATAIN "" 
..J _IC~AL---t 

JL --ilcs --iio-15 

CO-3 :: X X 
i-ICPRL ---+-l " i--ICHO-+l 

,lit ------------ ------ -4~-----
_ICPRH~ '=-t~~ - - - - - - --

RUN 

DCHREQ 

..... 'ocs 14-

:",,""-ICPCYH----.j ~~ - liS ~ 
CARRY -\::E ~ 

....-ICPCYL --J " ~IIHO_ 

INTON " ""'lit 
MEMORY <» I4--ICPIOL --+-I I 

BUSY ~tCP10H-----" 

tiME 

Fig. 8 Fetch Cycle 

'""r.------------------READ CYCLE -----------------~.I 

CLK OUT ~ 
,. unh.h..1l..JL 
" 

.j 4-1 ... 51 
~ -+l IMBSYL 1- " 1 '4--tCPSVH ~I 

~\\\\lil -I-
IMBw-+l 1-4= 1_ IMBHO' """" 

-f-
~lcPMH--+l 

~ 
f4--ICPML~ " 

MO '-
00 -f- .-

_lcPOH_1 

0, / " 
......-......tCPAH~ b.4 BAF :i -+lIDS I-- ~loHD_1 

i'io-15 ADDRESS OUT J ~DATA~ DATA IN 

-4-- tCPAL--... 
JL -lIes 1-. 

Co-3' ® 
MEMORY <D !--lcHo_1 

DCH REO, INT REO, CARRY, INT ON BUSY 
TIME 

RUN, 
unaffected durlnS! this cycle. 

Fig. 9 Read Cycle 
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9440 

AC CHARACTERISTICS: TA = 0 to 75°C-Figures 10 & 11 

LlMITS-ns 
SYMBOL CHARACTERISTIC NOTE 

MIN TYP MAX 

tCPSYL Propagation Delay, CLOCK to SYN going LOW 150 

tCPSYH Propagation Delay, CLOCK to SYN going HIGH 160 

tMBSYL Propagation Delay, MBSY going HIGH to SYN going LOW 70 

tMBw MBSY Min Pulse Width (HIGHI 30 

tMBS Set-up Time, MBSY LOW to CLOCK -40 

tMBHD Hold Time, MBSY LOW after CLOCK 60 

tCPMH Propagation Delay, CLOCK to M2, M1, Mo going HIGH 160 

tCPML Propagation Delay, CLOCK to M2, M1, Mo going LOW 170 

tCPOH Propagation Delay, CLOCK to 01,00 going HIGH 160 

tCPOL Propagation Delay, CLOCK to 01,00 going LOW 170 

tCPDH . Propagation Delay, CLOCK to DATA 180-15 going HIGH 170 

tCPDL Propagation Delay, CLOCK to DATA 180-15 going LOW 180 Fig. 10 Only 

tCPDF Propagation Delay, CLOCK to DATA 180-15 going 3-state 110 

tCPAH Propagation Delay, CLOCK to ADDRESS 180-15 going HIGH 170 

tCPAL Propagation Delay, CLOCK to ADDRESS 180-15 going LOW 180 Fig. 11 Only 

tCPAF Propagation Delay, CLOCK toADDRESS 180-15 going 3-state 160 

tcs Set-up Time, C3, C2, C1, Co to CLOCK -110 

tCHD Hold Time, C3, C2, C1, Co after CLOCK 130 

NOTES: 
3. Applies to console operation using this cycle type. 
4. The Information Bus is driven as a result of the previous cycle. 
5. The 9440 waits for MeSv to go LOW. By holding MsSv HIGH, the user may idle the processor. 

WRITE CYCLE 

SVN PLA 

CLK OUT 

SYN 
-----f 

M, __________ +_--------~----------------~------------~~~~----+_----------------~--
M' __________ +-______ ~ 

MO __________ +_-------' 
00 __________ +-______ -'. 

O, __________ ~~-----' 
.-tCPOM ---.1 4- tCPOF"" 

~u,,::::::::::~~::::::)_----------------_1----~--_1~::::~~~::t:::::::::::::::::::::::::j 
"'-ICPOL 

CO.3~~~~~~~~~p:;:;::;Jll~~ 

RUN. 'DC'H"'iiEci. INT REQ. CARRY. INT ON 
unaffected during this cycle, 

Flg.10 Write Cycle 
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9440 

eLK OUT 

5TN 

iiiiY 

ii, 

ii, 

iio 

00 

0, 

iiO~15 

CO-3* 

,-~--------------------------------LDMAR--------------------------------~.' 5VN PLA 

_tCPMH--I 

ClK OUT 

STN 

MBSV 

ii, 

ii, 

iio 

00 

0, 

iiiO-15 

CO-J 

RUN, iiCii'iiEQ, iNTiiEQ, CARRY, INT ON 
unafleeled during this cycle. 

Flg.11 Load Memory Address Regllter Cycle 

I-~-------------------- 110 OUT --------------------...... ~, 

PLA 

..--tCPOL 

.... tcPOF ...... 1 

DATA OUT >-

RUN ____________________________________________________________ __ 

DCH RED 

INT RED 

CARRV ____________________________________________________________ __ 

INTON 

---------------------------------------------------------
Flg.12 1/0 Out Cycle 
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9440 

AC CHARACTERISTICS: TA = 0 to 75°C- Figures 12. 13. 14. 15 

LlMITS-ns 
SYMBOL CHARACTERISTIC NOTE 

MIN TYP MAX 

tCPSYL Propagation Delay, CLOCK to SYN going LOW 150 

tCPSYH Propagation Delay, CLOCK to SYN going HIGH 160 

tCPMH Propagation Delay. CLOCK to M2, M" Mo going HIGH 160 

tCPML Propagation Delay, CLOCK to M2. M" Mo going LOW 170 

tCPOH Propagation Delay, CLOCK to 0,,00 going HIGH ~O 

tCPOL Propagation Delay, CLOCK to 0,,00 going LOW 170 

tCPOH Propagation Delay, CLOCK to DATA IBo-15 going HIGH 170 

tCPOL Propagation Delay, CLOCK to DATA IBo-15 going LOW 180 Fig. 12 Only 

tCPOF Propagation Delay, CLOCK to DATA IBo-15 going 3-state 110 

tos Set-up Time, DATA IBo-15 to CLOCK -110 

tOHO Hold Time, DATA IBo-15 after CLOCK 130 
Fig. 13 Only 

tcs Set-up Time, C3, C2, C" Co to CLOCK -110 

tCHO Hold Time, C3, C2, C" Co after CLOCK 130 
Fig. 14 Only 

NOTES: 
6. DUring DCH, the 94~ IS not driving the M lines An external device can control the memory when a LOW IS applied to the appropriate Milne. 
7. The 9440 floats the 180-15. The Information Bus is available to the I/O devices and the memory as needed. 

------------ ItO IN ------------I.~I 
PLA 

CLKOUT 

SYN _____ 

of 

M, 
---------+------~ 

ij,-----+-----' 
MO _____ +-___ -' 

OO-----+ ___ --tc-P-ML-~-~---------------~------
O'-----+~--t-cP-M-H~~1 
~o,~-----------------------~~~~~ 

co") 

RUN ______________________________ __ 

."i5CHiiEci 

iNTiiEa 

CARRY ________________________________ ___ 

INTON ___________________________________ __ 

Fig. 13 1/0 In Cycle 
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9440 

t-.-----------WAIT----------_ 

CLK OUT 

8YN ---------of 

Ml __________ +_-------'. 

M' _________ +_------' 

~---------+--------' 
Oo _________ ~------~ 

0, _____________ -' 

RUN ________________________________________________________ __ 

CARRy _______________________________________________________ __ 

INTON ____________________________________________________ __ 

Flg.14 Walt Cycle 

I-~-----------DCH----------~·~I PLA 

CLK OUT 

8YN 

iiiii 

Ml 

(i) ii, 

ilo 

00 

01 __________ ~--------~----------------------------------------
o iiio-15 _________________________________ _ 

~-3 ___________________________________________________________ __ 

RUN ________________________________________________________ __ 

CARRy _______________________________________________ __ 

INTON ____________________________________________________ __ 

Flg.15 Data Channel Request Cycle 
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Chapter 5 
THE INTEL 8086 

The 8086 is Intel's first 16-bit microprocessor. It is significantly more powerful than any prior microprocessor. 

The 8086 assembly language instruction set is upward compatible with 8080A - but at the source program 
level only. That is to say. every 8080A assembly language instruction can be converted into one or more 8086 assem­
bly language instructions. There is no reason why anyone would try to convert 8086 assembly language instructions. 
one at a time. into one or more 808~A assembly language instructions. but if you did. you would soon become 
hopelessly tangled in conflicting memory allocations and special translation rules. That is why we say that the 8086 
and 8080A assembly language instruction sets are "upward" compatible. 

The 8086 and 8080A assembly language instruction sets are not compatible at the object code level. which means that 
8080A programs stored in read-only memory are useless in an 8086 system. 

The 8085 and 8080A assembly language instruction sets are identical. with the exception of the 8085 RIM and SIM in­
structions. The 8085 RIM and SIM instructions cannot be translated into 8086 instructions. This is because the RIM and 
SIM instructions use the serial 110 logic of the 8085. which has no 8086 counterpart. Without the RIM and SIM instruc­
tions. the 8085 and 8080A assembly language instruction sets are identical; therefore the 8086 assembly language 
instruction set must also be upward compatible with the 8086 assembly language instruction set - apart from 
the RIM and 81M Instructions. 

The 8085 and 8080A assembly language instruction sets are object code compatible - with the exception of the 8085 
RIM and SIM instructions. That is to say. a program existing in read-only memory could be used with one 
microprocessor or the other. 

The 8080A assembly language instruction set is a subset of the l80 assembly language instruction set. That is to say. 
the l80 will execute an 8080A object program - but the reverse is not true. The 8080A cannot execute l80 programs 
when the full l80 instruction set is used. The 8086 assembly language instruction set is not upward compatible 
with the Z80 assembly language instruction set. 

As a historical note. it is worth mentioning that the 8008 microprocessor. which preceded the 8080A. was also com­
patible only at the source program level. That is to say. there is an 8080A assembly language instruction for every 8008 
assembly language instruction. but the two microprocessor object code sets are not the same. 

The various instruction set compatibilities that we have described may be illustrated as follows: 

RIM and 
.. -(Excluding 

SIM ins tructions) 

-- Source program of lower microprocessor 
can be assembled to generate upper 
microprocessor object program 

- - - Lower microprocessor instruction set is a 
subset of upper microprocessor instruction 
set at the object program level 

8085 

+ I L _______ 
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These are the most interesting innovations to be found in 8086 hardware design: 

1) 8086 Central Processing Unit logic has been divided into an Execution Unit (EU) and a Bus Interface Unit (BIU). 
These two halves operate asynchronously. The Bus Interface Unit handles all interfaces with the external bus; it 
generates external memory and I/O addresses and has a 6-byte instruction object code queue. Whenever the EU 
needs to access memory or an I/O device, it makes a bus access request to the Bus Interface Unit. Providing the 
Bus Interface Unit is not currently busy, it acknowledges the bus access request from the EU. When the Bus Inter­
face Unit has no active pending bus access requests from the EU, it performs instruction fetch machine cycles to 
fill the 6-byte instruction object code queue. The CPU takes its instruction object codes from the front of the queue. 
Thus instruction fetch time is largely eliminated. 

2) The 8086 has been designed to work in a wide range of microcomputer system configurations, ranging from a sim­
ple one-CPU system to a multiple-CPU network. To support this wide flexibility, a number of 8086 pins output 
alternate Signals. This may be illustrated as follows: 

Minimum Configurations 

+5 V 
8086 

MN/MX 

These Signals 
do not change 

Simple control output 
for use in one-CPU 
system 

Maximum Configurations 

8086 

MN/MX 

These signals 
do not change 

Complex control signals 
useful in multi-CPU 
networks 

The same pins output these two sets of signals, based on a level of MN/MX. This wholesale re-allocation of Signals 
is a highly imaginative and innovative first for the microprocessor industry. 

3) The 8086 has built-in logic to handle bus access priorities in multi-CPU configurations. (This is not a new concept 
National Semiconductor's SCIMP has had it for years.) 

4) In mUlti-CPU configurations, each 8086 CPU can have its own local memory, while simultaneously sharing com­
mon memory. The common memory may be shared by all CPUs, or by selected CPUs. 

5) The 8086 has been designed to compete effectively in program intensive applications that have been the domain 
of the minicomputer. Up to a million bytes of external memory can be addressed directly. All memory addressing is 
base relative; this memory addressing technique naturally generates relocatable object programs. (Relocatable ob­
ject programs can be moved from one memory address space to another and re-executed without modification.) 
Also, since the 8086 utilizes stack-relative addressing, re-entrant programs are easily written. (Re-entrant programs 
can be interrupted in mid-execution and re-executed. For example, a subroutine which calls itself is re-entrant a 
program which can be interrupted in mid-execution by an external interrupt, and then re-executed within the in­
terrupt service routine, is also re-entrant. 

6) The 8086 uses prefix instructions that modify the interpretation of the next instruction's object code. 

The 8086. like its predecessor. the 8080A. is really one component of a multiple-chip microprocessor configura­
tion. 
In addition to the 8086 microprocessor itself. you must have an 8284 Clock Generator/Driver. Yau cau Id create 
the required clock Signal using alternative logic, but it would be neither practical nor economical to do so. 

The third device necessary in some 8086 microprocessor configurations is the 8288 Bus Controller. 

You will usually have an 8288 Bus Controller between an 8086 and its System Bus (or busses), just as you will usually 
have an 8288 System Bus controller between an 8080A and its System Bus. In the case of the 8086, however, you can 
dispense with the 8288 Bus Controller in Single-bus configurations - and pay no penalty for it. 
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The 8086 has a large family of support devices. In this chapter we describe the following support devices: 

• The 8284 Clock Generator/Driver 
• The 8288 Bus Controller 
• The 8282/8283 8-bit input/output latches 
• The 8286/8287 8-bit parallel bidirectional bus drivers 

The 8088. an 8-bit version of the 8086. is also described. 

The primary manufacturer of the 8086 is: 

Second sources are: 

INTEL CORPORATION 
3065 Bowers Avenue 

Santa Clara. California 95051 

MOSTEK CORPORATION 
1215 West Crosby Road 

Carrollton. TX 75006 

NEC MICROCOMPUTERS INC. 
Five Militia Drive 

Lexington. MA 02173 

SIEMENS AG 
Components Group 

Balanstrasse 73. D8000 
Munich-80. West Germany 

The 8086 is manufactured using N-channel depletion load. silicon gate technology. It is packaged in a 40-pin DIP. A 
single +5 V power supply is required. All signals. with the exception of the clock input. are TTL-level compatible. The 
clock input must be an MOS level signal: it is generated by the 8284 Clock Generator/Driver device. which is described 
later in this chapter. 

Instruction execution times will vary depending on how effectively instruction queuing is used. Typically. between 2 
and 30 clock cycles are required to execute an instruction. Multiplication and division instructions require more execu­
tion time. Clock cycles may be as short as 125 nanoseconds. 

An 8 MHz version of the 8086 has been announced: it is identified as the 8086-2. The 4 MHz ver­
sion is called the 8086-4. The standard 5 MHz 8086 is referred to without a suffix. There is no 
difference between the three versions other than maximum allowed clock speeds. 
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THE 8086 CPU 

Functions implemented on the 8086 microprocessor chip are illustrated in Figure 5-1. 

Interrupt priority arbitration logic is shown as only half present external logic. such as an 8259A. must provide a 
device code identifying an interrupt. but all arbitration and vectoring logic is subsequently handled by logic within the 
CPU. 

It is worth noting that bus interface logic. which is shown as present in Figure 5-1. is much more extensive than other 
microprocessors provide. One could rightfully demand that bus interface logic therefore be shown as absent in equiva­
lent figures for other microprocessors. 

Interface Logic 

Programmable 
Timers 

Clock Logic 

I/O Ports 
Memory 

Figure 5-1. Logic of the Intel 8086 CPU 
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8086 PROGRAMMABLE REGISTERS AND ADDRESSING MODES 
We describe 8086 programmable registers in conjunction with 8086 addressing modes, since many 8086 pro­
grammable registers are there only to support memory addressing logic. 8086 programmable registers are il­
lustrated in Figure 5-2. 

Shaded registers are 8086 equivalents for 8080A registers. 8080A register names are shown in the left margin. 

Let us first examine the general purpose registers, AX, BX, ex, and OX. These locations 
are treated as four 16-bit registers or eight 8-bit registers; they also reproduce the 8080A 
general purpose registers as follows: 

AH has no 8080A equivalent. Do not confuse it with the 8080A PSW. 

AL is equivalent to the 8080A A register. 
BH is equivalent to the 8080A H register. 
BL is equivalent to the 8080A L register. 
CH is equivalent to the 8080A B register. 
CL is equivalent to the 8080A C register. 
DH is equivalent to the 8080A D register. 
DL is equivalent to the 8080A E register. 

Consistent with 8080A register utilization. register AX serves as a primary Accumulator. Input 
and output instructions pass data through AX (or AU in preference to other general purpose 
registers; also. selected instruction access AX (or AU contents only. 

In addition to serving as a general purpose Accumulator, register BX can serve as a base 
register when computing data memory addresses. 

Register ex serves as an Accumulator; it is also used as a counter by multi-iteration instruc­
tions; these instructions terminate execution when register CX contents increment or decrement 
to O. 

Some 1/0 instructions move data between an identified 1/0 port and the memory location 
addressed by Register OX. Register DX may also serve as an Accumulator. 

When looking at general purpose registers AX. BX, Cx. and Ox. there is plenty of opportunity to 
be confused by terminology. 

8086 AND 
8080A 
REGISTERS' 
COMPATIBILITY 

8086 BX 
REGISTER 

8086 ex 
REGISTER 

Intel literature identifies the four 16-bit registers via the labels AX, BX, CX, and DX. Each of these 16-bit registers is 
subdivided by Intel literature into two 8-bit registers, as follows: 

15 o +- AX bit numbers 
7 07 o +- AH, AL bit numbers 

AH I AL I 
~ 

15 
AX o +- BX bit numbers 

7 07 o +- BH, BL bit numbers 

I BH 1 B7 I 
15 

BX o +- CX bit numbers 
7 07 o +- CH, CL bit numbers 

I CH I CL I --.,-
15 

CX o +- OX bit numbers 
7 07 o +- OH, OL bit numbers 

OH 1 OL 

ox 
I 

The 8080A Accumu lator must be reproduced by AL since selected 8080A and 8086 instructions access this register 
and none other. 

BH and BL must reproduce the 8080A Hand L registers, since only BX can contribute to an 8086 data memory address. 
On the surface this would appear to present a problem, since the 8080A has a limited number of instructions that use 
the BC and DE registers to provide 16-bit memory addresses. When 8080A source programs are reassembled to ex­
ecute on an 8086 microprocessor, 8080A instructions that seek memory addresses out of the BC or OE registers 
become 8086 instructions that use Index registers. 
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A 

H,L 

B,C 

0, F 

Sf' 

PC 

15 
7 07 

o +- One 16-bit register 
o +- Two 8-bit registers .------

15 

AX (= AH, AL) Primary Accumulator(s) 

BX (= BH, BL) Accumulator(s). and Base register 

CX (= CH, eL) Accumulator(s) and Counter register 

OX (= DH, DL) Accumulatorisl and I/O Data Counter 

~ These names apply to 16-bit registers 

'-------4t------- These names apply to 8-bit registers 

o +- Bit number 

Base Pointer (BP) 
Stack Pointer (SP) } 

r-.::c. ________ ....,0 +- Bit number I ndex registers 

I 
Source Index (Si) 

:=================: Destination Index (01) 

r-:~~~~-""~~~"" +- Bit number 

'--'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-""""1 Program Counter (PC) 

15 0 +- Bit n·umber 

8 
Code Segment (CS) } 

Data Segment (OS) 
Segment registers 

Stack Segment (SS) 

Extra Segment (ES) 

15 0 +- Bit number 

Ir ~------"'I Status 

Shaded registers are 8086 equivalents for 8080A registers. 

8080A register names are shown in the left margin. 

Figure 5-2. 8086 Programmable Registers 
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All 8086 memory addresses are computed by summing the contents of a Segment register 
and an effective memory address. The effective memory address is computed via a variety of 
addressing modes, as it would be for any other microprocessor. The selected Segment register 
contents are left-shifted four bits, then added to the effective memory address to generate the ac­
tual address output as follows: 

Segment Register contents: 

Effective memory address: 

Actual address output: 

xxxxxxxxxxxxxxxxoooo 
+ OOOOyyyyyyyyyyyyyyyy 

XXXZZZZZZZZZZZZZyyyy 

x, Y and Z represent any binary digits. 

8086 
SEGMENT 
REGISTERS 

Thus a 20-bit memory address is computed - which allows 1.048.576 bytes of external memory to be ad­
dressed directly. 

The Segment registers of the 8086 are unlike any other microprocessor registers described in this book. They act as 
base registers which can point to any memory location that lies on an address boundary that is an even multiple of 16 
bytes. Using arbitrary memory addresses, this may be illustrated as follows: 

CS Segment register ----. 
contains 234E'6 

ES Segment register --+­
contains OA3216 

Memory 
Address 

334DF16 

234E016 

OA320;6 

OS Segment register -+ ~:":"":":"":":""'""-:":""'""-'""-.0....1 021 FO 16 
contains 021F'6 

As illustrated above, each Segment register identifies the beginning of a 65,536-byte memory segment. Since the 
8086 has four Segment registers, there will at any time be four selected 65,536-byte memory segments. The actual ad­
dress output will always select a memory location within one of these four segments. For example, if an actual address 
output is the sum of the OS Segment register and an effective memory address, then the actual address output must 
select a memory location within the OS segment: that is to say, within the address range 021 F016 through 121 EF16 in 
the illustration above. Likewise, an actual address output. which is the sum of the CS Segment register and an effective 
memory address, must select a memory location within the CS segment. which in the illustration above will lie in the 
address range 234E016 through 3340F16. 

No restrictions are placed on the contents of Segment registers. Therefore, 8086 memory is not divided into 65,536-
byte pages, nor do the four Segment registers have to specify non-overlapping memory spaces. Each Segment register 
identifies the origin of a 65,536-byte memory segment that may lie anywhere within addressable memory and mayor 
may not overlap with one or more other segments. 

Even though Segment registers can create overlapping or non-overlapping segments, they do have dedicated address­
ing functions. That is to say, different types of memory accesses compute memory address within specific seg­
ments. 
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During an instruction fetch, the Program Counter contents are added to the Code Segment 
register (CS) contents in order to compute the memory address for the instruction to be fetched. 
This may be illustrated as follows: 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = DH+OL 

5P 

BP 

51 

01 

PC 

i5 
7 

15 

M 

15 

N 

07 

M M M 

N N N 

o 
o 

o 

o 

--
OMMMM 
NNNNO 

8086 CODe 
SEGMENT 
REGISTER 
AND PROGRAM 
COUNTER 

C5 

05 PPPPM Actual program memory 
address output. 

55 

E5 

M, N, and P represent any hexadecimal digits. 
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Any Stack instruction such as a Push. Pop. Call. or Return adds the Stack Pointer contents to 
the Stack Segment register (55) contents in order to compute the address of the Stack location 
to be accessed. This may be illustrated as follows: 

15 0 
7 07 0 

AX = AH+Al 

BX = BH+Bl 

CX = CH+Cl 

OX = OH+Ol 

15 0 

SP M M M M 

BP 

51 

DI 

PC 

15 

CS 

OS 

S5 N N N N 

E5 

Once again. M. N. and P represent any hexadecimal digits. 
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NNNNO 

PPPPM Actual Stack operation 
address output. 
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POINTER 
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Instructions that process data strings use the SI and 01 Index registers. together with the 
Data Segment register (OS) and the Extra Segment register (ES), in order to identify string 
source and destination addresses. This may be illustrated as follows: 

8086 EXTRA 
SEGMENT. 
SOURCE INDEX 
AND 
DESTINATION 
INDEX 
REGISTERS AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

DX = DH+DL 

SP 

BP 

SI 

DI 

PC 

CS 

DS 

SS 
~ 

ES 

15 
7 

15 

J 

K 

15 

M 

N 

07 

J J J 

K K K 

M M M 

N N N 

o 
o 

o 

0 

~ 

\ 
j 

l/ 
J. K. M. R. and S all represent any hexadecimal digits. 

.. -

-

Destination string address. 

OKKKK 

NNNNO 

RRRRK ....... --

Source string address. 

OJJJJ 
MMMMO 

SSSSJ ......... --

Actual data string 
address output. 

Actual data string 
address output. 

As the above illustration would imply. instructions that process strings require that the source and destination strings 
reside within a single 65.536-byte address range but not necessarily the same 65.536-byte range. 
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Instructions that access data memory add an effective memory address to the Data Seg­
ment register (OS) or the Stack Segment register (55). This may be illustrated as follows: 

8086 DATA 
SEGMENT 
AND STACK 
SEGMENT 
REGISTERS 

AX =AH+Al 

BX = BH+Bl 

CX = CH+Cl 

OX = OH+Ol 

SP 

BP 

SI 

01 

PC 

CS 

OS 

SS 

ES 

15 
7 

15 

15 

07 
o 
o 

0 

o 

~ 

i, 

~------------~ 

x, y, and Z represent any hexadecimal digits. 

- OXXXX 

Program 
Memory. 

as addressed 
by PC and CS 

y y Y Y 0 ..... --- Effective address segment base. 

Z Z Z Z X" Actual data address output. 

When a data memory address is created, as illustrated above, the BX, BP, SI. and DI registers' contents, plus a displace­
ment coming from the instruction object code, may contribute to the effective memory address. There are, however, 
very specific register and displacement combinations that can create an active memory address, as summarized in Ta­
ble 5-1. Each case specifies either the DS or SS register as the default source for the segment base address. 
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Table 5-1. A Summary of Intel 8086 Memory Addressing Options 

Possible Displacements 
Memory Segment Base Index 

Reference Register Register Register 16-Bit 8-Bit. 

Unsigned 
High-Order Bit None 

Extended 

51 X X X 
None 

OS 01 X X X 

(Alternate": 51 X X X 
CS, 55 or ES) 

Normal Data BX 01 X X X 

Memory None X X X 
Reference 

OS None None X 

55 
51 X X X 

(Alternate" : BP 01 X X X 
CS, OS, or ES) 

None X X 

Stack 55 SP None 

String OS None 51 

Data ES None 01 

Instruction CS PC None Fetch 

Branch CS PC None X 

I/O Data OS OX None 

" The segment override allows OS or 55 to be replaced by one of the other segment registers 
X These are displacements that can be used to compute memory addresses. 

When creating any data memory address. you can add a prefix to an instruction to select a Segment register other than 
the default Segment register. You can only select a Segment register other than the default Segment register when ad­
dressing data memory. You must live with the default Segment register when creating program memory addresses. 
Stack addresses. or string instruction addresses. 

It is very important to note that the 8086 has a whole set of data memory addressing options aimed at access­
ing the Stack as though it were a data area. That is to say. in addition to the normal "Push" and "Pop" type Stack in­
structions. the 8086 allows normal data memory access instructions to address the Stack. Many assembly language 
programmers use the Stack to store addresses. and as a general depository for data that must be transmitted between 
program modules. Anyone favoring this assembly language programming philosophy will be delighted with 8086 data 
memory addressing options. 
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Let us now examine the various data memory addressing options in detail. Refer to Table 5-1. 

In the simplest case. we have straightforward direct memory addressing. A 16":bit displace-
ment provided by two instruction object code bytes is added to the Data Segment register in order 
to create the actual memory address. This may be illustrated as follows: 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

5P 

BP 

51 

01 

PC 

15 
7 07 

o 
o 

1-----+--........ 

15 o 

1----------1 

1---------1 
M M M M 

15 

C5 N N N 

R 

N 

R OS R R 

55 

,0 M M M M 

,NNNNO 

PPPPM 

.\ 
Program 
Memory 

PPPPM 

r-----...... 
8086 DIRECT 
MEMORY 
ADDRESSING 

E5 
o H H L L"'-{ 
RRRRO 

L 

H 

L 

H 

PPPPM+1 

PPPPM+2 

Actual data memory address output for 
direct memory addressing. --...... ~.. 5 5 5 5 L 

H. L. M. N. P. R. and S all represent any hexadecimal digits. 

Note that a 16-bit address displacement. when stored in program memory. has the low-order byte preceding the high­
order byte. This is consistent with the way the 8080A stores addresses in program memory. 

DS must provide the Segment base address when addressing data memory directly. as illustrated above. 
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Direct, indexed addressing is also provided. The SI or 01 register may be selected as the Index 
register. You have the option of adding a displacement to the contents of the selected Index 
register in order to generate the effective address. If you do not add a displacement. then you 
have, in effect, implied memory addressing via the SI or DI register. This may be illustrated as 
follows: 

15 
7 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

15 

5P 

BP 

51 

01 

PC 

15 

R 

07 

R R R 

o 
o 

o 

-- OXXXX 

RRRRO 

8086 IMPLIED 
MEMORY 
ADDRESSING 

C5 

05 

55 

E5 

5 S S 5 X 4-- Actual data memory address output for 
implied memory addressing 

(You may substitute CS, S5 or E5 for 05 by executing a 1-byte instruction prefix.) 

X, R. and S represent any hexad~cimal digits. 

If a displacement is added to the contents of the selected Index register, then you may 8086 DIRECT. 
specify an 8-bit displacement or a 16-bit displacement. A 16-bit displacement is stored in two INDEXED 
object code bytes; the low-order byte of the displacement precedes the high-order byte of the dis- ADDRESSING 
placement as illustrated for direct memory addressing. Wan a-bit displacement is specified. then 
the high-order bit of the low-order byte is propagated into the high-order byte to create a 16-bit displacement. This 
may be illustrated as follows: 

Displacements: 

Sign extended: 
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We may now illustrate direct, indexed addressing as follows: 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

SP 

BP 

SI 

01 

PC 

CS 

OS 

15 
7 07 

o 
o 

t----+----t 

t----+---......... 

15 0 

M M M M 

15 

N N N N 

R R R R 

OMMMM 

NNNNO 

P P PPM 

C 
SS Oyyyy_{ 
ES 

OXXXX 

Actual data memory address output for ---.. Z Z Z Z Z 
direct, indexed memory addressing. 

Program 
MemorY 

PPPPM 

PPPPM+1 

PPPPM+2 

PPPPM+3 

(You may substitute CS, SS or ES for OS by executing a 1-byte instruction prefix.) 

M. N, p, R, X, y, and Z all represent any hexadecimal digits. 

YYYY is the 16-bit or 8-bit displacement taken from program memory. 

XXXX is the index taken from either the 01 or the SI register. 

The effective memory address can be computed using base relative addressing. You have '8086 BASE 
two sets of base relative addressing ~ptions: RELATIVE, 

1) Data memory base relative addressing, which is within the DS segment (data memory). 

2) Stack base relative addressing, which is in the SS segment (Stack memory). 
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Data memory base relative addressing uses the BX register contents to provide the base 
for the effective address. All of the data memory addressing options thus far described 
are available with base relative data memory addressing. In effect, base relative data 
memory addressing merely adds the contents of the BX register to the effective memory 
address which could otherwise have been generated. Here. for example. is an illustration of 
base relative direct addressing: 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

SP 

BP 

SI 

01 

PC 

15 
7 

15 

15 

07 

K K K 

M M M 

N N N 

R R R 

K 

M 

N 

R 

o 
o 

0 

0 

~ 

V 

- OMMMM -
. ~ NNNNO 

~ PPPPM 
Program 
Memory 

8086 DATA 
MEMORY BASE 
RELATIVE 
ADDRESSING 

CS 

OS 

SS 

ES 

~I-------I 
~OKKKK PPPPM 

OHHLL 
{ 

~---I PPPPM+1 

R R R R 0 ...- PPPPM+2 
Actual data memory address output for 
base relative. direct. indexed memory --. S S S S S 
addressing. 

(You may substitute CS. ES or SS for OS by executing a 1-byte instruction prefix.) 

Simple. direct addressing. which we described earlier. always generated a l6-bit displacement. Base relative. direct ad­
dressing allows the displacement. illustrated above as HHLL. to be a l6-bit displacement. an 8-bit displacement with 
sign extended. or no displacement at all. 
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Base relative implied data memory addressing simply adds the contents of the BX register to the selected Index register 
in order to compute the effective memory address. This may be illustrated as follows: 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

SP 

BP 

SI 

01 

PC 

CS 

OS 

SS 

ES 

15 
7 07 

K K 

15 

15 

R R 

0 
0 

K K 

R R .. 
OKKKK 

OXXXX 

RRRRO 
SSSSS ..... __ -- Actual data memory address output for 

base relative, implied memory addre'ssing. 

(You may substitute CS, SS or ES for OS by executing a 1-byte instruction prefix.) 
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Base relative. direct. indexed data memory addressing may appear to be complicated. but in fact it is not. We simply 
add the contents of the BX register to the effective memory address. as computed for normal direct. indexed address­
ing. Thus. base relative. direct. indexed data memory addressing may be illustrated as follows: 

15 0 
7 07 0 

BX = BH+BL K K K K 

CX = CH+CL 

OX = OH+OL 

15 

SP 

BP 

SI 

01 

PC M M M M OMMMM 

NNNNO 

PPPPM 
15 

\ CS N N N N 

OS R R R R 

SS 

ES OKKKK { 
OYYYY~ 

OXXXX 

Actual data memory address output for 
base relative. direct. indexed memory ~ Z Z ZZ Z 
addressing. 

Program 
Memory 

(You may substitute CS. S5 or ES for OS by executing a 1-byte instruction prefix.) 
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The 8086 also has Stack memory addressing variations of the base relative, data memory addressing options just de­
scribed. Here, for example, is base relative, direct Stack memory addressing: 

15 0 
7 07 0 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

15 0 

SP 

BP K K K K 

SI 

01 

PC M M M M I---+-~ 0 M M M M 

NNNNO 

15 

CS N N N N 

OS 

SS R R R R 

P P PPM Program 

~ 
Memory 

1-------1 

PPPPM 

ES OKKKK { PPPPM+1 
o H H L L.-- 1-----1 

R R R R 0 PPPPM+2 

Actual Stack memory address output for 
base relative, direct memory addressing. --.. ~~SSSSS 

(You may substitute CS, ES or SS for OS by executing a 1-byte instruction prefix.! 

In the illustration above, the displacement HHLL must be present either as a 16-bit displacement or as an 8-bit dis­
placement with sign extended. Remember, base relative, direct data memory addressing also allows no displacement. 
However, base relative, direct Stack memory addressing requires a displacement. These options are summarized in Ta­
ble 5-1. 
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Here is an illustration of base relative, implied Stack memory addressing: 

15 0 
7 07 0 

AX = AH+AL 

BX = BH+BL 

ex = CH+CL 

OX = OH+OL 

15 0 

SP 

BP K K K K 

SI 

01 

PC 

15 

CS 

OS 

SS R R R R RRRRO 

ES SSSSS '4 
Actual Stack memory address output for 
base relative, implied memory addressing. 

(You may substitute CS, OS or ES for SS by executing a 1-byte instruction prefix.) 

X, R, and S represent any hexadecimal digits. 
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Here is an illustration of base relative. direct. indexed Stack memory addressing: 

15 0 
7 07 0 

AX = AH+AL 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

15 0 

SP 

BP K K K K 

51 

01 

PC M M M M 1---+---+-11" 0 M M M M 

-------~ N N N N 0 

CS N 

OS 

55 A 

PPPPM 

\ 

Program 
Memory 

t-------t 
N N N 

15 

A A A PPPPM 

ES 
~ 

{ 

t----tPPPPM + 1 

PPPPM + 2 
1------41 

Actual Stack memory address output for PPPPM + 3 
base relative, direct, indexed memory addressing. 

(You may substitute CS, OS or ES for 55 by executing a 1-byte instruction prefix.! 

There is one anomolous 8086 addressing mode that can cause confusion. One variation of I/O in- 8086 1/0 
structions addresses an 1/0 port via the OX register. The OX register contents are output on PORT 
the Address Bus, to be interpreted as an liD port address. This means you can have up to 65.536 ADDRESSING 
I/O port addresses. Since the DX register contents are being output as an I/O port address. it is not 
added to any Segment register contents. Thus. the DX register outputs an address in the range 000016 through 
FFFF16. This is the only case in which a register's contents are output directly as an address on the Address Bus. with­
out first passing through segmentation logic. 

All 8086 Branch-on-Condition instructions use program relative addressing. This feature 
allows dynamically relocatable code. The Branch-on-Condition instruction provides an 8-bit. 
signed binary displacement that is added to the contents of the Program Counter. Thus. Branch­
on-Condition instructions have an addressing range of -128 through + 127 bytes from the loca­
tion of the Branch-on-Condition. The queuing of instruction object codes has no impact on 
Branch-an-Condition logic, or the branch addressing range. 
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8086 Jump and Subroutine Call instructions offer these addressing options: 

1) Program relative addressing. An 8-bit or 16-bit displacement is added to the contents of the Program Counter. 

2) Direct addressing. New 16-bit addresses provided by the instruction are loaded into the Program Counter and the 
CS Segment register. 

3) Indirect addressing. Any of the data memory addressing options may be used to read data 8086 
from data memory. However. the data input is interpreted as a memory address. You have two INDIRECT 
indirect addressing options. A single 16-bit data word may be read. in which case it is loaded ADDRESSING 
into the Program Counter and the Jump or Call references a memory location within the cur-
rent CS segment. You can also read two 16-bit data words; the first is loaded into the Program Counter and the 
second is loaded into the CS Segment register. Thus you can Jump or Call indirectly any addressable memory loca­
tion. 

8086 STATUS 
The 8086 has a 16-bit Stack register with the following satus bit assignments: 

15141312 11 10 9 8 7 6 5 4 3 2 1 0 +- Bit No. 

1-1-1-1-1 0 I D II I Tis I z I-I A I-I pi-I C I Status register 

I I I I I I I t 
L 

Reserved bits. normally 0 

Carry 

Parity 

Auxiliary Carry 

Zero 

Sign 

Trap 

Interrupt enable/disable 

Direction 

Overflow 

The Carry, Auxiliary Carry, Overflow, and Sign statuses are quite standard; see Volume 1 for a description of these 
statuses. The Auxiliary Carry status is identical to the 8080A status with the same name. It represents carries out of bit 
3 in an 8-bit data unit as described in Volume 1. Chapter 2. 

Subtract instructions use twos complement arithmetic in order to subtract the minuend from the subtrahend. 
However, the Carry status is inverted. That is to say, following a subtract operation, the Carry status is set to 1 
if there was no carry out of the high-order bit, and the Carry status is reset to 0 if there was a carry out of the 
high-order bit. The Carry Status therefore indicates a borrow. 

The Parity status is set to 1 when there is an even number of 1 bits in the result of a data operation; an odd number of 
1 bits causes the Parity status to be reset to O. 

The Zero status is completely standard. It is set to 1 when the resu It of a data operation is zero; it is set to 0 when the 
result of a data operation is not zero. 

The Direction status determines whether string operations will auto-increment or auto-decrement the contents 
of I ndex registers. If the Direction status is 1. then the SI and Dllndex registers' contents will be decremented; that is to 
say. strings will be accessed from the highest memory address down to the lowest memory address. If the Direction 
status is O. th.en the SI and Dllndex register contents will be incremented; that is to say. strings will be accessed begin­
ning with the lowest memory address. 

The Interrupt status is a master interrupt enable/disable. This status must be 1 in order to enable interrupts within 
the 8086. If this status is O. then all interrupts except the NMI (Non-Maskable Interrupt) will be disabled. 

The Trap status is a special debugging aid that puts the 8086 into a "single step" mode. The single step mode is de­
scribed in detail together with 8086 interrupt logic. since it depends on this interrupt logic for its existence. 

The Carry, Auxiliary Carry, Parity, Sign, and Zero statuses are also found in the 8080A. The Overflow, Direction, 
Interrupt, and Trap statuses are new in the 8086. 
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8086 CPU PINS AND SIGNALS 
8086 CPU pins and signals are illustrated in Figure 5-3. 

GND 
AD14 
AD13 
AD12 
AD11 
AD10 

AD9 
AD8 
AD7 
AD6 
AD5 
AD4 
AD3 
AD2 
AD1 
ADO 
NMI 

INTR 
ClK 
GND 

Pin Name 

ADO-AD15 
A 16/S3, A17/S4 
A18/S5 
A19/S6 
BHE/S7 
Ri5 
READY 
TEST 
INTR 

- - 1 40 - .. 
2 39 .. 3 38 - · ... 4 37 - .. 5 36 - -
6 35 - 7 34 - · .. 8 33 ... - 9 32 -- · .. 10 8086 31 -- - 11 30 -

12 29 - .. 13 28 - · ... 14 27 - .. 15 26 - · 
16 25 - 17 24 .. 18 23 -.. 19 22 
20 21 

Description 

Data/Address Bus 
Address/Segment Identifier 
Address/Interrupt Enable Status 
Address/Status 
High-order Byte/Status 
Read Control 
Wait State Request 
Wait for Test Control 
Interrupt Request 

-
----

----

NMI Non-maskable Interrupt Request 

Maximum { 
System 
Signals 

Minimum 
System 
Signals 

RESET 
ClK 
MN/MX 
SO, 5152 
Jm/G'rn, m/GTi 
OSO, aS1 
IOCK 
MN/MX 
M/IO 
WR 
ALE 
DTiR 
om 
INTA 
HOLD 
HlDA 
VCC,GND 

System Reset 
System Clock 
= GND for a Maximum System 
Machine Cycle Status 
Local Bus Priority Control 
Instruction Oueue Status 
Bus Hold Control 
= VCC for a Minimum System 
Memory or I/O Access 
Write Control 
Address latch Enable 
Data Transmit/Receive 
Data Enable 
Interrupt Acknowledge 
Hold Request 
Holr;! Acknowledge 
Power, Ground 

.. 
--
---.. · --
--.. 
---.. · --· .. · ---

VCC 
AD15 
A16/S3 
A17/S4 
A18/S5 
A19/S6 
B'FfE"/S7 
MN!MX 
RD 
RO/GTO, HOLD 
'FfCi/GTf, HLDA 
LOCK, WR 
52, M/iO 
Sf, DT/R' 
SO, DEN 
OSO, ALE 
OS1,INTA 
TEST 
READY 
RESET 

Type 

Bidirectional, Tristate 
Output, Tristate 
Output, Tristate 
Output, Tristate 
Output. Tristate 
Output, Tristate 
Input 
Input 
Input 
Input 
Input 
Input 

Output. Tristate 
Bidirectional 
Output, Tristate 
Output, Tristate 

Output, Tristate 
. Output, Tristate 
Output. Tristate 
Output, Tristate 
Output, Tristate 
Output 
Input 
Output 

Figure 5-3. 8086 Pins and Signal Assignments 
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The 8086 outputs a 20-bit memory address. Data is accessed as 16-bit words. subdivided into a low-order byte and a 
high-order byte. Therefore the 8086 needs a 20-line Address Bus and a 16-line Data Bus. In order to have a 40-pin 
package. the low-order 16 Address Bus lines are multiplexed with the Data Bus. 

i'H'E may be looked upon as an additional Address Bus line, since it is used to identify the high-order byte of a 
memory word. while ADO identifies the low-order byte of the memory word. 

The four high-order Address Bus lines. together with 8HE. are multiplexed with five status I.ines. thus. we can illustrate 
Address Bus line multiplexing as follows: 

Data/Status 

Status S7 

16-bit data word 
{

DO 

D1 .... 015 

Status S3 - S6 

Address 

BRt High-order byte of selected word 

AO Low-order byte of selected word 

A1 - A15 } Address of a 16-bit word 
A16 - A19 

It is easy to become confused when looking at how the Address Bus, together with BHE, is used 
to access memory. As seen by external memory. Address Bus lines are interpreted as follows: 

ADO 
AD1 

AD7 
AD8 

AD15 

A19 
SHE 

.=. -. · _. 
::: -. · _. -. · _. --

Select .. .. 

.. -Select 

Memory 
select 
logic 

AO A18 

• j~ ... 

... 
~ ~ 

AO A18 

Memory 
select 
logic 

Low-order 
byte 

~ 

memory 
bank 

DO 07 

• . .. 
.. 
:. , · -· · -~ . .. 

j · · . .-
j · · : 

~ 

... 
~ ~ ~ 

DO 07 

High-order 

.. byte - memory 
bank 

5-24 

8086 
EXTERNAL 
MEMORY 
ADDRESSING 

ADO 
AD1 
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A19 
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In the previous illustration you will see that memory is indeed organized as bytes. 

The data pins of the low-order byte memory bank connect to ADO-AD7. The high-order byte memory bank data pins 
connect to AD8-AD15. 

The low-order and high-order byte memory banks each have memory select logic that decodes AD1-A 19. These 19 ad­
dress lines become inputs AO-A 18 at the illustrated memory select logic. Since each memory bank receives 19 address 
lines. select logic can address up to 524.288 (512K) bytes of memory. These two memory banks. taken together. con­
stitute the advertised one million bytes of directly add ressable memory. 

Now. you may well ask why one should bother dividing memory into separate low-order and high-order byte banks. If a 
sixteen-bit word lies on an even-byte address boundary. then we could ignore the memory select logic connections to 
ADO and BHE. The address on AD 1-A 19 becomes an address identifying a 16-bit word. which just happens to be im­
plemented as two separate 8-bit memory banks. 

If an 8086 16-bit memory word does lie on an even-byte address boundary. then the low-order byte address is. in fact. 
the only address output. BHE is pulsed low while the low-order byte address is being output. and both memory banks 
consider themselves selected even though (in theory) the high-order memory bank's address has not been output. 

To illustrate what happens. consider the memory addresses 02A4016 and 02A4116. One would normally expect the 
two addresses to be output sequentially in order to access the low-order byte and then the high-order byte of the 16-bit 
word. This may be illustrated as follows: 

ADO-AD7 

AD8-AD15 

AD16-AD19 

Output 
address 
02A4016 

Input 
data 
from 
byte 

02A4016 

Output 
address 

02A41 16 

Input 
data 
from 
byte 

02A41 16 

But we could just as easily output the low-order byte address only. using BHE as an extra address line to substitute for 
the odd-byte address - which is never output. This may be illustrated as follows: 

ADO-AD7 

AD8-AD15 

AD16-AD19 

Output 
address 

02A4016 

Assume 
address 

02A4116 
has been 
output 
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If a word lies on an odd-byte address boundary, then two byte addresses must be output to access the two 
halves of the 16-bit word. This may be illustrated as follows: 

First memory 
access is to 
a byte in 
the high­

order byte 
memory 
bank. i.e. 

an odd byte 
address. with 

ADO high 

Return low­
crder byte 
of 16-bit 
word via 

AD8-AD15 

Second 
memory 

access is to a 
byte in the 
low-order 

byte memory 
bank. i.e. 

an even byte 
address. with 

ADO low 

Return high­
order byte 
of 16-bit 
word via 

ADO-AD7 

When a 16-bit word lies on an odd-byte address boundary. as illustrated above. the low-order byte is input first via 
AD8-AD15. then the high-order byte is input via ADO-AD7. Logic internal to the 8086 switches the data bytes into 
their correction locations. 

Intel could have elected to implement external memory as 16-bit words, which would eliminate BHE along with 
the Address Bus complexities we have just described. But this would have forced all instruction object codes, 
and data, to be accessed as 16-bit units. Why not do it? 

One of the most interesting hindsight discoveries that 8080A users have made is the fact that the 8080A is extremely 
efficient in its use of memory. By having a large number of 8-bit object codes. the 8080A generates object programs as 
compact as the most powerful minicomputers on the market. 

But if the 8086 is to keep 8-bit object codes. and therefore the efficient memory utilization of the 8080A. then it can no 
longer guarantee that data will lie on even-byte address boundaries. The first 8-bit object code will force the next in­
struction or data entity to begin on an odd-byte boundary. 

By including BHE and the extra logic needed to access 16-bit data units origined at odd-byte boundaries. the 8086 has 
allowed instructions to generate 1-byte. 3-byte or other odd-byte object codes. rather than 2-byte. 4-byte. and even­
byte object codes only. 

Simply stated, this is the trade-off: simplify memory addressing so that external memory is accessed only as 
16-bit data units and you will use memory less efficiently. Intel elected to make memory addressing logic more 
complex and memory utilization more efficient. 

Moving on from the Data/Address Bus, 8086 signals may be grouped into those that do not change with system 
complexity, and those that do. let us first look at the unchanging signals. 

elK is the single clock signal output by the 8284 clock generator to synchronize all 8086 logic. 

READY is the Wait state request which slow external logic inputs if it requires more time to respond to an access. A 
high READY input occurring at the proper time early in a machine cycle causes the 8086 to extend the machine cycle 
by inserting Wait state clock periods. 
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RD is a single bus control signal that does not change with system configuration. This signal is output low when the 
CPU is inputting data from any external source. 

Even though RD is output by the same physical pin under all circumstances. this signal is functionally part of the group 
that changes its nature depending on signal complexity. We will therefore refer again to RD when describing the sig­
nals that are a function of system complexity. 

There are four interrupt and interrupt-related signals. 

INTR is a normal interrupt request input. 

NMI is a non-maskable interrupt request input. 

RESET is a system reset signal; it must be input high to the 8284 clock generator for at least 
four ClK clock periods. The 8284 transmits a synchronized RESET signal to the CPU. When 
the 8086 is reset, the following events occur: 

1) The Status register is cleared. This disables external interrupts. 

2) The Program Counter and the three Segment registers. DS. SS. and ES. are cleared. 

3) The CS Segment register is set to FFFF16. Following a Reset. program execution therefore restarts with the instruc-
tion located at memory byte FFFF016· 

These reset operations take approximately 10 clock periods to occur - during which time no other operations 
should occur. 

Following power-up. at least 60 microseconds shou Id elapse before the 8086 is reset. 

An interrupt request via INTR should not occur sooner than 9 clock periods after the end of the 8086 device reset. An 
earlier interrupt request will cause one entire instruction to be executed before the interrupt request is recognized or 
acknowledged. 

A nonmaskable interrupt request should not be made during the first clock period following the end of a reset. 

TEST is not really an interrupt input. but it is used by program logic that otherwise would rely upon an interrupt. The 
8086 has a special "Wait-for-Test" instruction that puts the CPU into an Idle state; this Idle state ends when 
the TEST input goes low. 

An 8080A (and other microprocessors) will duplicate the logic of the 8086 "Wait-for-Test" instruction by executing a 
"no operation" loop. which is terminated by an interrupt request: 

ENI Enable interrupts 

SELF JMP SELF Only an interrupt will terminate loop execution 
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There are eight pins that can output one of two signals. depending on whether MN/Mx is 
tied to power or ground. By having two sets of signals. the 8086 can be used in simple con­
figurations. best served by elementary control signals. or in complex configurations. where control 
signals must provide sufficient information to resolve the contentions and access conflicts that 
complex microcomputer systems may encounter. 

The two sets of signals may be illustrated as follows: 

Minimum 

Systems 

MN/MX = Vee 

M/TIS 
DT/R ---­

DEN 

INTA 

ALE 

WR 

HOLD 
HLDA 

Maximum 

Systems 

MN/MX = GND 

S2 0 [.·.;.g.·.P .... H·
1 

.......•...•... : ...... 0 ... · ..•... ;.:.:.·: •. · ..••... 1 51 O' :0;:;::":)::1'::: 
SO 0 1 .. :il:> 

OS1 

OSO 

LOCK 

RO/GTO 

RO/GTl 

I I I 

N 0 0 

T 

A 

0 

0 

N 

0 

0 

P 

R IN 

0 1 

1 0 

a Q 

8 E 

1 
Q 

B 

S 

8086 
DUAL BUS 
COMPLEXITY 

Let us first look at the simple set of control signals that are output when MN/MX is con- 8086 SIMPLE 
nected to +6 V. These are completely standard microprocessor control signals. CONTROL 

Since data and addresses are multiplexed on a single bus. ALE is output high to identify a valid SIGNALS 
memory address. 

When data are being transmitted or received via the Data/Address Bus. WR is pulsed low to identify data output. 
while RD is pulsed low as a request for external logic to place data on the Data/Address Bus. We have already 
described RD. It is not one of the changing signals: nevertheless. it is used by both simple and complex system busses. 

For a read or write operation. M/IO indicates whether memory (M/IO high) or an I/O port (M/IO low) is being ac­
cessed. 

DTIR and DEN are two new control Signals not found in earlier Intel microprocessors. These two control signals have 
been designed specifically to control 8286/8287-type bidirectional transceivers. DT Iff identifies the data direction. 
while DEN is the output enable. The 8286 and 8287 transceivers are described later in this chapter. 

HOLD and HLDA are standard hold request!8cknowledge signals. When external logic inputs HOLD high. the 8086 
CPU enters a Hold state upon completing the current instruction's execution: the 8086 acknowledges the Hold State 
by outputting HLDA high. We will describe the Hold state in more detail later in the chapter. 

Let us now look at the complex System Bus that is generated when MN/MX is tied to 8086 COMPLEX 
ground. Control signals are output as a three-signal combination. decoded by a 3-to-8 decoder. CONTROL 
and a two-signal combination. decoded by a 2-to-4 decoder. Complex System Bus signals have SIGNALS 
been designed to act as inputs to an 8288 Bus Controller. 

S2. ST. and SO are decoded to provide eight separate control signals. However. the simple system signals M/IO. DT/R 
and DEN represent a subset of the eight S2. ST. and SO combinations. In our earlier illustration. we identify this simple 
system subset by shading the applicable complex system S2. ST. and SO levels. 
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The eight combinations of 52. 51. and SO generate the following control signals: 

S2 51 so 
0 0 0 INTA Interrupt acknowledge 
0 0 1 lOR I/O device read 
0 1 0 lOW I/O device write 
0 1 1 HALT CPU has executed a HALT instruction and is in the Halt state 
1 0 0 IFETCH The CPU is fetching an instruction object code byte 
1 0 1 MEMR Memory read 
1 1 0 MEMW Memory write 
1 1 1 NONE The System Bus is inactive 

The control signal descriptions above use the words "read" and "write" as seen by the CPU. That is to say, a .. read" 
operation moves data from a memory device or 1/0 port to the CPU, while a "write" operation moves data from the CPU 
to a memory location or I/O port. 

050 and 051 combine to identify conditions within the 8086 instruction object code queue - which we will describe 
soon. The QSO and QS1 combinations are interpreted as follows: 

QSO 

o 
o 
1 
1 

051 

o 
1 
o 
1 

NOOP 
OB1 
OE 
OBS 

No operation. This is the default case 
The first instruction object code in the queue is being executed 
The queue is empty 
An instruction object code other than the first one in the queue is being executed 

Observe that the simple bus signals INTA and ALE do not correspond to any combination of OSO and 051. This is in 
contrast to MilO, DT IR and DEN, which constitute a subset of 52, ST, and SO. 

LOCK, RO/GTO, and RO/GT1 are not related to their simple system equivalent signals: WR. HOLD, and HLDA. LOCK. 
iiO/GTO. and RQ/GT1 provide the 8086 with its System Bus priority and control logic in complex configurations. 

LOCK is output high to prevent the 8086 from losing bus control while executing a sequence of machine cycles that 
must not be interrupted. Typically these will be a memory access combination of read-modify-write machine cycles. 
where an error could result if the CPU lost bus control after the read and before the write. 

RO/GW and RQ/GT1 are two-bus priority, bidirectional type signals. They are used to determine which CPU in a multi­
CPU configuration will at any time have control of a shared bus. We will discuss these signals in more detail later in the 
chapter when looking at the capabilities of the 8086 in mUlti-CPU shared bus configurations. 
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8086 TIMING AND INSTRUCTION EXECUTION 

The most important concept to understand when looking at 8086 instruction execution tim­
ing is the fact the 8086 bus control logic has been separated from the 8086 instruction ex­
ecution logic. That is to say, the 8086 has an Execution Unit (EU), and a Bus Interface Unit 

8086 
EXECUTION 
UNIT (EU) 

(BIU). -----.. 

The Execution Unit (EU) contains Data and Address registers, the Arithmetic and Logic Unit, 
plus the Control Unit. The Bus Interface Unit (BIU) contains bus interface logic, Segment 
registers, memory addressing logic, and a six-byte instruction object code queue. This may 
be illustrated as follows: 

AH AL I PC 

BH BL I CS 0000 

CH CL I OS 0000 

OH OL I 55 0000 

SP I ES 0000 

BP I .oj 

51 I 
01 I 

I 

8086 BUS 
INTERFACE 
UNIT (BIU) 

---, 
I 
1 
I 
I 
1 
I 
I 
I 
I 
180 86 n I , Bus I Bus 

~ ~ 

: 1 I .oj 

I 
Arithmetic 
and Logic I 
Unit (ALU) 

I 

--=> Control Unit 
I (CU) 

Status 
I 
I 
I -- Instruction Reg. ~ I ~ 

I L __________ --L 

). 

1 

2 

3 

4 

5 

6 

Control 
Logic II' 

I 
I 
I 

Instruction I object code 

I queue 

I 
I 
I 
1 
I __ ....J 

The Execution Unit (EU) and the Bus Interface Unit (BIU) operate asynchronously. Whenever 8086 
the Execution Unit is ready to execute a new instruction. it fetches the instruction object code INSTRUCTION 
from the front of the Bus Interface Unit instruction queue. then it executes the instruction in some QUEUE 
number of clock periods that have nothing to do with machine cycles. If the instruction object 
code queue is empty. then the Bus Interface Unit (BIU) executes an instruction fetch machine cycle - and the CPU 
waits for the instruction object code to be fetched. But the queue will rarely be empty. for reasons that will soon 
become apparent; therefore. the EU will usually not have to wait while an instruction fetch is executed. 
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If memory or an I/O device must be accessed in the course of executing an instruction, then the EU informs the BIU of 
its needs. The BIU executes an appropriate external access machine cycle in response to the EU demand . ..--_ ....... _-... 
The Bus Interface Unit (BIU). for its part. is independent of the Execution Unit (EU). and attempts to 8086 
keep the six-byte queue filled with instruction object codes. If two or more of these six bytes are INSTRUCTION 
empty, then the Bus Interface Unit (BIU) executes instruction fetch machine cycles - providing QUEUE 
the EU does not have an active request for bus access pending. If the EU issues a request for bus ------..... 
access while the BIU is in the middle of an instruction fetch machine cycle, then the BIU will complete the instruction 
fetch machine cycle before honoring the EU bus access request. 

8086 BUS CYCLES 
If we look at the way clock logic is used by the 8086, the term "machine cycle" no longer applies. The EU does 
not use machine cycles; it executes instructions in some number of clock periods that are not subject to any type of 
machine cycle grouping. The only time clock periods are grouped is when the bus control logic wishes to access 
memory or I/O devices. Each access requires four clock periods. This is the minimum amount of time required to han­
dle the normal bus protocol that accompanies any transfer of information between a microprocessor and logic beyond 
the microprocessor. Since this is the only time the 8086 groups clock periods, it is more accurate to talk about 
8086 bus cycles, rather than machine cycles. 

Figure 5-4 illustrates two 8086 bus cycles executed back-to-back. In common with machine cycles, 8086 bus 
cycles, as illustrated in Figure 5-4 assign individual clock periods to time specific events. 

Memory and I/O device addresses are output on the Data/Address Bus during T1. 

Data is transferred between the 8086 and memory or I/O devices during T3 and T 4. If these two clock periods provide 
external logic with insufficient time to respond to an access, then Wait state clock periods (TW) may be inserted bet­
ween T3 and T 4· 

T2 is a buffer clock period during which the Data/Address Bus stops outputting an address and starts outputting or in­
putting data. 

During T 4 the CPU identifies the status of the next bus cycle or clock period. In simple configurations when MN/MX is 
tied to +5 V, DT /A is the only external signal that changes state during T 4. When MN/MX is tied to ground, SO, S 1, and 
S2 change state during T 4. Thus, by examining these three status outputs, external logic knows whether to expect 
another bus cycle. and, if so, what type of bus cycle. 

Now if you look at Figure 5-4, there is very little about it that differentiates an 8086 bus cycle from any other 
microprocessor's machine cycle. The characteristic of the bus cycle that differentiates it from standard machine 
cycles is the fact that bus cycles occur only on demand. 

: ,... ... ..----- BUS CYCLE ---------i~ .... : .. 4J------- BUS CYCLE ------I~ .. ,: 
: T1 T2 T3 T4 i T1 T2 T3 T4 i 

V//////A r//////A Output address 
~ ~ duringT1 V///////1 r///////1 Turn Bus around 
~ ~ duringT2 

VlllmllllllJ/j t'lll/7lllllJll Perform memory 
V/I/I/III//IIII VI//I/I///////A accesses during T3 

+ 'Wait state clock 
L----------------~ • ..__-----periods 

Figure 5-4. Two 8086 Bus Cycles 
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8086 INSTRUCTION QUEUE 
Consider what happens when an instruction is executed. Beginning with the simplest case, the instruction ob­
ject code queue within the Bus Interface Unit will be empty. When the EU requests an object code byte there is 
none, so the BIU executes a bus cycle that fetches the first byte of the instruction object code: 

CLK 

Tl 

~ 
Bus cycle fetches 
first object code 

byte 

I 
I 
I 
I 

Let us assume that this particular instruction requires two bytes of object code: keeping things simple. we will illustrate 
another instruction cycle executed immediately to fetch the next instruction byte: 

Tl i T3 I T4 Tl : T2 : T3 : T4 
I I 

CLK I 
I 
I 
I 
I I 

~~ 
Bus cycle fetches 
first object code 

byte 

Bus cycle fetches 
second object 

code byte 

Let us suppose that this instruction reads a word of data from memory. then performs an arithmetic operation using 
this data. The instruction is going to require some number of clock periods to compute the effective address for the 
data memory location to be accessed (we will assume seven clock periods are needed). Some additional number of 
clock periods will also be needed to perform the arithmetic operation (we will assume nine clock periods). In a normal 
microprocessor. this instruction might be executed as the following sequence of machine cycles: 

CLK 

ClK 

Machine Cycle 1 Machine Cycle 2 Machine Cycle 3 Machine Cycle 4 Machine Cycle 5 

Tl : T2 i T3 : T4 Tl I T2 I T3 I T4 Tl I T2 1 T3 : T4 Tl: T2 : T3 : T4 Tl: T2 I T3 : T4 
I I I I I I I: I I 1 

Fetch first 
object code 

byte 

Machine Cycle 6 

Fetch second 
object code 

byte 

Long Machine Cycle 7 

Compute data 
memory 
address 

Machine Cycle 8 

Compute data 
memory 
address 

Tl : T2 : T4 Tl 
1 

i T3 i T41 T5 Tl 
1 I 1 I I 

Execute arithmetic operation 
in a standard machine cycle 

and a long machine cycle 

I 
Start executing I 

next instruction by 
fetching object 

code byte 
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But the 8086. having asynchronous CPU and Bus Control Unit logic. will use clock periods to execute the instruction il­
lustrated above as follows: 

ClK 

EU 

BIU 

ClK 

EU 

BIU 

Bus Cycle 1 

Tl I T2 : T3 
I 

EU asks for an 
object code byte. 
There is none. so 
the BIU fetches 
one. 

BIU fetches a 
byte of object 
code in one 
bus cycle. 

Bus Cycle 5 

Tl 

Ti 

Bus Cycle 2 Bus Cycle 3 Bus Cycle 4 

Tl II T2 I T3 I T4 Tl I T2 II T3 I T4 
I i I I : 

Tl : T2 : T3 : T4 

The EU needs a 
second object 
code byte. 

BIU fetches a 
second byte of 
object code in 
one bus cycle. 

Bus Cycle 6 

I I I 

The EU computes a data memory 
address in 7 clock periods. At the 
end of the 7th clock period the 
CPU requests bus access. 

Since the EU is not demanding 
bus access. the BIU fetches the 
next two object code bytes and 
stores them in the queue. At the 
end of bus cycle 4 the EU is 
requesting bus access. so the BIU 
services the EU. 

Bus Cycle 7 

Tl I T2 i T3 : T4 Tl: T2 I T3 : T4 
I I I 

Ti Ti Ti Ti 
I 

Ti : Ti Ti: Ti 
I , 

etc. 

The EU uses nine clock periods to execute 
the required arithmetic operation. 

: The EU takes the 
I next object code 
, byte from the 
I BI U queue and 

etc. 

I The BIU continues executing bus cycles to 
fill the instruction object code queue. 

, starts executing the 
! next instruction. 
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Now. the illustration above is not accurate because. you will recall. the 8086 fetches data in 16-bit increments. pro­
vided the data address lies on an even-byte boundary. Also. the BIU fetches instruction bytes and loads them into the 
queue only when there are at least two free bytes in the queue. Let us assume that all data does lie on even-byte boun­
daries. This is how our timing will now look: 

Bus Cycle 1 Bus Cycle 2 Bus Cycle 3 Bus Cycle 4 Bus Cycle 4 

Tl : T4 
I 

Tl : T2 : T3 I T 4 
I I I 

Tl : T2 : T3 : T4 Tl: T2 : T4 T1: T2 : T3 i T4 Ti 
I I I I I 

Ti Ti 

ClK 

EU EU asks for an 
object code byte. 
There are none. 
so the BI U exe­
cutes a bus cycle. 

The EU computes a data memory 
address in 7 clock periods. At the 
end of the 7th clock period the 
EU requests bus access. 

The EU waits for the 
requested data to be 
fetched by the BI U. 

The EU uses 9 clock periods to execute 
the arithmetic operation. 

BIU 

ClK 

BI U fetches two 
bytes of object 
code in one bus 
cycle. The CPU 
takes both of 
them. so the 
queue is imme­
diately emptied. 

I 
Ti Ti I Ti Ti 

I 

I 
I Ti 

t 

I 

BI U fetches four bytes of object code 
in two bus cycles and stores them in 
the queue. which has two empty 
bytes left. 

etc. 

EU The EU ends instruction execution 
and fetches one byte of object code 
from queue to execute next instruction. 

BI U The BI U remains idle since only one 
byte of queue is empty. 

I 

BI U fetches data 
from memory 
location addressed 
by the EU. 

There are some important points to note regarding 8086 bus cycle timing. 

Bus cycles are a Bus Interface Unit (BIU) phenomenon. 

The BIU fetches I The BIU is idle. 
two more bytes 
of object code and 
stores them in the 
queue which is 
now full. 

So far as the EU logic is concerned. bus cycles do not exist. The EU experiences periods of activity while executing in­
structions. and periods of inactivity while waiting for instruction object codes or data that the BIU must process via bus 
cycles. Periods of EU activity are timed by a sequence of clock periods. The EU makes no attempt to group clock periods 
into machine cycles. nor do EU clock periods have to occur in any special numeric combinations. 

The EU asks for memory operands before it needs them. so unless the BIU cannot get immediate bus access the max­
imum EU wait time is one clock cycle for bus access. 

So far as the BIU is concerned. clock periods are grouped into bus cycles only when data must be transferred to or from 
the 8086. First priority is given to a bus access request coming from the EU. If the EU is not requesting bus access. then 
the BIU executes instruction fetch bus cycles until the queue is full. These are the prerequisites for the BIU to ex­
ecute an instruction fetch bus cycle: 

1) The clock period that initiates the bus cycle would otherwise be an idle clock period. 

2) The EU does not have an active bus access request pending. 

3) There are at least two bytes empty in the queue. 

If the queue is full. then the BIU ceases to execute bus cycles; as illustrated above. a sequence of idle clock periods oc­
curs. 
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Note that the CPU may have to wait for bus access. In the illustrations above, the EU requires seven clock periods in 
order to compute a data memory address. At the end of the seventh clock period, the EU issues a bus access request to 
the BIU. But at this time the BIU is part way through executing an instruction fetch bus cycle. The BIU completes the in­
struction fetch bus cycle, then honors the EU bus access request. 

In the final illustration above, no bus cycle accompanies the beginning of a new instruction's execution. We are assum­
ing that the next instruction executed has one byte of object code. This object code byte is fetched from the front of the 
queue - which then has just one empty byte. No bus cycle is executed to fetch the instruction object code, since it is 
taken out of the queue. Subsequently, the BIU does not execute an instruction fetch bus cycle since there is only one 
empty byte; there must be at least two empty bytes in the queue before the BIU will execute an instruction fetch bus 
cycle. 

Based on the foregoing discussion of 8086 instruction fetch queuing, we can see that the 8086 has essentially 
eliminated instruction fetch time. The only time the EU will have to wait while the BIU fetches instruction object 
codes is when a Branch-on-Condition instruction causes execution to branch out of the queue sequence, or when (for 
any reason) the memory accesses accompanying an instruction's execution are so dense that the BIU has insufficient 
idle clock periods within which to insert instruction fetch bus cycles. 

8086 MEMORY AND 1/0 DEVICE READ BUS CYCLE FOR MINIMUM MODE 
Figure 5-5 shows timing for an 8086 memory read bus cycle when MNiMX equals +5 V; that is to say, for the 
minimum mode bus configuration. 

I~ One Bus Cycle ·1 
T1 T2 I T3 T4 

ClK 

ADO-AD15 

A16-A19 

BHE 

ALE 

MilO 

RD 

DT/R 

DEN 

Trailing edge of 
ALE latches address 

Figure 5-5. 8086 Memory Read Bus Cycle for a Minimum Mode System (MN/MX = +5 V) 
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The memory or I/O device address is output via the Address Bus BHE during clock period T 1. ADO-AD15 starts floating 
in T2 while turning around internal pin logic so that data can be input during T3 and T 4. Address lines A 16 through 
A 19 are all low when an I/O device address is being output. These address lines output status during T2. T3. and T 4. 
Close to the end of T 4. A 16 through A 19 start to float. 

BHE timing follows Address lines A 16-A 19; that is to say. BHE is output low for the time that A 16 through A 19 is out­
putting an address. 

The trailing edge of the high ALE pulse should be used as the "valid address" strobe. If your 8086 configuration 
demultiplexes the Data and Address Busses. then the Address Bus demultiplexing buffers should be the "pass 
through" type and use the high-to-Iow transition of ALE as their latching strobe. 

Remaining control signals consist of M/i5 and RD. which are directed at external memory or 1/0 devices. plus DT IA and 
DEN. which are directed at bus buffers. 

M/iO differentiates between a memory access and an I/O device access. M/IO will be high for a memory access bus cy­
cle; it will be low for an 1/0 device access bus cycle. M/i5 will contribute to memory and I/O device select logic when 
memory and I/O devices have similar addresses. 

RD is pulsed low as a memory or I/O device read strobe. The addressed memory device must use this low signal to 
place data on ADO - AD 15. 

DT /R and DEN are control signals designed to control bidirectional latched buffers on the Data Bus. DT IR is output low 
for the entire memory or I/O device read bus cycle; it should be used to turn the latched buffers around so that they will 
transmit data to the CPU. DEN subsequently acts as a latching strobe. These two signals have been designed 
specifically to work with the 8286 and 8287 Data Bus transceivers; however. their logic is quite general. 

There is no difference between external timing for an instruction fetch or memory read bus cycle. Given the 
pipelining instruction fetch logic of the 8086. this makes sense. 

The only timing difference between a memory read bus cycle and an I/O device input bus cycle occurs at the 
M/ffi signal. This signal will be low for the duration of an I/O input bus cycle. whereas in Figure 5-5 it is shown high 
for the duration of a memory read bus cycle. 

Except for this difference, Figure 5-5 also illustrates I/O input bus cycle timing for a simple 8086 configuration. 

During any simple configuration memory access operation, the following status is output on address lines A 16 
through A 19: 

A 19/56 - Always 0 

A 18/S5 - Interrupt enable status 

A17/S4- 0 0 1 

A 16/S3 - 0 1 0 1 

1 I
t L- Data segment access 

L... 

_____ cOde segment access or no access 
Stack segment access 

~------- Extra segment access 

The interrupt enable status appearing on A 18 may be used to illuminate an indicator on a control panel. should there 
be one. This indicator will show whether interrupts are enabled or disabled at any time. This status has no other value. 

S3 and 54 together identify the memory segment which is being accessed. This is not very useful information. 
Even a code segment access cannot be interpreted as an instruction fetch. since data can be addressed out of the pro­
gram segment. 

8086 MEMORY OR I/O DEVICE WRITE BUS CYCLE FOR MINIMUM MODE 
Figure 5-6 illustrates timing for an 8086 memory or I/O device write bus cycle when the 8086 is operating in a 
minimum mode with MN/MX tied to +5 V. 

Address output logic is identical in read and write bus cycles. As was the case for a read bus cycle. the address is out­
put on the Address Bus. together with BHE. during T 1. External logic should use the high-to-Iow transition of the ALE 
pulse in order to latch a valid address. During T2. ADO - AD15 switches to outputting data. while A16 - A19 outputs 
status. The same status is output in read and write bus cycles. 

M/iO is output high for the duration of a memory write bus cycle; it is output low for the dUration of an I/O device write 
bus cycle. 

WR is output low beginning early in T2 and ending shortly after T3. Note that RD does not go low for a read bus cycle 
until halfway through T2. 
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For an 8286 or 8287 Bus Transceiver, or any similar device, DT/A" is output high for the entire duration of the write bus 
cycle. This conditions the device to transmit data from the CPU to external logic. DEN is the chip enable signal provided 
for the bus transceiver. DEN is output high from the end of T1 until the end of T 4. Note that this high pulse is longer 
than the DEN pulse accompanying a read bus cycle. 

\- One Bus Cycle .\ 
T1 T2 I T3 T4 

I 
ClK 

ADO-AD15 Data Out 

A16-A19 Status Out 

BHE 

ALE 

MIlO 

WR 

DT/R 

DEN 

Trailing edge of 
ALE latches address 

Figure 5-6. 8086 Memory Write Bus Cycle for a Minimum Mode System (MN/MX = +5 V) 

An I/O write bus cycle has timing identical to Figure 5-6, except that the M1i5 Signal will be low for the duration of the 
bus cycle, rather than high as shown in Figure 5-6. Wherever a memory word and an I/O port may have the same ad­
dress, M1i5 must contribute to device select logic in order to discriminate between memory and I/O devices. 

The status output on A 16-A 19 is no more usefu I in a write bus cycle than it is in a read bus cycle. 

8086 READ AND WRITE BUS CYCLES FOR MAXIMUM MODE 
It is not very rewarding looking at maximum mode memory or I/O access bus cycle timing, if we look at timing for an 
8086 device on its own. This is because in maximum mode, with MN/MX tied to ground, the 8086 has been designed 
to operate with the 8288 Bus Controller. 

Figure 5-7 and 5-8 provide maximum mode timing for the 8086 on its own when executing read or write bus cycles. 
Only the status signal levels differentiate memory or I/O access bus cycles. 

Timing for the Address/Data Bus is identical in minimum and maximum modes. The read strobe RD does not change. 
However, remaining control Signals become control inputs to the 8288 Bus Controller. 
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Observe that OSO and OS1 change levels on a clock period by clock period basis in order to identify events for in­
dividual clock periods. SO, Sf, and S2 hold their levels from shortly before T 1 until shortly after the end of T2· 

li-oI • ....------------one Bus cycle-------------o.,jl 

T1 T2 T3 T4 

CLK 

ADO-AD15 __ ......J ..... __ ... 

A 16-A 19 ---...o+---C 

QSO,QS1 

SO,S1,S2 

Figure 5-7. 8086 Memory or I/O Read Bus Cycle for a Maximum Mode System (MN/MX = 0 V) 

li-oI • .....-------------one Bus Cycle------------.J 

T1 T2 I T3 T4 

CLK 
,.---",,1 

ADO-AD 15 -"""---4 Address Out Data Out 

A16-A19 --t---1 Address Out Status Out 

QSO,QSl 

Figure 5-8. 8086 Memory or liD Write Bus Cycle for a Maximum Mode System (MN/MX = 0 V) 
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The 8288 Bus Controller. described later in this chapter. decodes SO. 51. and S2 in order to generate control signals 
that are comparable to those illustrated in Figures 5-5 and 5-6. For a complete discussion of bus cycle timing in com­
plex 8086 microcomputer configurations. see the discussion of 8288 Bus Controller. 

THE 8086 WAIT STATE 
8086 Wait state logic is independent of the MN/MX pin connection and the external access bus cycle being ex­
ecuted.ln any bus cycle it is possible to insert one or more Wait clock periods (Twl between T3 and T 4. In order to ex­
tend a bus cycle with Wait clock periods. external logic must input a low READY signal during T2 of the bus cycle 
which is to be extended. The READY input to the 8086 must be synchronized with the falling edge of ClK at the end of 
T2; this synchronized READY input is created by the 8284 clock generator. External logic will normally input an 
asynchronous READY to the 8284 clock device. which outputs a synchronous READY for the 8086. Wait clock periods 
will continue to be inserted to the bus cycle until READY goes high again. Timing is illustrated in Figure 5-9. All out­
put signal levels are maintained for the duration of the Wait state. 

THE 8086 HOLD STATE 
The 8086 can be forced into a Hold state, at which time all three-state signals are floated. The 8086 Hold state 
is used to enable direct memory access logic, and in addition to disable inactive 8086 devices when more than 
one CPU accesses the same System Bus in a mUlti-CPU configuration. 

In a minimum mode configuration, when MN/MX is tied to +5 V, the 8086 has a traditional 8086 HOLD 
Hold request input (HOLD) and a Hold Acknowledge output (HLDA). Upon receiving a high IN MINIMUM 
HOLD input. the 8086 will complete execution of its current instruction bus cycle before entering MODE SYSTEM 
the Hold sate and outputting HlDA high. Timing may be illustrated as follows: 

T40rTi 

elK 

HOLD 

HlDA 

The 8086 samples the HOLD input on the low-to-high transition of ClK. Therefore. HOLD must make its transitions 
away from this sampling point that is to say. HOLD must be stable when ClK is making its low-to-high transition. 

The 8086 will acknowledge the Hold request by making HlDA high during any idle clock period. or at the end of a bus 
cycle. If a bus cycle is being executed when a Hold request occurs. the Hold request will not be acknowledged until the 
end of T 4 for the currently executing bus cycle. 

The Hold state will last until the HOLD input goes low again. The 8086 continues to sample the HOLD input on all low­
to-high transitions of ClK; therefore. HOLD must make its high-to-Iow transition away from the rising edge of ClK. 
When HOLD goes low. the Hold state will immediately end and HlDA will be forced low again. 

In 8086 maximum mode configurations where MN/MX is tied to ground. the HOLD and HlDA 8086 HOLD 
pins convert to bidirectional type control signals. There are two bidirectional signals; RO/GTO and IN MAXIMUM 
RO/GT1. RO/GTO has higher priority than RO/GT1. MODE SYSTEM 
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T1 

elK 

RDY 

READY 

ROY comes from external logic to the 8284 clock. 
READY comes from the 8284 clock, goes to the 8086. 

T2 T3 TW T4 

Figure 5-9. The 8086 READY Input and Wait States 

Any external logic that wishes to put an 8086 CPU into the Hold state transmits a low pulse to RO/GTO or RO/GT1, The 
8086 CPU will acknowledge this Hold request immediately. if a bus cycle is not being executed. or at the conclusion of 
a currently executing bus cycle. The 8086 acknowledges the Hold request transmitting by a low pulse via the same ROI 
GT line; simultaneously the 8086 floats its three-state bus lines. External logic must allow atl~~t~~ clock period to 
elpase following the Hold Acknowledge pulse. before attempting to input via the same pin. External logic terminates 
the Hold state by inputting another low pulse. Timing may be illustrated as follows: 

eLK 

RQ/GT 

: T4 or Ti I--Hold State---j 
I I I 

@ 0 ® 

In the illustration above. ® identifies the instant at which external logic requests a Hold state by transmitting a low 
pulse via either RO/GT line. The 8086 samples RO/GT on the rising edge of ClK; therefore. all signal transitions on 
RO/GT must occur away from the ClK low-to-high transitions. 

The 8086 will now acknowledge a Hold request during a bus cycle, If a bus cycle is in progress. then the Hold 
acknowledge will occur at the end of the bus cycle - that is to say. at the end of T 4. If a bus cycle is not in progress. 
then the Hold request will be acknowledged immediately. In the illustration above. @ identifies the low pulse the 
8086 will output as its Hold acknowledge, The Hold state will last until external logic again transmits a low pulse via 
RO/GT. This is identified above as © Once again the 8086 samples RO/GT on the rising edge of ClK; therefore. 
RO/GT should be stable at this time, 

When the 8086 enters the Hold state. it continues executing instructions it takes out of the pipeline. until a bus 
access is required. When the EU requires a bus access. it stops operating until the end of the Hold state - at which 
time its bus access request will be honored by the Bus Interface Unit 

In the event that Hold requests occur simultaneously on RQ/GTO and RQ/GT1. the acknowledge pulse will be 
output on RQ/GTO. RO/GT1 will not be acknowledged until the Hold state initiated via RO/GTO has ended. 

When one Hold state ends. another Hold state can begin immediately for either of these reasons: 

1) RO/GT1 was active when RO/GTO was acknowledged; the RO/GT1 Hold request. being of lower priority. was 
denied and is pending, 

2) While the 8086 was in a Hold state. a new hold request occurs on the other RO/GT line. 

If a new hold request occurs while the 8086 is in Hold state. priorities no longer apply. For example. if the CPU has 
acknowledged a Hold request occurring at RO/GT1 and is in a Hold state. then it will deny a new Hold request arriving 
via RO/GfO until the current Hold state has ended, 
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If there is an active Hold request when the CPU ends a Hold state. then the CPU will immediately acknowledge the 
pending Hold request. This may be illustrated as follows: 

Hold for RQ/GT1 in progress 

Low pulse 
input at 
RQ/GTO 

Hold for RQ/GTO in progress 

and immediately 
stand RQ/GTO Hold 

When a Hold state ends. if the CPU has a bus access request pending. then the CPU bus access request will be denied 
until all active Hold requests have been acknowledged. 

Note that there are no 8086 instructions that specifically affect the level of RO/GTO or RO/GT1. That is to say. external 
logic is entirely responsible for the interfaces to these two signals. 

We will discuss RO/GTO and RO/GT1 in more detail later in this chapter when we look at some multiple CPU 8086 con­
figurations. 

THE 8086 HALT STATE 
The 8086 enters a Halt state after a HALT instruction is executed. In the Halt state no signals are floated, and 
undefined data is output on the Data/Address Bus. No bus cycles can be executed while the 8086 is in the Halt 
state. . 

When a Halt instruction is executed. a bus cycle initiates the Halt state. This Halt state initializing bus cycle has 
nothing to do with instruction fetch logic. If the Halt instruction object code is fetched by the CPU from the queue. then 
there will be no preceding instruction fetch bus cycle. If the Halt instruction must be fetched from memory because the 
queue is empty. or is at the conditional end of a Branch-on-Condition. then the Halt initializing bus cycle will be pre­
ceded by an instruction fetch bus cycle. 

For a simple system, the HALT initialization bus cycle is given by Figure 5-5, except that RD, M/IO, DT/R and 
DEN are not active. ALE is active, although the address output has no meaning. 

For a complex system, the HALT initializing bus cycle is illustrated in Figure 5-10. The Halt state combination 
occurring at SO. ST. and 52 causes the 8288 Bus Controller to issue an ALE pulse before entering the Halt state: 
however. the occurrence of ALE could not be deduced simply by looking at 8086 timing. 
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Figure 5-10. 8086 HALT Instruction and Bus Cycle Timing for a Complex Bus Configuration 

The Halt state is terminated by an interrupt request or a Reset. 

You can freely enter and leave a Hold state within an 8086 Halt state via any of the means that we have just de­
scribed. The fact that the 8086 is in the Halt state in no way modifies Hold logic. 

THE 8086 LOCK 
A potential for serious error exists in the Hold request/acknowledge logic of the 8086. 

The 8086 will acknowledge a Hold request occurring on the RQ/GTO or RQ/GT1 lines at the end of the current bus cy­
cle, if one is being executed. or at the next idle clock period. if a bus cycle is not being executed. The 8086 does not 
wait until the conclusion of the current instruction's execution before acknowledging the Hold request. Therefore, if an 
instruction reads the contents of a memory location (or I/O port), modifies these contents, then writes it back, a Hold 
state may separate the read bus cycle from the write bus cycle: 

I Read from memory location X Modify data I Write back to location X I 
HOLD STATE 

This can cause unexpected errors. If the 8086 enters a Hold state after reading memory location X contents and before 
writing these contents back. then it is possible for external logic - either direct memory access logic or another 
Central Processing Unit - to modify the contents of memory location X while the 8086 is in the Hold state. Now when 
the 8086 writes back the modified word. it may destroy data that should have been preserved. 
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If a 16-bit data word lies on an odd-byte boundary. it will require two bus cycles to access the data word. Under normal 
circumstances. a Hold request could be acknowledged between the first and second memory access bus cycles. But 
what if the word being accessed gets modified during the Hold state? If the Hold state splits two memory read bus cy­
cles. this is what the CPU is going to read: 

7 o 7 o 

'~,--.. ----~~~--------~~,--.... --,~ 
High-order byte Low-order byte 

was read after Hold was read before Hold 
and is modified and is not modified 

If a Hold state splits two memory write bus cycles. this is what ultimately gets written: 

7 

I '-,----v 
High-order byte 

is written after Hold 
and is not modified 

o 7 o 

~L, ___ -.~ ___ ..... _"J 
Low-order byte 

was written before Hold 
and gets modified 

You use the 8086 LOCK instruction in order to prevent the types of errors described above. 

When a LOCK instruction is executed, the LOCK signal is low for the duration of the next sequential instruc­
tion's execution. Also, while the next sequential instruction is being executed, a Hold request will not be 
acknowledged. 

You cannot extend protection against a Hold acknowledge beyond a single instruction's execution. For example. sup­
pose you have two instructions. each of which is preceded by a Lock: 

LOCK 
AND MEMX.AX 
LOCK 
OR MEMX. BX 

In the instruction sequence above. MEMX is a label which represents the address of a memory location. The contents of 
this memory location are ANDed with a mask stored in AX. then ORed with a mask stored in BX. The contents of MEMX 
are read. modified. and written back at each step. 

Now. you may wish to inhibit Hold logic for both the AND and the OR operation. You cannot do so using the LOCK in­
struction. The first LOCK instruction will protect the following AND instruction from being interrupted by a Hold state: 
however. any pending Hold state will be acknowledged before the second LOCK instruction is executed. 

Each LOCK instruction extends protection against a Hold Acknowledge for the duration of the next sequential instruc­
tion only. The fact that the following instruction is also a LOCK is irrelevant. The second LOCK instruction will be the 
first instruction executed following the Hold state. and it will guarantee that no new Hold state begins until it. and the 
OR instruction. have both been executed. 

You can use the LOCK instruction and signal to identify individual instruction execution 
times. If for any reason external logic needs to know the execution time for certain instructions. 
then by preceding these instructions with a LOCK instruction you will generate a high pulse on 
the LOCK output. The width of this high pulse exactly equals the execution time of the instruction 
which follows the LOCK. 

THE 8086 PROCESSOR WAIT FOR TEST STATE 

8086 SINGLE 
INSTRUCTION 
TIME 
IDENTIFIED 

The 8086 has a program-initiated Wait state that external logic must terminate via the TEST input signal. The 
WAIT instruction initiates this Wait state. After the WAIT instruction is executed. the 8086 generates an endless se­
quence of idle clock periods. This sequence lasts until external logic inputs a low signal at the TEST input. TEST must 
be high for at least four clock periods. 

While the endless sequence of idle clock pulses is being executed. the System Bus is not floated and the Bus Interface 
Unit may execute memory read bus cycles in order to fill up the instruction object code queue. 
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The processor Wait state can be used to synchronize an 8086 with any external time sequence. For example, you 
could start two programs, executing in two separate 8086 systems, at exactly the same time, by preceding each pro­
gram with a Wait instruction. If both 8086's receive low TEST inputs simultaneously, then both microprocessors will 
start executing their programs at the same instant. 

THE 8086 PROCESSOR ESCAPE 
The 8086 has a special escape instruction (ESC) intended for use in mUlti-CPU configurations. When the ESC instruc­
tion is executed. the contents of an addressed memory location are input to the CPU. but the input data is not 
stored anywhere. The purpose of the ESC instruction is to place the addressed data on the Data/Address Bus so that 
any other microprocessor (or external logic) connected to the Data/Address Bus can receive the data. 

We will examine the value of the ESC instruction later in the chapter when looking at the 8086 in multiple CPU 
configurations. 

THE 8086 RESET OPERATION 
The 8086 has an asynchronous RESET input. This signal can be forced high at any time in order to reset the 
8086. The high RESET must be at . least four clock cycles long. 

The 8086 terminates all current operations as soon as the RESET input makes a low-to-high transition. Nothing 
more happens until the RESET signal subsequently makes a high-to-Iow transition. It then takes approximately 
ten clock periods in order to execute the following operations: 

1) The Status register is cleared. Among other things. this resets the interrupt enable flag to 0, thus disabling inter-
rupts. 

2) The CS Segment register is set to FFFF16. 

3) The OS, SS, and ES Segment registers and the Program Counter are all reset to O. 

4) Program execution begins. Since the CS Segment register contains FFFF16 and the Program Counter contains 0, 
the first instruction executed is taken from memory location FFFF016. 

8086 INTERRUPT PROCESSING 
The 8086 allows interrupts to originate in one of three ways: 

1) From software or within program logic. 

2) From external logic as a nonmaskable interrupt. 

3) From external logic as a maskable interrupt. 

There is, in addition, a special "single step" condition that makes use of interrupt logic. We will describe single step­
ping after our discussion of interrupt logic. 

In the event that two or more of the three interrupt types occur simultaneously, software generated interrupts have the 
highest priority and maskable interrupts have the lowest priority. 

These are the ways in which a software interrupt request may occur: 

1) Following an attempt to divide by O. A special divide by 0 interrupt request will occur any 
time the divide instruction is executed with a 0 dividend. 

2) Following execution of an Interrupt instruction (lNT). 

8086 
SOFTWARE 
INTERRUPTS 

3) Following execution of an Interrupt-on-Overflow instruction (INTO) - if the Overflow status is set. 

A nonmaskable interrupt request is initiated when external logic transmits a low-to-high 
transition to the NMI pin. This is an edge-triggered Signal. A nonmaskable interrupt has lower 
priority than a software interrupt. but higher priority than a maskable interrupt. 

A maskableinterrupt request will be generated when external logic transmits a high level to 
the INTR pin. This input is level sensitive; it is the high level at INTR that causes the interrupt re­
quests to occur. 

Central to all 8086 interrupt processing is a Vector table that can be up to 1024 bytes in 
length, occupying absolute memory addresses 00000 through 003FF16. This Vector table con­
sists of up to 256 four-byte entries. Each entry contains two 16-bit addresses that get loaded into 
the CS Segment register and the Program Counter. 

Figure 5-11 illustrates the 8086 Interrupt Vector table. 

5-44 

8086 NON-
MASKABLE 
INTERRUPT 

8086 
MASKABLE 
INTERRUPT 

8086 
INTERRUPT 
VECTOR 
TABLE 



A number of the Vector table entries serve specific interrupts. Other entries are reserved by Intel and should be 
avoided if compatibility with Intel software is desired. These entries are identified in Figure 5-11. As illus­
trated in Figure 5-11, 32 of the 256 interrupt vectors are not available to external logic; that leaves 224 vec­
tors available to maskable external interrupts - which is plenty. 

Taking each of the three interrupt types in turn, let us examine the interrupt acknowledge p ... r_o_c_e_s_s. ___ _ 

When any of the software interrupts are acknowledged, the following steps occur: 8086 

1) The Status register contents are pushed onto the Stack; Stack Pointer contents. in conse­
quence. are decremented by two. 

2) The Interrupt and Test status flags are cleared; this disables maskable interrupts and single 
step logic (which we describe after our discussion of interrupt logic). 

SOFTWARE 
INTERRUPT 

3) The CS Segment register contents are pushed onto the Stack; Stack Pointer contents. in consequence. are decre­
mented by two. 

4) The new CS Segment register contents are taken from the appropriate interrupt vector location. With the excep­
tion of the INT instruction. software-generated interrupts have dedicated vector locations as illustrated in Figure 
5-11. The INT instruction allows anyone of the 256 vector locations to be selected; a default option selects Vec-
tor 3. • 

5) The Program Counter contents are pushed onto the Stack; Stack Pointer contents are decremented by two. 

6) The new Program Counter contents are taken from the interrupt vector. 

When a nonmaskable interrupt is acknowledged, the following events occur: 

1) The Status register contents are pushed onto the Stack. The Stack Pointer contents are 
decremented by two. 

2) The Interrupt and Test statuses are reset to 0; this disables nonmaskable interrupts and 
single stepping mode. 

8086 
NONMASKABLE 
INTERRUPT 

3) The CS Segment register and Program Counter are reloaded from Interrupt Vector 2. See Figure 5-11. ------.... When a maskable interrupt is acknowledged, the following steps occur: 8086 

1) Two interrupt acknowledge bus cycles are executed by the Bus Interface Unit of the 8086. An MASKABLE 
interrupt acknowledge bus cycle is identical to the memory read bus cycles. as illustrated in INTERRUPT 
Figures 5-5 and 5-7. with the exception that an interrupt acknowledge low pulse replaces 
the memory read low pulse. For a minimum mode system. INTA will provide the low RD pulse shown in Figure 
5-5. Figure 5-7 accura.tely illustrates timing for an interrupt acknowledge bus cycle in a maximum mode system; 
however. SO. ST. and S2 will all be low. identifying an interrupt acknowledge. whereas a read I/O port or read 
memory status combination would be output otherwise. LOCK is low beginning at T2 of the first interrupt 
acknowledge bus cycle and ending at T2 of the second interrupt acknowledge bus cycle. This may be illustrated as 
follows: 

I. Bus Cycle 1 .. I.. Bus Cycle 2 ·1 
I T1 , T2 , T3 , T4 I Tl I T2 I T3 I T4 I 

ClK I I I I I I I I I 

LOCK 

2) The acknowledged external device must send back a byte of data on lines ADO-AD7 in response to the second in­
terrupt acknowledge bus cycle. This data byte is interpreted as a pointer into the interrupt vector. Multiplying this 
8-bit value by 4 creates the correct beginning address for the interrupt vector. 

3) The Status register contents are pushed onto the Stack. 

4) The Interrupt and Test flags in the Status register are cleared. This disables further maskable interrupts and single 
step logic. 

5) The CS Segment register contents are pushed onto the Stack. 

6) The next CS Segment register contents are taken from the interrupt vector location identified in Step 2. 

7) The Program Counter contents are pushed onto the Stack. 
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Memory Interrupt 
Addresses Vector Table 

00000 CSO 

00002 PCO t VeeW 0 - D;v;de by 0 

00004 CSl 

00006 PCl 
Vector 1 - Single step 

mode 
00008 CS2 

OOOOA PC2 
} Vector 2 - ~onmaskable 

Interrupt 
OOOOC CS3 

OOOOE PC3 
} Vector 3 -INT software 

interrupt (default option) 
00010 CS4 

00012 PC4 
} Vector 4 - ~NTO software 

Interrupt 
00014 CS5 

} Vector 5 I 
00016 PC5 

I I 
• I I 

00078 CS30 
} Vector 3010 

Reserved by Intel 

0007A PC30 

0007C CS31 

0007E PC31 f Veeto, 3 t 10 

00080 CS32 

00082 PC32 
Vector 3210 

00084 CS33 
} Vector 3310 

00086 PC33 

I I User vectors I I 

003F8 CS254 

003FA PC254 
> Vector 25410 

003FC CS255 

003FE PC255 
Vector 25510 , 

I I Interrupt acknowledge sequence of 
I I 

events is (D-@-@-@ 
® - CSN 

- PCN 

@ 

CS Register 
<D_ 

To stack 

Program Counter - To stack @--

Figure 5-11. 8086 Interrupt Vector 

8) The new Program Counter contents are taken from the interrupt vector location identified in Step 2. 

9) The first instruction of the interrupt routine is fetched using the new PC and CS. 

It takes 60 clock periods to complete the nine interrupt acknowledge steps listed above. 

You should use the IRET instruction to exit any interrupt service routine. This instruction 
restores Program Counter, CS Segment register, and Status register contents from the 
Stack. 
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SINGLE STEPPING MODE 
When the T status bit is set to 1, the 8086 operates in single stepping mode. In the single stepping mode the 8086 
executes a software interrupt after each instruction's execution. The software interrupt vectors through Location 1 of 
the interrupt vector table. as illustrated in Figure 5-11. 

Since the process of acknowledging an interrupt resets the TF flag. the single stepping mode wi II cease to exist once 
the interrupt service routine identified by Vector 1 is executed. But since the Status register contents prior to the inter­
rupt acknowledge are saved on the Stack and are restored when a return from interrupt instruction is executed. single 
stepping mode will be restored as soon as the interrupt service routine corresponding to Interrupt Vector 1 concludes 
execution. Interrupt Vector 1 should therefore vector to a debug routine. Any user program executed in the single step 
mode will now execute instructions one at a time. branching to the debug program following execution of each instruc­
tion. 

A particularly pleasing aspect of the 8086 single step mode is the fact that it can cope with interrupt logic. Fre­
quently. microprocessor programs cannot be debugged once interrupt logic is introduced. In the case of the 8086. the 
interrupt acknowledge process automatically takes the 8086 out of the single step mode. You can insert instructions 
into any interrupt service routine in order to restore single stepping mode for that particular interrupt service routine. 
Thus. you have the option of executing any program or interrupt service routine in single step mode. without impacting 
any other program or interrupt service routine. 

THE 8086 INSTRUCTION SET 
The 8086 instruction set is summarized in Table 5-4. When compared to other microprocessor instruction sets. the 
8086 instruction set might appear quite large. If you look at Table 5-4. you will see that a single instruction mnemonic 
may appear many times. In reality. these are variations of the same instruction. We show the variations of a single in­
struction as though they were separable instructions in order to make this description of the 8086 instruction set con­
sistent with simi lar tables for other microprocessors. 

The two I/O instructions, IN and OUT, become eight instructions because each has two sets of options. 

Each I/O instruction can access 16-bit words or 8-bit bytes. In each case. the instruction may have a short addressing 
range or a long addressing range. The short addressing range instruction requires two bytes of object code and can ac­
cess one of the first 256 I/O port addresses. The I/O address is specified in the second object code byte. The long-range 
I/O instructions occupy only one byte of object code; however. register DX provides the I/O port address - which can 
therefore range between 0 and 65.53510 .. 

Primary memory reference instructions, and memory reference instructions in general, all have byte and word 
versions. In Table 5-4, the data memory location accessed is identified by the operand label DADDR. Because 
data memory reference instructions mayor may not include a displacement. the object code may be two. three. or four 
bytes long. as defined in Table 5-5. 

By preceding any data memory reference instruction with the SEG prefix. you can force the data memory reference to 
access a segment other than the data segment. Here. for example. are the two instructions that load a byte of data from 
the extra segment to Register AL. using direct. indexed addressing: 

SEG ES Select extra segment 
MOV AL. (01) AOOR Load data word from extra segment 

The LEA and LES instructions are unusual in that they load a memory address. rather than the contents of a memory 
location. into an identified 16-bit register. For the LEA instruction. this may be illustrated as follows: 

AX p p p p 
~--------------~ 

BX 
~--------------~ 

ex 
r---------------~ 

OX 

LEA AX. (01) AOOR 

Q Q Q Q 0 

R.R R R P 
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In the illustration above, RRRRP represents a five hexadecimal digit data memory address - the actual location that is 
addressed. This address is the sum of QQQQO, the OS Segment register contents, and pppp, the operand address. The 
LEA instruction loads the operand address PPPP into the identified 16-bit register. 

The LES instruction serves primarily to initialize the address register for string operations. As discussed earlier in this 
chapter, string instructions access the extra segment via the 01 and SI Index registers. 

The XLAT instruction is designed for table look-ups. An obvious application for an XLAT instruction would be to 
convert between ASCII and EBCDIC character codes. EBCDIC character codes being input could be translated into 
ASCII character codes, prior to being stored in memory, via the following instruction sequence: 

LABEL IN 
XLAT 

PORT5 Input an EBCDIC code 
Convert to ASCII 

STaB AL 
LOOP LABEL 

Store in memory 
Return for next byte if there is one 

The instruction sequence above inputs character codes from I/O Port 5. These are assumed to be EBCDIC codes which 
arrive at the AL register. The XLAT instruction uses each EBCDIC code as an index into a conversion table whose base 
address is assumed held in the BX register. Part of this conversion table may be illustrated as follows: 

[BX]+ [DS]-PPPPp 

PPPPP+ 81 

PPPPP+ 82 

PPPPP+ 83 

PPPPP+ 84 

PPPPP+ 85 

PPPPP+ 86 

PPPPP + 87 

PPPPP+ 88 

PPPPP+ 89 

PPPPP + 8A 

PPPPP+ 8B 

PPPPP+ 8C 

PPPPP+ 80 

PPPPP+ 8E 

PPPPP + 8F 

ppppp+ 90 

PPPPP+ gl 

Memory 

6 1 

6 2 

6 3 

64 

6 5 

6 6 

6 7 

6 8 

6 9 

6 A 

J I : 
I I 

EBCDIC character ~ 
codes 

These bytes not used by the table, 
can be used in other ways 

Equivalent ASCII character codes 

After the XLAT instruction has executed, the ASCII version of the input EBCDIC code will be in the AL register. The 
STOB instruction stores this ASCII code in the Extra Segment memory location addressed by the 01 register; the DI 
register contents are then incremented so that on the next pass of the iterative loop it addresses the next free memory 
byte in the Extra Segment table. 

The LOOP instruction decrements the CX register and branches back to the IN instruction if the CX register contents 
are not zero. 
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Secondary memory reference instructions occur in four versions. Each instruction may access a memory byte or a 
memory word; in either case. the result of the operation may be returned to a register. or to the memory word from 
which one operand was fetched. 

Note carefully that the Subtract instruction inverts the Carry status. 

The following numeric options are available with Add, Subtract, Multiply, and Divide instructions: 

Unsigned Binary Signed Binary Packed Decimal Unpacked Decimal 
Operation 

8-bit 16-bit 8-bit 16-bit 2 digit 4 digit 1 digit 2 digit 

Add X X X X X X 
Subtract X X X X X X 
Multiply X X X X X 
Divide X X X X X 

Let us first look at addition and subtraction. 

Little needs to be said about signed and unsigned binary addition or subtraction; these are standard operations de­
scribed in Volume 1. The only point to note is that the 8086 Subtract instructions invert the Carry status. -------Packed binary coded decimal (BCD) addition and subtraction are also quite standard in that 8086 BCD 
they closely follow the logic described in Volume 1. However, like the 8080A, the 8086 ADDITION 
uses Decimal Adjust instructions to handle packed binary coded decimal data. 

When you add two packed binary coded decimal numbers. it is assumed that the two numbers are indeed valid packed 
binary coded decimal data. The sum. which will not initially be a valid packed binary coded decimal number. is con­
verted into one by the DAA instruction. This may be illustrated as follows: 

ADD AL. BL 
DAA 

Add BCD data in BL to AL 
Decimal adjust result 

Note that you can only add bytes. and AL must be the destination when adding packed BCD data. 

Using abbreviations of Table 5 -4. DAA instruction logic may be summarized as follows: 

If (AU AND OF16 is greater than 0916. or if (AF) = 1. then: 
(AU <-- (AU + 0616 
(AF) <-- 1 

If (AU is greater than 9F16 or if (CF) = 1. then: 
(AU <-- (AU + 6016 
(CF) <-- 1 

If one of the numbers being added is not a valid packed binary coded decimal number. then no error indication is given. 
but the answer will be wrong. For example. there is nothing to stop you from adding 1 F16 to A316 and then executing 
the DAA instruction to modify the sum; however. the resu It will be meaningless. 

When you subtract packed binary coded decimal numbers, once again it is assumed that the 8086 BCD 
subtrahend and minuend are both valid packed binary coded decimal numbers. The difference SUBTRACT 
will initially be meaningless; however. executing the DAS instruction generates a valid packed 
binary coded decimal result. This may be illustrated as follows: 

SBB AL. BL 
DAS 
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Once again you must subtract bytes. and the difference must be returned to the AL register. 

Using abbreviations of Table 5-4. DAS instruction logic may be summarized as follows: 

If (AU AND OF16 is greater than 0916. or (AF) = 1. then: 
(AU - (AU -0616 
(AF) -1 

If (AU is greater than 9F16. or (CF) = 1. then: 
(AU - (AU -6016 
(CF) -1 

When you subtract packed binary coded decimal numbers and generate a negative result the Carry status will be 0 (as 
is the case for binary subtraction) but the numeric negative difference will be a tens complement number rather than a 
twos complement number. Refer to Volume 1 for details. 

You can also add and subtract unpacked binary coded decimal numbers. These numbers may occupy the low-order 
four bits of a byte. leaving the high-order four bits empty: 

I 0 I 0 10 1 0 I 
~ 

000 0 
through 

o a 

Or you may add and subtract ASCII characters. An ASCII character contains the binary coded decimal digit in low-order 
four bits and 0011 in the high-order four bits. 

When you add unpacked binary coded decimal (BCD) digits, it is assumed that the two numbers being added are in­
deed valid ASCII characters or unpacked BCD digits. The sum is initially meaningless; however, after executing 
the AAA instruction it is converted into one or two valid unpacked binary coded decimal digits. Note carefu lIy 
that the AAA instruction does not generate ASCII characters; it generates one binary coded decimal digit per byte"':'--' 
which the four high-order bits zero. AAA instruction operations may be illustrated as follows: 

If (AU AND OF16 is greater than 0916 or (AF) = 1. then: 
(AU - (AU + 0616 
(AH) - (AH) + 1 
(AF) -1 

Unconditionally: 
(AU - (AU AND OF16 
(CF) - (AF) 

Note that AH is incremented if the sum in AX is more than 0916. since 0916 is the highest one-byte unpacked BCD 
value that is legal. 

When you subtract unpacked binary coded decimal numbers, you can subtract ASCII characters or bytes which 
have the four high-order bits blank. It makes no difference which option you choose; if you subtract two ASCII 
characters you will cancel out the four high-order bits -which are identical anyway. 

Assuming that the subtrahend and minuend are initially valid unpacked binary coded decimal numbers. the difference. 
which initially is meaningless. will be converted into one or two valid unpacked binary coded decimal digits by execut­
ing the AAS instruction. This may be illustrated as follows: 

SUB AL. BL 
AAS 
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AAS instruction operations may be summarized as follows: 

If (AU AND OF16 is greater than 0916 or (AF) = 1 then: 
(AU +- (AU - 6 
(AH) +- (AH) - 1 
(AF) +- 1 

Unconditionally: 
(CF) +- (A F) 
(AU +- (AU AND OF16 

If you generate a negative resu It when subtracting unpacked binary coded decimal numbers. the Carry status will be 
zero and the answer will be in its tens complement form. 

You can multiply unpacked binary coded decimal numbers, but not packed binary coded 8086 BCD 
decimal numbers. The multiplier and multiplicand must each be one byte long. with a single MULTIPLICATION 
binary coded decimal digit in the low-order four bits and 0000 in the high-order four bits. Con-
sider the multiplication 7 x 8 = 5610. The instruction sequence: 

MUL AL. BL 
AAM 

results in these register contents' changes: 

Before After 

AX I 0 0 

I 
0 7 

I :~ AX I 0 5 

I 
0 6 

I :~ 0 8 0 8 

Assuming that the multiplier and multiplicand are valid. as illustrated above. the product will initially be meaningless. 
However. after executing the AAM instruction. a valid two-digit product will be generated. with the high-order digit in 
the AH register and the low-order digit in the AL register. 

AAM instruction logic is, in fact, quite simple. It may be illustrated as follows: 

(AH) +- (AU OA16 (/ means "divided by") 
(AU +- (AU modulo OA16 

Consider again 7 x 8 = 5610. This is initially computed as 7 x 8 = 3816; therefore. AH contains 00 and AL contains 
38 - before the AAM instruction is executed. 

(AL)/OA 16 = 5 

Therefore. 05 is loaded into AH. "Modulo" is the remainder after division; therefore (AL) modulo OA16 is the remainder 
following (AL)/OA16; it is 6. which is loaded into AL. 

Binary coded decimal multiplication does not take sign into account. It is up to your program logic to keep track of the 
sign. 

Binary coded decimal division, like multiplication, works only with unpacked binary coded 
decimal data. However. you must execute the AAD instruction before the DIV instruction in order 
to generate a valid unpacked binary coded decimal answer. This may be illustrated as follows: 

ADD 
DIV AX. BL 

8086 BCD 
DIVISION 

The AAD instruction takes the dividend. which we assume to be a valid unpacked binary coded decimal number in 
the AX register. and packs it into the AL register as follows: 

(AU +- (AH) • OA16 + (AU 
(AH) +- 0 

Consider the reverse of our mu Itiplication examples: 

56/8 = 7 
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Initially. AH contains 05 and AL contains 06. After the AAD instruction is executed. AL contains: 

05 1 6 • OA 16 + 06 16 

which is 3816. Now the DIV instruction can perform a pure binary division. 

The 8086 allows you to shift and rotate the contents of memory bytes or words. This is very useful since it allows 
counters and masks to be held in memory. rather than in CPU registers as is the usual case. 

Immediate instructions allow immediate data to be loaded into registers or memory locations. When loading im­
mediate data into memory locations. you can generate 3. 4. 5. or 6 byte instruction object codes. depending on the 
length of the immediate data and the addressing options. See Table 5-5 for details. 

The Loop instructions are. in fact. variations of the multi-byte. string-handling 8086 capability. These instructions allow 
you to set up a counter in the ex register. which is decremented in order to identify the number of iterations for an in­
struction loop. This may be illustrated as follows for the 8080A and the 8086: 

NEXT 

8080A 

MVI C.COUNT 

DCR C 

JNZ NEXT 

NEXT 

8086 

MOV CX, DATA +- Initialize counter 

} R."",ted in'''",tio", 

LOOP NEXT +- Count and loop logic 

Jump-on-Condition instructions are limited in that they all provide an 8-bit signed binary displacement. Thus. you are 
limited to jumping within a 256-byte program relative memory page. 

Jump-on-Condition instructions are confusing at the best of times. because status combinations determine whether a 
jump will or will not occur. This is not very interesting information to you as a programmer. It is much easier to jump 
based on signed and unsigned binary numbers being less than. greater than. or equal to each other. Table 5-2 
therefore summarizes the way in which you should use 8086 Jump-on-Condition instructions. This table is similar 
to the table on page 7-32 of Volume 1; however. the Carry status is inverted. since the 8086 Subtract instruction in­
verts the Carry status. 

The way the 8086 creates Block Transfer and Search instructions is interesting. You begin with a set of instruc­
tions. each of which performs a single operation. Each of these instructions can be made to repeat some number 
of times by preceding the instruction with a repeat (REP). 
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Table 5-2. 8086 Branch-an-Condition Instructions 

Branch Condition Status Conditions 8086 Instruction 

Unsigned branch on less than or equal C = 1 or Z = 1 JBE. JNA 
Unsigned branch on less C = 1 JB. JNAE 

Unsigned branch on equal Z=1 JE. JZ 
Unsigned branch on not equal Z=O JNE.JNZ 
Unsigned branch on greater C=OorZ=O JA.JNBE 
Unsigned branch on greater than or equal C=O JAE.JNB These are general status 
Signed branch on less than or equal Z = 1 or S XOR 0 = 1 JLE. JNG test branch instructions 
Signed branch on less S XOR 0 = 1 JL. JNGE 
Signed branch on equal Z = 1 JE. JZ 
Signed branch on not equal Z=O JNE.JNZ 
Signed branch on greater Z = 0 or S XOR 0 = 0 JG. JNLE 
Signed branch on greater than or equal S XOR 0 = 0 JGE. JNL 

Branch on counter decrement to zero JCXZ 
Branch on no overflow 0=0 JNO 
Branch on overflow 0=1 JO 

These instructions to be used 
Branch on even parity P = 1 JP. JPE 

after a subtract or compare 
Branch on odd parity P=O JNP.JPO 
Branch on positive S=O JNS 
Branch on negative S = 1 JS 

The way the 8086 creates Block Transfer and Search instructions is interesting. You begin with a set of instruc­
tions, each of which performs a single operation. Each of these instructions can be made to repeat some number 
of times by preceding the instruction with a repeat (REP). For example. the MOVW instruction. executed on its 
own. will move one 16-bit word of data from a source memory location to a destination memory location. using Data 
Segment and Extra Segment addressing as follows: 

I Memory I 

~~ I L L L L I · L 
L L L 0 B Origin of extra segment 

M M M M 

I~MMMMO 
I I 
I I 
I I 

SI P P P P B 01 Q Q Q Q 

I I 
I I 
I I 

1\ 
I I 
I I 
I I 

MMMMO+QQQQ ~lJ 
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But. precede this instruction with a repeat and you move an entire block of data. This may be illustrated as follows: 

~: I L L L 

M M M 

~: I P P P 

Q Q Q 

ex I N N N 

L 

M 

P 

Q 

N 

I Memory I oLLLLO§ 
: : Origin of extra segment 

MMMMOB 

I I 
I I 
I I LLLLO+PPPP§ 
I I 
I I 
I I 

LLLLO+PPPPr====l 

+NNNNt==j 

I I 
I I 
I I 

MMMM o+aaaa§ 
I I 
I I 
I I 

MMMMO+QQQQr====l 

----_+ N N N N t==j 
I I 

When a Block Transfer or Search instruction is executed, the Program Counter contains the address of the prior 
instruction until it and the Block Transfer or Search instruction has completed executing. For example. when the 
REP and MOVS instruction pair executes. the Program Counter keeps pointing to the REP instruction as follows: 

REP +- PC points here until end of block move 
MOVS 

Only after the MOVS instruction has executed the number of times specified by the repeat will the Program Counter 
advance to the instruction following MOVS. This little piece of logic is designed to protect repeat instructions dur­
ing interrupts. Interrupts are not locked out for the duration of a repeat instruction's execution; that would create in­
tolerable delays between an interrupt request and acknowledge. Providing interrupts are enabled. an interrupt request 
can be acknowledged at any time during a repeat loop. Within the interrupt service routine. it is only necessary that 
you save the contents of the SI. DI. and ex registers in order to preserve the repeat loop logic. When you return from 
the interrupt. the Program Counter is pointing the REP instruction that picks up where it left off. using the restored con­
tents of the SI. DI. and ex registers. 

A problem arises if you precede a Block Transfer or Search instruction with more than one prefix. Suppose, for 
example, you have a LOCK and a REP instruction preceding a MOV: 

REP 
LOCK 
MOVS 
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The LOCK must directly precede MOVS; otherwise. it would protect REP against a Hold. 

The Program Counter points to the LOCK instruction. not the REP instruction. while the MOVS repeatedly executes the 
specified number of times. If at some point an interrupt request is acknowledged, then after the interrupt service 
routine completes execution you will return to the LOCK instruction. not the REP. This will cause the MOVS instruc­
tion to be executed once more, rather than the number of times remaining in the repeat loop, as specified by the 
ex register contents and the REP instruction. Thus. if both prefixes must be used; interrupts should be disabled. 
However. you could still run into trouble with a nonmaskable interrupt. 

8086 - 8080A INSTRUCTION COMPATIBILITY 
As we have already stated, the 8086 instruction set is upward compatible with the 8080A at the source pro­
gram level. That is, every 8080A instruction can be converted to one or more 8086 instructions. Table 5-6 
identifies the source program conversions recommeded by Intel. These are by no means the only conversions 
which are possible, but they are the ones you should use, since they are the ones that Intel plans to support. 

THE BENCHMARK PROGRAM 
The 8086 makes short work of our Benchmark program, which is well suited to the 8086 block transfer instruction. 
We assume that the I/O buffer and the table being filled both lie within single 65.536-byte program segments. The dis­
placement to the beginning of the I/O buffer is loaded into the Sllndex register. while the displacement to the first free 
byte of the data table is loaded into the DI Index register. Our Benchmark program now consists of these few in­
structions: 

LOS 
LES 
MOV 
REP 
MOVSW 
MOV 

SI,IOBUF 
OI.AOOR 
ex. COUNT 

AOOR.OI 

Load I/O Buffer base address displacement in SI 
Load Oata table starting address in ES and displacement to first free byte in 01 
Load word count into ex 

Move the data block 
Return new address of first free table byte 

5-55 



Memory 
Reference 

Normal Data 
Memory 

Reference 

Stack 

String 
Data 

Instruction 
F h 

Branch 

I/O Data 

Table 5-3. 8086 Memory Addressing Options Identified by the EA Abbreviations 
in Tables 5-4. 5-5. and 5-6 

Segment 
Register 

SS 

OS 

ES 

CS 

CS 

OS 

Base 
Register 

SP 

None 

None 

PC 

PC 

OX 

Possible Displacements 
Index 

Register 

None 

SI 

01 

None 

None 

None 

16-Bit 
Unsigned 

These columns contribute to OEA. 

These coiumns contribute to EA. 

a-Bit 

X 

None 

Assembly 
Language 
Operand 

This column 
to be provided 

[:;:;:ij;i':~J Shaded rows apply to EA and DADDR. 

b'2~::~?>~ Shaded row applies to EA and LABEL. 

• The segment override allows OS or SS to be replaced 
by one of the other segment registers 

X These are displacements that can be used to compute 
memory addresses. 
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The following abbreviations are used in Tables 5-4 and 5-5: 

AH Accumulator. high-order byte 
AL Accumulator. low-order byte 
AL7 The value of register AL high-order bit (0 or 1) extended to a byte (0016 or FF16) 
AX Accumulator. both bytes 
AX15 The value of register AH high-order bit (0 or 1) extended to a 16-bit word (000016 or FFFF16) 
BD The destination is a byte operand (used only by the Assembler) 
BH B register. high-order byte 
BL B register. low-order byte 
BRANCH Program memory direct address. used in Branch addressing option shown in Tables 5-1 and 5-2 
BS The source is a byte operand (used only by the Assembler) 
BX B register. both bytes 
C Carry status 
CH C register. high-order byte 
CL C register. low-order byte 
CS Code Segment register 
CX C register. both bytes 
DADDR Da\a memory address operands identified in Table 5-3 
DATA8 Eight bits of immediate data 
DATA 16 16 bits of immediate data 
DH D register. high-order byte 
DI Destination Index register 
DISP An 8-bit or 16-bit signed displacement 
DISP8 An 8-bit signed displacement 
DL D register. low-order byte 
DS Data Segment register 
DX D register. both bytes 
EA Effective data memory address using any of the memory addressing options identified in Table 5-2 
ES Extra Segment register 
I Status flag set to 1 
I/D Increment/decrement selector for string operations; increment if D is O. decrement if D is 1 
LABEL Direct data memory address. as identified in Table 5-2 
N A number between 0 and 7 
o Status flag reset to 0 
OEA Offset data memory address used to compute EA: 

PC 
PDX 
PORT 
RB 
RBD 
RBS 
RW 
RWD 
RWS 
SEGM 
SFR 
SI 
SP 
SR 
SS 

EA =OEA + [DS] * 16 
Program Counter 
I/O port addressed by OX register contents; port number can range from 0 through 65.536 
A label identifying an I/O port number in the range 0 through 25510 
Anyone of the eight byte registers: AH. AL. BH. BL. CH. CL. DH. or OL 
Any RB register as a destination 
Any RB register as a source 
Anyone of the eight 16-bit registers: AX. BX. CX. DX. SP. SP. SI. or DI 
Any RW register as a destination 
Any RW register as a source 
Label identifying a 16-bit value loaded into the CS Segment register to execute a segment jump 
Status Flags register 
Source Index register 
Stack Pointer 
Anyone of the Segment registers CS. DS. ES. or SS 
Stack Segment register 
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U Status flag modified. but undefined 
V Any number in the range a through 25510 
X Status flag modified to reflect resu It 
WD The destination is a word operand (used only by the Assembled 
WS The source is a word operand (used only by the Assembler) 
[[ ]] Contents of the memory location addressed by the contents of the location enclosed in the double 

brackets 
[ ] The contents of the location enclosed in the brackets 

Data on the right-hand side of the arrow is moved to the location on the left-hand side of the arrow 
Contents of locations on each side of <-- are exchanged 
The twos complement of the value under the -

1= Not equal to 

INSTRUCTION EXECUTION TIMES AND CODES 
Table 5-5 lists instructions in alphabetical order. showing object codes and execution times. for the 8086 and the 
8088. expressed in whole clock cycles. Execution time is the time required from beginning execution of an instruction 
that is in the queue to beginning execution of the next instruction in the queue. The time required to place an instruc­
tion from memory into the queue (instruction fetch time) is not shown in the table; because of queuing. instruction 
fetch time occurs concurrently with instruction execution time and thus has no effect on overall timing. except as 
specifically noted in the table. 

Instruction object codes are represented as two hexadecimal digits for instruction bytes without variations. 

Instruction object codes are represented as eight binary digits for instruction bytes with variations for the instruction. 

The following notation is used in Tables 5-4 and 5-5: 

[] indicate an optional object code byte 
a one bit choosing length: 

in bit position a a=O specifies 1 data byte; a= 1 specifies 2 data bytes 
in bit position 1 a=O specifies 2 data bytes: a=1 specifies 1 data byte 

aa two bits choosing address length: 
no DISP = 00 

one DISP byte = 01 
two DISP bytes = 10. or 00 with bbb = 110 

11 causes bbb to select a register. using the 3-bit code given below for reg. 
bbb three bits choosing addressing mode: 

000 EA = (BX) + (SI) + DISP 
001 EA = (BX) + (DI) + DISP 
010 EA = (BP) + (SI) + DISP 
011 EA = (BP) + (DI) + DISP 
100 EA = (SI) + DISP 
101 EA = (DI) + DISP 
110 EA = (BP) + DISP 
111 EA = (BX) + DISP 

DISP represents two hexadecimal digit memory displacement 
ddd represents three binary digits identifying a destination register (see reg.) 
rr two binary digits identifying a segment register: 

00 = ES 
01 = CS 
10 = SS 
11 = DS 

reg three binary digits identifying a register: 

16-bit 8-bit 
000 = AX AL 
001 = CX CL 
010 = DX DL 
011 = BX BL 
100 = SP AH 
101 = BP CH 
110 = SI DH 
111 = DI BH 
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sss 
PPOO 
v 

x 
yy 
yyyy 

represents three binary digits identifying a source register (see reg) 
represents four hexadecimal digit memory address 
one bit choosing shift length: 

o count = 1 
1 count = (eU 

"don't care" bit 
represents two hexadecimal data digits 
represents four hexadecimal data digits 
one bit where z XOR (ZF) = 1 terminates loop 
Execution time is less than or equal to instruction fetch time. 
Includes up to eight clock cycles of overhead on each transfer due to queue maintenance. For conditional 
jumps, the lesser figure is when the test fails (no jump taken). 

Effective Address calculation and extra clock cycles: 

Extra Clock Periods 

bbb EA 8086(1) 8088(2) 

000 (BX) + (SI) 7 7 
000 (BX) + (SI) + 0lSP8 11 11 
000 (BX) + (SI) + OISP 16 11 15 
001 (BX) + (01) a a 
001 (BX) + (01) + 0lSP8 12 12 
001 (BX) + (01) + OISP 16 12 16 
010 (BP) + (SI) a 8 
010 (BP) + (SI) + olspa 12 12 
010 (BP) + (SI) + OISP 1 6 12 16 
011 (BP) + (01) 7 7 
011 (BP) + (01) + olspa 11 11 
011 (BP) + (01) + OISP 16 11 15 
100 (SI) ir (01) or (BO) 5 5 
101 or (BX) 
110 + olspa 9 9 
111 + 0lSP16 9 13 

a-bit immediate 6 6 
1 6-bit immediate 6 10 

(1 ) Add another 4 clock cycles for each 
1 6-bit operand or an odd address boundary. 

(2) Add anoter 4 clock cycles for each 
1 6-bit operand. 

Substitute the clock cycles shown above wherever EA appears in Tables 5-4 and 5-5. 
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Table 5-4. A Summary of 8086 and 8088 Instructions 

GI Statuses 
a. Mnemonid Operand Is) Object Code Clock Cycles Operation Performed > 
t- O D I T S Z APe 

IN AL,PORT E4 YY 10 [AL) - [PORT) 
Load one byte of data from 1/0 port PORT into AL 

IN AL.[OX) EC 1 8 [AL)- [POX) 
Load into AL one byte of data from 1/0 port whose address is held in the OX 
register 

IN AX,PORT E5 YY 10 [ALI - [PORT). [AH) - [PORT + 1) 
Load 16 bits of data into AX, AL receives data from 1/0 port PORT, AH 
receives data from 1/0 port PORT + 1 

IN AX,[OX) ED 8 [AL) - [POX), [AH) - [POX+ 1) 
Load 16 bits of data into AX, AL receives data from 1/0 port whose address is 
held in the OX register. AH receives data from the 1/0 port whose address is 

g one higher 
OUT AL,PORT E6 YY 10 [PORT) - [AL) 

Output one byte of data from register AL to 1/0 port PORT 
OUT AL,[OX) EE 1 8 [POX)- [ALI 

Output one byte of data from register AL to the 1/0 port whose address is held 
in the OX register 

U1 m o 
OUT AX,PORT E7 YY 10 [PORT) - [ALI. [PORT + 1) - [AH) 

Output 16 bits of data. The AL register contents are output to 1/0 port PORT. 
The AH register contents are output to 1/0 port PORT + 1 

OUT AX,[OX) EF 8 [PORT) - [POXI. [PORT + 1) - [POX+ 1) 

Output 16 bits of data. The AL register contents are output to the 1/0 port 
whose address is held in the OX register. The AH register contents is output 
to the 1/0 port whose address is one higher 

LOS RW,OAOOR C5 aasssbbb 16+EA [RW)- [EAI. [OS)- [EA+2) 
[OISPJ[OISP) Load 16 bits of data from the memory word addressed by OAOOR into 

GI register RW. Load 16 bits of data from the next sequential memory word into 
Col the OS register c 
f LEA RW,OAOOR 80 aasssbbb 2+EA [RW)-OEA .; [OISP)[OISP) Load into RW the 1 6-bit address displacement which, when added to the II: 

~ segment register contents, creates the effective data memory address 
0 LES RW,OAOOR C4 aasssbbb 16+EA [RW)- [EAI. [ES)- [EA+2) E 
GI [DISP][DISP) Load 16 bits of data from the memory word addressed by DADDR into 
~ register RW. Load 16 bits of data from the next sequential memory word into 
~ 
III the ES register 
.5 MOV RB,OAOOR 8A aadddbbb 8+EA [RBI- [EAI 
A: [OISP)[OISP) Load one byte of data from the data memory location addressed by OAOOR to 

register RB 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

• Statuses 
D. ~nemonic Operandls) Object Code Clock Cycles Operation Performed 
~ o D I T, S; Z A P C 

MOV RW,DADDR 8B aadddbbb 8+EA [RW] -[EA) 
[DISP][DISP) Load 16 bits of data from the data memory word addressed by DADDR to 

register RW 
MOV DADDR,RB 88 aasssbbb 9+EA [EA] - [RBJ 

[DISP][DISP] Store the data byte from register RB in the memory byte addressed by DADDR 
MOV DADDR,RW 89 aasssbbb 9+EA . [EA] -[RW] 

[DISP][DISP] Store the 16-bit data word from register RW in the memory word addressed 
by DAD DR 

MOV AL,LABEL AO PPQQ 10 [AL] - [EA] 
Load the data memory byte directly addressed by LABEL into register AL 

MOV AX,LABEL A1 PPQQ 10 [AX] - [EA] 
Load the 16-bit data memory word directly addressed by LABEL into register 
AX 

:a MOV LABEL,AL A2 PPQQ 10 [EA] - [AL] ., 
Store the 8-bit contents of register AL into the data memory byte directly ad-~ 

c:: 
~ dressed by LABEL 

U1 

~ 

0 MOV LABEL,AX A3 PPQQ 10 [EA] - [AX] 2 ., Store the 16-bit contents of register AX into the data memory word directly 
Co) addressed by LABEL c:: 
! MOV SR,DADDR 8E aaOrrbbb 8+EA [SR] - [EA] of ., [DISP][DISP] Load into Segment register. SR the contents of the 1 6-bit memory word ad-
II: 
> dressed by DADDR 
0 MOV DADDR,SR 8C aaOrrbbb 9+EA [EA]- [SR] E ., [DISP][DISP] Store the contents of Segment register SR in the 16-bit memory location ad-
:E dresed by DADDR > 
l& XCHG RB,DADDR 86 aaregbbb 17+EA [RB] -- [EA) 

'E [DISP][DISP) Exchange a byte of data between register RB and the data memory location 
A. addressed by DADDR 

XCHG RW,DADDR 87 aaregbbb 17+EA [RW]-[EA] 
[DISP][DISP] Exchange 16 bits of data between register RW and the data memory location 

addressed by DADDR 
XLAT D7 11 [AL] - [[AL] + [BX)) 

Load into AL the data byte stored in the memory location addressed by sum-
ming initial AL contents with ex contents 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

GI Statuses 
Q. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > 
~ 0 D I T 5 Z A P C 

ADC RB,DADDR 12 aadddbbb 9+EA X X X X X X [RB] - [EA] + [RB] + [C] 
[DISPJ[DISP] Add the contents of the data byte addressed by DAD DR, plus the Carry status, 

to register RB 
ADC RW,DADDR 13 aadddbbb 9+EA X X X X X X [RW] - [EA] + [RW] + [C] 

[DISPJ[DISP] Add the contents of the 16-bit data word addressed by DADDR, plus the Car-
ry status, to register RW 

ADC DADDR,RB 10 aasssbbb 16+EA X X X X X X [EA] - [EA] + [RB] + [C] 
[DISP][DISP] Add the 8-bit contents of register RB, plus the Carry status, to the data 

memory byte addressed by DADDR 
ADC DADDR,RW 11 aasssbbb 16+EA X X X X X X [EA] - [EA] + [RW] + [C] 

[DISP][DISP] Add the 16-bit contents of register RW, plus the Carry status, to the data 

'$ word addressed by DADDR 
I! ADD RB,DADDR 02 aadddbbb 9+EA X X X X X X [RB] - [EA] + [RB] 
GI 
Q. [DISP)[DISP] Add the contents of the data byte addressed by DADDR to register RB 0 
~ ADD RW,DADDR 03 aadddbbb 9+EA X X X X X X [RW] - [EA] + [RW] 
0 [DISPJ[DISP] Add the contents of the 16-bit word addressed by DADDR to register RW E 

U1 

m 
~ 

GI ADD DADDR,RB 00 aasssbbb 16+EA X X X X X X [EA] - [EA] + [RB] 
~ [DISP)[DISP] Add the a-bit contents of register RB to the data memory byte addressed by 
GI 

DADDR u c 
[EA] - [EA] + [RW] !!! ADD DADDR,RW 01 aasssbbb 16+EA X X X X X X 

.! [DISP][DISP] Add the 16-bit contents of register RW to the data memory word addressed GI a: by DADDR 

~ AND RB,DADDR 22 aadddbbb 9+EA 0 X X U X 0 [RB] - [EA] AND [RB] 
E [DISP][DISP] AND the 8-bit contents of register RB with the data memory byte addressed GI 
~ by DADDR. Store the result in RB 
~ AND RW,DADDR 23 aadddbbb 9+EA 0 X X U X 0 [RW] - [EA) AND [RW] IV 

" [DISP)[DISP] AND the 1 6-bit contents of register RW with the data memory word ad-c 
0 

dressed by DADDR. Store the result in RW u 
GI 

(I) AND DADDR,RB 20 aasssbbb 16+EA 0 X X U X 0 [EA] - [EA) AND [RB) 
[DISP)[DISP] AND the 8-bit contents of register RB with the data memory byte addressed 

by DADDR. Store the result in the addressed data memory byte 
AND DADDR,RW 21 aasssbbb 16+EA 0 X X U X 0 [EA] - [EA] AND [RW] 

[DISP)[DISP] AND the 1 6-bit contents of register RW with the data memory word ad-
dressed by DADDR. Store the result in the addressed data memory word 

CMP RB,DADDR 3A aadddbbb 9+EA X X X X X' X [RB] - [EA] 
[DISP][DISP] Subtract the contents of the data memory byte addressed by DADDR from the 

contents of register RB. Discard the result, but adjust status flags 
CMP RW,DADDR 38 aadddbbb 9+EA X X X X X X [RW] - [EA] 

[DISP][DISP] Subtract the 1 6-bit contents of the data memory word addressed by DADDR 
from the contents of register RW. Discard the result, but adjust status flags 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Q) Statuses a. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > 
~ 0 D I T S Z A P C 

CMP DADDR.RB 38 aasssbbb 9+EA X X X X X X [EA] - [RB] 

[DISP][DISP] Subtract the 8-bit contents of register RB from the data memory byte ad-
dressed by DADDR. Discard the result, but adjust status flags 

CMP DADDR.RW 39 aasssbbb 9+EA X X X X X X [EA] - [RW] 

[DISP][DISP] Subtract the 16-bit contents of register RW from the data memory word ad-
dressed by DADDR. Discard the result. but adjust status flags 

DEC DADDR 1111111a 15+EA X X X X X rEA] - [EA] - 1 

aa001bbb Decrement the contents of the memory location addressed by DADDR. De-

[DISP][DISP] pending on the prior definition of DADDR. an 8-bit or a 16-bit memory loca-

;; tion may be decremented 
CD DIV AX.DADDR F6 aa110bbb (S6-96 )+EA U U U U U U [AX] - [AX]/[EA] = ·S [DISP][DISP] Divide the 16-bit contents of register AX by the S-bit contents of the memory 
c byte addressed by DADDR. Store the integer quotient in AL and the remainder 0 
~ in AH. If the quotient is greater than FF16. execute a "divide by 0" interrupt 

'! DIV OX. DAD DR F7 aa110bbb (150-16S)+EA U U U U U U [OX] [AX] - [OX] [AX]/[EA] 
f [DISP][DISP] Divide the 32-bit contents of registers OX (high-order) and AX !low-order) by 
CD a. the 16-bit contents of the memory word addressed by DADDR. Store the in-C 

C11 
0, 
W 

> teger quotient in AX and the remainder in OX. If the quotient is greater than 
~ 
E FFFF 16. execute a "divide by 0" interrupt 
CD IDIV AX.DADDR F6 aa111bbb (107-11S)8+EA U U U U U U [AX] - [AX]/[EA] 
~ [DISP][DISP] Divide the 16-bit contents of register AX by the 8-bit contents of the memory 

CD 
u byte addressed by DAD DR. treating both contents as signed binary numbers. c 
G) Store the quotient, as a signed binary number. in AL. Store the remainder. as 
.! 

CD an unsigned binary number. in AH. If the quotient is greater than 7F 16. or less 
II: than -S016. execute a "divide by 0" interrupt 
~ 
0 IDIV DX.DADDR F7 aa111bbb (171)-190)+EA U U U U U U [OX] [AX] - [OX] [AXl![EA] 
E [DISP][DISP] Divide the 32-bit contents of register OX (high-order) and AX !low-order) by G) 

~ the 16-bit contents of the memory word addressed by DADDR. Treat both 
~ contents as signed binary numbers. Store the quotient. as a signed binary 
III 
"a number. in AX. Store the remainder. as an unsigned binary number. in AH. If c 
0 the quotient is greater than 7FFF16. or less than -S00016. execute a "divide u 
G) 

CI) by 0" interrupt 
IMUL ALDADDR F6 aa101bbb (S6-104)+EA X U U U U )( [AX] - [AL] • [EA] 

[DISP][DISP] Multiply the S-bit contents of register AL by the contents of the memory byte 
addressed by DADDR. Treat both numbers as signed binary numbers. Store 
the 16-bit product in AX 

IMUL AX.DADDR F7 aa101bbb (134-160)+EA X U U U U X [OX] [AX] - [AX] • [EA] 

[DISP][DISP] Multiply the 16-bit contents of register AX by the 16-bit contents of the 
memory word addressed by DADDR. Treat both numbers as signed binary 
numbers. Store the 32-bit product in DX (high-order word) and AX !low-order 
word) 
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Mnemonic 

INC 

MUL 

MUL 

NEG 

NOT 

OR 

OR 

OR 

OR 

Operand(.) Object Code 

DADDR 1111111a 
a8000bb 
[DISP}(DISP] 

AL.DADDR FS a8100bbb 
[DISP][DISP] 

F7 F7 aa100bbb 
[DISP][DISP] 

DADDR 1111011a 
aa011bb 
[DISP][DISP] 

DADDR 1111011a 
aa010bbb 
[DISP][DISP] 

RB.DADDR OA aadddbbb 
[DISP)[DISP] 

RW.DADDR OB aadddbbb 
[DISP][DISP] 

DADDR.RB 08 aasssbbb 
[DISP][DISP) 

DADDR.RW 09 aasssbbb 
[DISP][DISP) 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycle. Operation Performed 

o D I T S· Z A P C: 

15+EA X X X X X [EA] +- [EA] + 1 
Increment the contents of the memory location addressed by DADDR. De-
pending on the prior definition of DAD DR. an 8-bit or a 1 6-bit memory loca-
tion may be incremented 

(7S-831+EA 'X U U U U X [AX] +- [All • [EA] 
Multiply the 8-bit contents of register AL by the contents of the m~mory byte 
addressed by DADDR. Treat both numbers as unsigned binary numbers. Store 
the 1S-bit product in AX 

( 124-1391+EA X U U U U X [OX) [AX) +- [AX) • [EA) 
Multiply the 16-bit contents of register AX by the 16-bit contents of the 
memory word addressed by DADDR. Treat both numbers as unsigned binary 
numbers. Store the 32-bit product in DX (high-order word) and AX (low-order 
word) 

16+EA X X X X X X [EA) +- rEAl 
Twos complement the contents of the addressed memory location. Depend-
ing on the prior definition of DADDR. an 8-bit or 16-bit memory location may 
be twos complemented 

16+EA [EA] +- NOT [EA] 
Ones complement the contents of the addressed memory location. Depending 
on the prior definition of DADDR. an 8-bit or 16-bit memory location may be 
ones complemented 

9+EA X X X U X X [RB] +- [EA] OR [RB] 
OR the 8-bit contents of register RB with the data memory byte addressed by 
DADDR. Store the result in RB 

9+EA X X X U X X [RW) +- [EA) OR [RW) 
OR the 1S-bit contents of register RW with the data memory word addressed 
by DADDR. Store the result in RW 

1S+EA X X X U X X [EA) +- [EA) OR [RB) 
OR the 8-bit contents of register RB with the data memory byte addressed by 
DADDR. Store the result in the data memory byte 

16+EA X X X U X X [EA] +- [EA) OR [RW) 
OR the 16-bit contents of register RW with the data memory word addressed 
by DADDR. 
Store the result in the data memory word 

----



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

t ~nemonic 
Statu.e. 

>- Operand(s) Object Code Clock Cycles Operation Performed 
I- o D I T S Z A P C 

RCL DADDR.N 110100va N=1 X X Rotate the contents of the data memory location addressed by DADDR left 
aa011bbb 15+EA; through the Carry status. If N = 1. then rotate one bit position. If N =CL. then 
[DISP](DISP] N>1 register CL contents provide the number of bit positions. Depending on prior 

4N+20+EA definition. DADDR may address a byte: 

ROL DADDR.N 110100va 
aaOOObbb 

I IT~ I Jj [EA] 

~ • or DADDR may address a word: 
~ 

(J1 

m 
(J1 

.! rg 6 
c [EA) 0 
9 
i ; [EA+1] a. 
0 

~ 
E RCR DADDR.N 110100va N=1 15+EA X X As RCL. but rotate right • aaOO1bbb ! 
• [DISP](DISP] 
Co) 
c 

i ROL DADDR.N 110100va N>1 X X Rotate the contents of the data memory location addressed by DAD DR left. 

aaOOObbb 4N+20+EA Move the left most bit.into the Carry status. If N = 1. then rotate one bit posi-
~ 

[DISP](DISP] tion. If N = CL. then register CL contents provides the number of bit positions. 
~ 
0 Depending on prior definition. DAD DR may address a byte: 
E • :e 
~ EJ ... I [EA] b all 

+ 'a 
C 
0 
Co) • or DADDR may address a word: (I) 

EJ4 

!~ 
[EAI 

6 [EA+1] 
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Mnemonic Operand(s) Object Code 

DADDR.N 110100va 
aaOO1bbb 
[DISP][DISP] 

SAL 

SAR DADDR.N 110100va 
aa111bbb 
[DISPJ[DISP] 

SBB RB,DADDR 1A aaddd bbb 
[DISPJ[DISP] 

SBB RW,DADDR 1B aadddbbb 
[DISPJ[DISP] 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycles Operation Performed 

O D I T S Z A P C 

N=1 15+EA X X As ROl. but rotate right 

Shift the contents of the data memory location addressed by DADDR left. 
Move the left most bit into the Carry status. If N = 1. then shift one bit posi-
tion. If N = Cl. then register Cl contents provides the number of bit positions. 
Depending on prior definition. DADDR may address a byte: 

&-I [EA] 1--0 

or DADDR may address a word:. 

~ 
[EA] 2 [EA+1] 

N=1 15+EA; X X X U X X As SAL. but shift right and propagate sign: 
N>1 
.4N+20+EA 

-.J ~ [EA] 

or 

q ~ 
[EA] 

[EA+1] 

9+EA X X X X X X [RB] - [RB] - [EA] - [C] 
Subtract the contents of the data byte addressed by DAD DR from the con-
tents of a-bit register RB, using twos complement arithmetic. Decrement the 
result in RB if the Carry status was initially set 

9+EA X X X X X X [AW) - [RW) - [EA) - [e) 
Subtract the contents of the 16-bit data word addressed by DAD DR from the 
contents of the 16-bit register RW, using twos complement arithmetic. 
Decrement the result in RW if the Carry status was initially set 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
I 

G) 
Q. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed 
~ o D I T S Z A P C 

SBB DADDA,AB 18 aasssbbb 16+EA X X X X X X [EA] - [EA] - [AB] - [C] I 

[DISP][DISP] Subtract the contents of 8-bit register AB from the data byte addressed by ! 

DADDA, using twos complement arithmetic. Decrement the result in data I 

memory if the Carry status was initially set 
SBB DADDA,AW 19 aasssbbb 16+EA X X X X X X [EA]- [EA] - [AW] - [C] I 

[DISP][DISP] Subtract the contents of 16-bit register AW from the 16-bit data word ad-
dressed by DADDA, using twos complement arithmetic. Decrement the result 
in data memory if the Carry status was initially set 

SHL DADDA,N X X X U X X This is an alternate mnemonic for SAL 

~ SHA DADDA,N 110100va N=1 15+EA; X X X U X X As SAL, but shift right: CD 
~ aa1p1bb N>1 ·S 
c [DISP][DISP] 4N+20+EA O~ f---.E] 0 [EA] g 

1 or 
1!! 

U'1 
a, 
-.,j 

G) q ~ 
Q. 
0 [EA] 

~ 
E 
G) 

~ [EA+1] 
G) 
u 
c 
! 

SUB AB,DADDA 2A aadddbbb 9+EA X X X X X X [RB] - [RB] - [EA] CD ... 
G) [DISP][DISP] Subtract the contents of the data memory byte addressed by DADDR from the a: 
~ contents of a-bit register AB, using twos complement arithmetic 
0 SUB AW,DADDA 2B aadddbbb 9+EA X X X X X X [AW] - [AW] - [EA] E 
CD [DISP][DISP] Subtract the contents of the 1 6-bit data memory word addressed by DADDA ~ 
~ from the contents of l6-bit register AW, using twos complement arithmetic 
III SUB DADDR,AB 28 aasssbbb l6+EA X X X X X X [EA] - [EA] - [AB] "a c [DISP][DISP] Subtract the contents of 8-bit register AB from the data memory byte ad-o 
u 
G) dressed by DADDA, using twos complement arithmetic 
(/) 

SUB DADDR,RW 29 aasssbbb l6+EA X X X X X X [EA) - [EA) - [AW] 
[DISP][DISP) Subtract the contents of l6-bit register AW from the l6-bit data memory 

word addressed by DADDA, using twos complement arithmetic 
TEST DADDR,RB 84 aaregbbb 9+EA 0 X X U X 0 [EA) AND [RB) 

[DISP][DISP] AND the 8-bit contents of the data memory location addressed by DADDR 
with the contents of 8-bit register RB. Discard the result, but adjust status 
flags appropriately 

----



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

G Statuses 
Q. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > 
~ o 0 I T S Z A P C 

TEST DADDR,RW 85 aareg bbb 9+EA 0 X X U X 0 [EA] AND [RW] 

[DISP][DISP] AND the 16-bit contents of the data memory word addressed by DAD DR with 

CD-
the contents of 16-bit register RW. Discard the result, but adjust status flags 

u'a appropriately c G 
CD= XOR RB,DADDR 32 aadddbbb 9+EA 0 X X U X o [RB] ....... [RB] XOR [EA] .. C 
CD'-
_ .... 

[DISP][DISP] Exclusive OR the 8-bit contents of register RB with the data memory byte ad-CDC 
a: o 

dressed by DADDR. Store the result in RB >y 
~"i XOR RW,DADDR 33 aadddbbb 9+EA 0 X X U X o [RW] ....... [RW] XOR [EA] e .... 

[DISP][DISP] Exclusive OR the 16-bit contents of register RW with the 16-bit data memory GI! 

~~ word addressed by DADDR. Store the result in RW 
~O XOR DADDR.RB 30 aasssbbb 16+EA 0 X X U X 0 [EA] ....... [RB] XOR [EA] 
~~ 
5e [DISP][DISP] Exclusive OR the 8-bit contents of register RB with the data memory byte ad-
U'CD dressed by DADDR. Store the result in the addressed data memory byte 
CD'~ 

XOR DADDR,RW 31 aasssbbb 16+EA 0 X X U X 0 [EA] ....... [RW] XOR [EA] 0_ 

[DISP][DISP] Exclusive OR the 16-bit contents of register RW with the data memory word 
addressed by DADDR. Store the result in the addressed data memory word 

C1I 

c'n 
00 

MOV DADDR, C6 aaOOObbb 10+EA [EA] ....... DATA8 

DATA8 [DISP][DISP] yy Load the immediate data byte OAT A8 into the data memory byte addressed 
by DADDR 

! MOV DADDR, C7 aaOOObbb 10+EA [EA] ....... DATA16 
II DATA16 [DISP][DISP] YYYY Load the immediate 1 6-bit data word OAT A 16 into the data memory word :s 
CD addressed by DADDR E 
oS MOV RB,DATA8 10110ddd YY 4* [RB] ....... DATA8 

Load the immediate data byte DAT A8 into 8-bit register RB 

MOV RW,DATA16 10111ddd YYYY 4* [RW] ....... DATA16 
Load the immediate 16-bit data word DATA 16 into 16-bit register RW 

JMP BRANCH 111010a1 15** [PC] ....... [PC] + DISP 
DISP [DISP] Jump direct to program memory location identified by label BRANCH. The 

displacement DISP which must be added to the Program Counter will be com-
puted as an 8-bit or 16-bit signed binary number, as needed, by the assembler 

JMP BRANCH, EA PPOO PPOO 15*· [PC] - DATA16, [CS] - DATA16 
Q. SEGM Jump direct into a new segment. BRANCH is a label which becomes a 16-bit E 
:s unsigned data value which is loaded into PC. SEGM is a label which becomes .., 

another 16-bit unsigned data value that is loaded into the CS segment 
register 

JMP DADDR FF aa100bbb 18+EA** [PC] ....... [EA] 
[DISP][DISP] Jump indirect in current segment. The 16~bit contents of the data memory 

word addressed by DAD DR is loaded into PC 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

" iMnemonic 
Statuses 

D. Operandls) Object Code Clock Cycles Operation Performed 
~ o D I TS Z A P C 

JMP DADDR.CS FF aa101bbb 24+EA" [PC) - [EAI. [CS) - [EA+2) ... c [DISP] [DISP] Jump indirect into a new segment. The 1 6-bit contents of the data memory 
0 
g word addressed by DADDRis loaded into PC. The next sequential 16-bit data 
a. memory word's contents is loaded into the CS segment register 
E 
:;, JMP RW FF 11100reg 11 [PC]- [RW] .., 

Jump to memory location whose address is contained in register RW. 

CALL BRANCH E8 DISP DISP 1S"" liSP]] - [PCI. [SP] - [SP] - 2. [PC] - [PC] + DISP 
Call a subroutine in the current program segment using direct addressing 

CALL BRANCH. SA PPQQ PPQQ 28"" liSP]] - [CSI. [SP] - [SP] -2. liSP]] - [PC]. [SP] - [SP] -2. [PC] -
SEGM DATA16. 

[CS] - DATA 16 
Call a subroutine in another program segment using direct addressing. 
BRANCH and SEGM are labels that become different 16-bit data words; they 
are loaded into PC and CS. respectively 

CALL DADDR FF aa010bbb 21 +EA"" liSP)) ..... [PC). [SP) - [SP) -2. [PC)- [EA) 

[DISP][DISP] Call a subroutine in the current program segment using indirect addressing. 
c.n 
m 
co 

The address of the subroutine called is stored in the 16-bit data memory 
word addressed by DADDR 

~ CALL DADDR.CS FF aa011bbb 37+EA"" IISP]]- [CSI. [SP] - [S2] -2. liSP]] - [PC]. [SP]- [SP] -2. [PC] - [EAI. 

" [DISP][DISP] [CS]- [EA+2] 
II: Call a subroutine in a different program segment using indirect addressing. 
'a 
c The addre~s of the subroutine called is stored in the 16-bit data memory ca 

ii word addressed by DADDR. The new CS register contents is stored in the 
Co) next sequential program memory word 
" 'S CALL RW FF 11010reg 16"" [SP] - [PC].[SP] - [SP-21. [PC] ..... [RW] 
:;, Call a subroutine whose address is contained in register RW. e 

.&:I RET C3 8"" [PC] - [[SP]]. [SP] ..... [SP] + 2 
:;, 

en Return from a subroutine in the current segment 
RET CS CB 12"" [PC]- [[SP]1. [SP] ..... [SP] +2. [CS]- liSP]]. [SP] ..... [SP] +2 

Return from a subroutine in another segment 
RET DATA16 C2 YYYY 17"" [PC]"'" IISP]]. [SP]- [SP] +2 +DATA16 

Return from a subroutine in the current segment and add an immediate dis-
placement to SP 

RET CS.DATA16 CA YYYY 18"" [PC]- [[SP)1. [SP) - [SP) +2. [CS)- liSP]]. [SP) ..... [SP) +2 +DATA16 
Return from a subroutine in another segment and add an immediate displace-
ment to SP 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

II Statuses 
a. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > 
t- O D I T S Z A P C 

ADD AL,DATAS 04 yy 4· X X X X X X [AL] - [All + DAT AS 
Add S-bit immediate data to the AL register 

ADD AX,DATA16 05 YYYY 4· X X X X X X [AX)- [AX) + DATA16 
Add 16-bit immediate data to the AX register 

ADD RB,DATAS SO 11 OOOddd YY 4· X X X X X X [RB) - [RB] + DAT AS 
Add S-bit immediate data to the RB register 

ADD RW,DATA16 S1 11000ddd 4· X X X X X X [RW]- [RW] + DATA16 
YYYY Add 16-bit immediate data to the RW register 

ADD DADDR, SO aaOOObbb 17+EA X X X X X X [EA] - [EA] + DAT AS 
DATAS [DISP][DISP] YY Add S-bit immediate data to the data memory byte addressed by DADDR 

ADD DADDR, S1 aaOOObbb 17+EA X X X X X X [EA] - [EA] + DATA16 
DATA16 [DISP][DISP) YYYY Add 16-bit immediate data to the data memory word addressed by DADDR 

ADe AL,DATAS 14 YY 4· X X X X X X [AL] - [AL] + DAT AS + [e] 
Add S-bit immediate data, plus carry, to the AL register 

ADe AX,DATA16 15 YYYY 4· X X X X X X [AX]- [AX] + DATA16 + [e] 
Add 16-bit immediate data, plus carry, to the AX register 

?' ...., 
o 

! 
ADe B,DATAS SO 11010ddd YY 4· X X X X X X [RB] - [RB] + DAT AS + [e] 

f Add S-bit immediate data, plus carry, to the RB register 
G ADe RW,DATA16 S1 11010ddd 4· X X X X X X [RW]- [RW] + DATA16 + [e] a. 
0 YYYY Add 16-bit immediate data, plus carry, to the RW register 
! 
l1li ADe DADDR, SO aa010bbb 17+EA X X X X X X [EA] - [EA] + DATA8 + [e] 
:s DATA8 [DISP][DISP] YY Add 8-bit immediate data, plus carry, to the data memory byte addressed by G 
E DADDR E - ADe DADDR, S1 aa010bbb 17+EA X X X X X [EA] - [EA] + DATA16 + [e] 

DATA16 [DISP][DISP] YYYY Add 16-bit immediate data, plus carry, to the data memory word addressed 
by DADDR 

AND AL,DATAS 24 YY 4· 0 X X U X 0 [ALI - [ALI AND DAT AS 
AND S-bit immediate data with AL register contents 

AND AX,DATA16 25 YYYY 4· 0 X X U X 0 [AX]- [AX] AND DATA16 

AND 16-bit immediate data with AX register contents 
AND RB,DATAS SO 11100ddd YY 4· 0 X X U X 0 [RB] - [RB] AND DAT AS 

AND 8-bit immediate data with RB register contents 
AND RW,DATA16 S1 11100ddd 4· 0 X X U X 0 [RW]- [RW] AND DATA16 

YYYY AND 16-bit immediate data with RW register contents 
AND DADDR,8 80 aa100bbb 17+EA 0 X X U X 0 [EA] - [EA] AND DAT A8 

[DISP][DISP] YY AND 8-bit immediate data with contents of data memory byte addressed by 
DADDR 

AND DADDR, 81 aa100bbb 17+EA 0 X X U X 0 [EA]- [EA] AND DATA16 
DATA16 [DISP][DISP] YYYY AND 1 6-bit immediate data with contents of 1 6-bit data memory word ad-

dressed by DADDR 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

G) Statuses 

I 

CL Mnemonic Operand(s). Object Code Clock Cycles Operation Performed >-
~ 0 D I T S Z A P C 

CMP Al,DATA8 3C YY 4· X X X X X X [All - DATA8 I 

Subtract 8-bit immediate data from Al register contents. Discard result, but 
adjust status flags 

CMP AX,DATA16. 3D YYYY 4· X X X X X X [AX] - DATA16 
Subtract 1 6-bit immediate data from AX register contents. Discard result, but 
adjust status flags 

CMP RB,DATA8 80 11111 ddd YY 4· X X X X X X [RB] - DATA8 
Subtract S-bit immediate data from RB register contents. Discard result, but 
adjust status flags 

CMP RW,DATA16t 100000a1 4· X X X X X X [RW] - DATA16 
1111ddd Subtract 16-bit immediate data from RW register contents. Discard result, 
YY [YY) but adjust status flags 

CMP DADDR, 80 aa111bbb 10+EA X X X X X X [EA] - DATA8 
DATA8 [DISP)[DISP] YY Subtract 8-bit immediate data from contents of data memory byte addressed 

;:; by DADDR. Discard result, but adjust status flags 
G) CMP DADDR, 100000a1 10+EA X X X X X x. [EA] - DATA16 
:I 

'S DATA16 aa111bbb Subtract 16-bit immediate data from contents of 16-bit data memory word 

cr 
""" 

c [DISP)[DISPI'YY\[YY] addressed by DADDR. Discard result, but adjust status flags 0 
g OR Al,DATA8 OC YY 4· 0 X X U X o [All - [All OR OAT A8 

~ 

! OR 8-bit immediate data with Al register contents 
I! OR AX,DATA16· 00 YYYY 4· 0 X X U X 0 [AX] - [AX] OR DATA16 G) 
CL 

OR 16-bit immediate data with AX register contents 0 

! OR RB,DATA8 80 11001ddd YY 4· 0 X X U X 0 [RB] - [RB] OR OAT A8 
III 

OR 8-bit immediate data with RB register contents :s 
G) 

OR RW,DATA16 81 11001ddd 4· 0 X X U X 0 [RW]- [RW] OR DATA 16 e 
.5 YYYY OR 16-bit immediate data with RW register contents 

OR DADDR, 80 aa001bbb 17+EA 0 X X U' X 0 [EA] - [EA] OR DATA S 
DATAS [DISP)[DISP] YY OR S-bit immediate ata with contents of data memory byte addressed by 

DADDR 
OR DADDR, 81 aa001bbb 17+EA 0 X X U X 0 [EA] - [EA] OR DATA16 

DATA16 [DISP)[DISP) OR 16-bit immediate data with contents of 16-bit data memory word ad-
YYYY dressed by DADDR 

SBB Al.DATAS 1C YY 4· X X X X X X [Al] - [Al] - OAT A8 - [e] 

Subtract S-bit immediate signed binary data from Al register contents using 
twos complement arithmetic. If the Carry status was originally 1 decrement 
the result 

SBB AX,DATA16: 10 YYYY 4· X. X X, X X X [AX) - [AX) - OATA16 - [C) 
Subtract 16-bit immediate signed binary data from AX register contents 
using twos complement arithmetic. If the Carry status was originally 1 decre-
ment the result 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

II Statuses 
Q. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > ... 0 D I T S Z A P C 

SBB RB,DATA8 80 11011ddd YY 4' X X X X X X [RB) +- [RB) - DAT A8 - [C) 

Subtract 8-bit immediate signed binary data from RB register contents using 
twos complement arithmetic. If the Carry status was originally 1 decrement 
the result 

SBB RW,DATA16 100000al 4' X X X X X X [RW] +- [RW] - DATA 16 - [C] 
11011ddd Subtract 16-bit immediate signed binary data from RW register contents 
yy [YY] using twos complement arithmetic. If the Carry status was originally 1 decre-

ment the result 
SBB DAD DR, 80 aaOllbbb 17+EA X X X X X X [EA] +- [EA] - DATA8 - [e] 

DATA8 [DISP)[DISP] YY Subtract 8-bit immediate signed binary data from contents of data memory 
byte addressed by DAD DR using twos complement arithmetic. If the Carry 
status was originally 1 decrement the result 

SBB DAD DR, 100000al 17+EA X X X X X X [EA] +- [EA] - DATA 16 - [e] 

DATA16 aaOl1bbb Subtract 16-bit immediate signed binary data from contents of l6-bit data 

~ 
[DISP)[DISP)YY [YY) memory word addressed by DADDR using twos complement arithmetic. If the 

G) Carry status was originally 1 decrement the result :I 

'S SUB AL,DATA8 2C YY 4' X X X X X X [ALI +- [ALI - DA T A8 

Cf' 
-..J 

'" 
c 

Subtract the 8-bit immediate signed binary data from AL register contents 0 
y 

using twos complement arithmetic 
$ SUB AX,DATA16 2D YYYY 4' X X X X X X [AX] +- [AX] - DATA16 f 
G) Subtract the 16-bit immediate signed binary data from AX register contents Q. 
0 using twos complement arithmetic 
$ SUB RB,DATA8 80 lll01ddd YY 4" X X X X X X [RB] +- [RB] - DA T A8 III :s Subtract the 8-bit immediate signed binary data from RB register contents G) 

E using twos complement arithmetic 
.5 SUB RW,DATA16 81 11101ddd 4' X X X X X X [RW] +- [RW] - DATA16 

YYYY Subtract the 16-bit immediate signed binary data from RW register contents 
using twos complement arithmetic 

SUB DADDR, 80 aal0lbbb 17+EA X X X X X X [EA] +- [EA] - DA T A8 
DATA8 [DISP)[DISP] YY Subtract the 8-bit immediate signed binary data from the contents of the data 

memory byte addressed by DADDR using twos complement arithmetic 
SUB DADDR, 100000al 17+EA X X X X X X [EA] +- [EA] - DATA 16 

DATA16 aal 01 bbb Subtract the 16-bit immediate Signed binary data from the contents of the 
[OISP][DISP]YY [YY] 0 

16-bit data memory word addressed by DADDR using twos complement 
arithmetic 

TEST AL,DATA8 A8 YY 4' X X U X 0 [All AND DAT A8 
AND the 8-bit immediate data and AL register contents. Discard the result but 
adjust status s 

--



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

! Statuse, 
Mnemonic Operand(s) . Object Code, Clock Cycles Operation Performed 

~ o D I T S Z A P C· 

TEST AX,DATA16 AS YYYY 4- 0 X X U X 0 [AX] AND DATA16 
AND the 16-bit immediate data and AX register contents. Discard the result 
but adjust status flags 

TEST RB,DATAS F6 11 OOOddd YY 5- 0 X X U X 0 [RB] AND OAT AS 
AND the S-bit immediate data and RB register contents. Discard the result but 
adjust status flags 

TEST RW,DATA16 F7 11000ddd 5- 0 X X U X 0 [RW] AND DATA16 
YYYY AND the 16-bit immediate data and RW register contents. Discard the result 

but adjust status flags 
;:; TEST DADDR, F6 aaOOObbb 11+EA 0 X X U X 0 [EA] AND OAT AS 
Q) 
~ DATAS [DISP][DISP] YY AND the 8-bit immediate data and the contents of the data memory location ..; 

addressed by DADDR. Discard the result but adjust status flags c 
0 

TEST DADDR, F7 aaOOObbb 11+EA 0 X X U X 0 [EA] AND DATA16 g 
$ DATA16 [DISP][DISP] YYYY AND the 16-bit immediate data and the contents of the 16-bit data memory 
IV word addressed by DADDR. Discard the result but adjust status flags Ii 
~ XOR AL,DATA8 34 YY 4- 0 X X U X 0 [All - [All XOR OAT A8 0 
$ Exclusive OR 8-bit immediate data with AL register contents 

c.n 
..:... 
w 

IV XOR AX,DATA16 35 YYYY 4- 0 X. X U X 0 [AX] - [AX] XOR DATA16 :s 
Q) Exclusive OR 16-bit immediate data with AX register contents E 
.E XOR RB,DATAS SO 1111 Oddd YY 4- 0 X X U X 0 [REt] - [RB] XOR OAT AS 

Exclusive OR 8-bit immediate data with RB register contents 
XOR RW,DATA16 S1 11110ddd 4- 0 X X U X 0 {RW]- [RW] XOR DATA16 

YYYY Exclusive OR 16-bit immediate data with RW register contents 
XOR DADDR, SO aa010bbb 17+EA 0 X X U X 0 [EA] - [EA] XOR OAT AS 

DATAS [DlsP][DISP] YY Exclusive OR S-bit immediate data with contents of the data memory byte ad-
dressed by DADDR 

XOR DADDR, 81 aa010bbb 17+EA 0 X X U X 0 [EA] - [EA] XOR DATA16 
DATA16 [DISP][DISP] Exclusive OR 16-bit immediate data with contents of the 16-bit data memory 

YYYY word addressed by DADDR 

LOOP DISPS E2 DISP 5 or 17-- [eX] - [CX] -1 If [CX] i= 0 then [PC] - [PC] + DISPS 

c Decrement CX register and branch if CX contents are not 0 
~ LOOPE DISP8 E1 DISP 6 or 1S-- [CX] - [CX] -1 If [CX] i= 0 and [Z] = 1 then [PC] + DlsPS 
:s Decrement eX register and branch if CX contents is not 0 and Z status is 1 c 
0 LOOPNE DlsPS EO DlsP 5 or 1S-- [CX] - [CX] -1 If [CX] i= 0 and [Z] = 0 then [PC] - [PC] + DISP8 (.) 

c Decrement CX register and branch if CX contents is not 0 and Z status is 0 0 
~ 
u 

LOOPNZ DIsP8 See LOOPNE 
c LOOPZ DlsPS See LOOPE I! 

ID JA DISP8 77 DISP 4 or 16-- [PC] - [PC] + DISPS 
Branch if C or Z is 0 
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-:a 
CD 
:::s 
c .. 
c 
0 g 
c 
~ :a c 
0 u 
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0 
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u c 
f 
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Mnemonic 

JAE 

JB 

JBE 

JCXZ 

JE 

JG 

JGE 

JL 

JLE 

JNA 
JNAE 
JNB 
JNBE 
JNE 

JNG 
JNGE 
JNL 
jnle 
JNO 

JNP 

JNS 

JNZ 
JO 

JP 

JPE 

Operand(s) Object Code 

DISPB 73 DISP 

DISPB 72 DISP 

DISPB 76 DISP 

DISPB E3 DISP 

DISP8 74 DISP 

DISPS 7F DISP 

DISPB 7D DISP 

DISPB 7C DISP 

DISPB 7E DISP 

DISPB 
DISP8 
DISP8 
DISP8 
DISP8 75 DISP 

DISP8 
DISP8 
DISPS 
disp8 
DISP8 71 DISP 

DISP8 7B DISP 

DISP8 79 DISP 

DISPS 
DISP8 70 DISP 

DISP8 7A DISP 

DISP8 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycles Operation Performed 

0 0 I T S Z A P C 

4 or 16" [PC] +- [PC] + DISPS 
Branch if C is 0 

4 or 16" [PC] +- [PC] + DISP8 
Branch if C is 1 

4 or 16" [PC] +- [PC] + DISPS 
Branch if C or Z is 1 

6 or lS" [PC] +- [PC] + DISP8 
Branch if the CX register contents is 0 

4 or 16" [PC] +- [PC] + DISPS 
Branch if Z is 1 

4 or 16" [PC] +- [PC] + DISPS 

Branch if Z is 0 or the Sand 0 statuses are the same 
4 or 16" [PC] +- [PC] + DISPS 

Branch if the Sand 0 statuses are the same 
4 or 16" [PC] +- [PC] + DISPB 

Branch if the Sand 0 statuses differ 
4 or 16" [PC] +- [PC] + DISPS 

Branch if Z is 1 or the Sand 0 statuses differ 
See JBE 
See JB 
See JAE 
See JA 

4 or 16" [PC] +- [PC] + DISP8 
Branch if Z is 0 
See JLE 
See JL 
See JGE 
See JG 

4 or 16" [PC] +- [PC] + DISP8 
Branch if 0 is 0 

4 or 16" [PC] +- [PC] + DISP8 
Branch if P is 0 

4 or 16" [PC] +- [PC] + DISP8 
Branch if S is 0 
See JNE 

4 or 16"" [PC] +- [PC] + DISPS 
Branch if 0 is 1 

4 or 16" [PC] +- [PC] + DISP8 
Branch if P is 1 
See JP 

--



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

CD Statuses 
a. Mnemonic Operand Is) Object Code Clock Cycles Operation Performed > 
~ 0 D I T S Z A P C 

..,l JPO 0lSP8 See JNP c 
0 JS 0lSP8 780lSP 4 or 16" [PC] ...... IPC] + 0lSP8 9 

Branch if S is 1 (,) 
0 JZ DlSP8 See JE ID 

MOV RBO.RBS 8A11dddsss 2' [RBO] ...... [RBS] 

Move the contents of any RB register to any RB register 

CD MOV RWO.RWS 8B 11dddsss 2' [RWO] ...... [RWS] 
> Move the contents of any RW register to any RW register 0 
2 MOV SR.RW 8E 11 Orrsss 2' [SR] ...... [RWS] .. 
! Move the contents of any RW register to any Segment register 
II) 

MOV RW.SR 8C 110rrddd 2' [RWO] ...... [SR] '61 
CD 

Move the contents of any Segment register to any RW register a:: 
I .. XCHG AX.RW 10010reg 3' [AX] ...... - [RW] 
! Exchange the contents of AX and any RW register 
II) 

XCHG RB.RB 86 11 regreg 4' [RB] ...... - [RB] '61 
CD 

Exchange the contents of any two RB registers a:: 

CTI XCHG RW.RW 87 11regreg 4' [RW] ...... - [RW] 

~ Exchange the contents of any two RW registers 
CTI 

CMPS BO.BS A6 22 X I/O X X X X X [[SI11 - [[01]]. [SIl ...... [SIl ± 1. [Oil ...... [Oil ± 1 
Compare the data bytes addressed by the SI and 01 Index registers using 
string data addressing' 

CMPS WO.WS A7 22 X /0 X X X X X [[5111 - [[01]1. [SIl ...... [SIl ± 2. [01] ...... [Oil ± 2 
Compare the 16-bit data words addressed by the 51 and 01 Index registers 
using string data addressing' 

~ LOOS BO.BS AC 12 I/O [All ...... [[5111. [SIl ...... [SIl ± 1 ~ 
II Move a data byte from the location addressed by the 51 Index register to the II 

CI) 
AL register using string data addressing "tI c LOOS WO.WS AO 12 I/O [AX] ...... [[5111. [SIl ...... [SIl ± 1 II .. Move a data word from the 16-bit location addressed by the 51 Index register -! to the AX register using string data addressing c 

I! 
~ 

MOVS BO.BS A4 18 I/O [[0111 ...... [[51]]. [SIl ...... [SIl ± 1. [01]""" [Oil ± 1 
Move a data byte from the location addressed by the 51 Index register to the ~ 

u 
extra segment location addressed by the 01 register using string data address-0 

iii ing' 
MOVS WO.WS A5 18 I/O [[Olll ...... [[5111. [SIl ...... [51] ± 2. [01] ...... [Oil ± 2 

Move a 1 6-bit data word from the location addressed by the 51 Index register 
to the extra segment location addressed by the 01 Index register using string 
data addressing' 

• For these instructions. the default destination segment register cannot be 
overri,den. 
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Mnemonic 

REP 

SCAS 

SCAS 

STOS 

STOS 

AOC 

AOC 

ADD 

ADD 

AND 

AND 

CBW 

CMP 

eMP 

CWO 

Operand(s) Object Code 

N 1111001z 

BO,BS AE 

WO,WS AF 

BO,BS AA 

WO,WS AB 

RBO,RBS 12 11dddsss 

RWO,RWS 13 11 dddsss 

RBO.RBS 02 11dddsss 

RWO.RWS 03 11dddsss 

RBO.RBS 22 11dddsss 

RWO.RWS 23 11dddsss 

98 

RBO.RBS 3A 11dddsss 

RWO.RWS 3B 11dddsss 

99 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycles Operation Performed 

0 0 I T S Z A P C 

+2 per loop I/O Repeat the next sequential instruction (which must be a Block Transfer and 
Search instruction) until CX contents decrements to O. Decrement CX con-
tents on each repeat. If the next instruction is CMPB, CMPW, SCAB, or 
SCAW then repeat until CX contents decrements to 0 or Z status does not 
equal N 

15 X I/O X X X X X [AL] - [[Dill, [Oil - [Oil ± 1 
Compare AL register contents with the extra segment data byte addressed by 
the 01 Index register using string data addressing 

15 X I/O X X X X X [AX] - [[Dill, [Oil - [Oil ± 2 
Compare AX register contents with the extra segment 1 6-bit data ord ad-
dressed by the 01 Index register using string data addressing 

11 X I/O X X X X X [[0111 - [AL), [Oil - [Oil ± 1 
Store the AL register contents in the extra segment data memory byte ad-
dressed by the 01 Index register using string data addressing 

11 X I/O X X X X X [[0111 - [AXI. [Oil - [Oil ± 2 
Store the AX register contents in the extra segment 16-bit data memory word 
addressed by the 01 Index register using string data addressing 

3' X X X X X X [RBO) - [RBO] + [RBS) + [C] 
Add the 8-bit contents of register RBS, plus the Carry status, to register RBO 

. 3' X X X X X X [RWO) - [RWO] + [RWS] + [C] 
Add the 16-bit contents of register RWS. plus the Carry status. to register 
RWO 

3' X X X X X X [RBO) - [RBO] + [RBS) 
Add the 8-bit contents of register RBS to register RBO 

3' X X X X X X [RWO) - [RWO) + [RWS) 
Add the 16-bit contents of register RWS to register RWO 

3' 0 X X U X o [RBO] - [RBO] AND [RBS] 

AND the 8-bit contents of register RBS with register RBO 
3' 0 X X U X 0 [RWO] - [RWO] AND [RWS) 

AND the 1 6-bit contents of register RWS with register RWO 
2' [AH]- [AL7) 

Extend AL sign bit into AH 
3' X X X X X X [RBO] - {RBS] 

Subtract the contents of register RBO from register RBS. Discard the result. 
but adjust status flags 

3' X X X X X X [RWO] - [RWS] 

Subtract the contents of register RWO from register RWS. Discard the result, 
but adjust status flags 

5 [OX) - [AX15) 
Extend AX sign bit into OX 

--
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!Mnemonic 

OIV 

DIV 

IDIV 

IOIV 

IMUL 

IMUL 

MUL 

MUL 

OR 

OR 

Operand(.) Object Code 

RBS F6 11110555 

RWS F7 1111 Osss 

RBS F6 11111 sss 

RWS F7 11111 sss 

RBS F6 11101 sss 

RWS F7 11101 sss 

RBS F6 11100sss 

RWS F7 11100sss 

RBD.RBS OA 11dddsss 

RWD.RWS OB l1dddsss 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statu.e. 
Clock Cycle. Operation Performed 

o D I T S Z A P C 

80-90 U U U U U u [AX] +- [AX]/[RBS] 
Divide the 16-bit contents of AX by the 8-bit contents of RBS. Store the in-
teger quotient in AL and the remainder in AH. If the quotient is greater than 
FF16. execute a "divide by 0" interrupt 

144-162 U U U U U u [DX) [AX) +- [DX) [AX)/[RWS] 
Divide the 32-bit contents of registers DX (high-order) and AX (low-order) by 
the 16-bit contents of RWS. Store the integer quotient in AX and the re-
mainder in DX. If the quotient is greater than FFFF16. execute a "divide by 0" 
interrupt 

101-112 U U U U U U [AX] +- [AX]/[RBS] 
Divide the 16-bit contents of register AX by the 8-bit contents of RBS. treat-
ing both contents as signed binary numbers. Store the quotient. as a signed 
binary number. in AL. Store the remainder. as an unsigned binary number. in 
AX. Store the remainder. as an unsigned binary number. in AH. If the quotient 
is greater than 7F16. or less than -8016. execute a "divide by 0" interrupt 

165-184 U U U U U U [OX] [AX] +- [OX] [AXlI[RWS] 
Divide the 32-bit contents of registerl>X (high-order) and AX (low-order) by 
the 16-bit contents of RWS. Treat both contents as signed binary numbers. 
Store the quotient. as a signed binary number. in AX. Store the remainder. as 
an unsigned binary number. in AH. If the quotient is greater than 7FFF16. or 
less than -800016. execute a "divide by 0" interrupt 

80-98 X U U U U X [AX) +- [AL) " [RBS) 
Multiply the 8-bit contents of register AL by the contents of RBS. Treat both 
numbers as signed binary numbers. Store the 16-bit product in AX 

128-154 X U U U U X, [DX) [AX) +- [AX)" [RWS) 
Multiply the 16-bit contents of register AX by the 16-bit contents of RWS. 
Treat both numbers as signed binary numbers. Store the 32-bit product in DX 
(high-order word) and AX (low-order word) 

70-17 X U U U U X [AX] - [AL] " [RBS] 
Multiply the 8-bit contents of register AL by the contents of RBS. Treat both 
numbers as unsigned binary numbers. Store the 16-bit product in AX 

118-133 X U. U UU X [DX) [AX) - [AX] .. [RWS) 
Multiply the l6-bit contents of register AX by the 16-bit contents of RWS. 
Treat both numbers as unsigned binary numbers. Store th,e 32-bit product in 
DX (high-order word) and AX (low-order word) 

3" 0 X X U X 0 [RBD] - [RBD] OR [RBS] 
OR the 8-bit contents of register RBS with register RBD 

3" 0 X X U X 0\ [RWD]- [RWD] OR [RWS] 
OR the l6-bit contents of register RWS with register RWD 
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Mnemonic 

SBB 

SBB 

SUB 

SUB 

TEST 

TEST 

XOR 

XOR 

AAA 

AAD 

AAM 

AAS 

DAA 

DAS 

DEC 

DEC 

Operand(s) Object Code 

RBD.RBS lA lldddsss 

RWD.RWS lB lldddsss 

RBD.RBS 2A lldddsss 

RWD.RWS 2B 11 dddsss 

RBD.RBS 8411regreg 

RWD.RWS 85 11 regreg 

RBD.RBS 30 lldddsss 

RWD.RWS 31 lldddsss 

37 

D50A 

D40A 

3F 

27 

2F 

RB FE 11001ddd 

RW 01001ddd 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycles Operation Performed 

O 0 I T S Z A P C 

3' X X X X X X [RBD) - [RBD) - [RBS) ~ [C) 

Subtract the 8-bit contents of register RBS from RBD using twos complement 
arithmetic. If the Carry status was originally 1 decrement the result 

3' X X X X X X [RWD) - [RWD) - [RWS) - [C) 
Subtract the lS-bit contents of register RWS from RWD using twos comple-
ment arithmetic. If the Carry status was originally 1 decrement the result 

3' X X X X X X [RBD) - [RBD) - [RBS) 

Subtract the 8-bit contents of register RBS from RBD using twos complement 
arithmetic 

3' X X X X X X [RWD) - [RWD) - [RWS) 
Subtract the lS-bit contents of register RWS from RWD using twos comple-
ment arithmetic 

3' 0 X X U X 0 [RBD) AND [RBS) 

AND the a-bit contents of register d and register RBS. Discard the result. but 
adjust status flags 

3' 0 X X U X 0 [RWD) AND [RWS) 
AND the lS-bit contents of register RWD and register RWS. Discard the 
result. but adjust status flags 

3' 0 X X U X 0 [RBD) - [RBD) XOR [RBS) 
E~clusi~e OR the 8-bit contents of register RBS with register RBD 

3' 0 X X U X 0 [RWD) - [RWD) XOR [RWS) 
~xclusive OR the 16-bit contents of register RWS with register RWD 

4' U U U X U X ASC" adjust AI register contents for addition (as described in accompanying 
text) 

SO U X X U X U Decimal adjust dividend in AL prior to dividing an unpacked decimal divisor. 
to generate an unpacked decimal quotient. (See accompanying text for 
details) 

83 U X X U X U After multiplying 0 unpacked decimal operands. adjust product in AX to 
become an unpacked decimal result. (See accompanying text for details) 

4· U U U X U X After subtracting two unpacked decimal numbers. adjust the difference in AL 
so that it too is an unpacked decimal number. (See accompanying text for 
details) 

4' U X X X X X After adding two packed decimal numbers. adjust the sum in AL so that it too 
is a packed decimal number. (See accompanying text for details) 

4' U X X X X X After subtracting two packed decimal numbers. adjust the difference in AL so 
that it too is a packed decimal number. (See accompanying text for details) 

3' X X X X X [RB] - [RB] -1 
Decrement the 8-bit contents of register RB 

2' X X X X X [RW) - [RW) -1 
Decrement the 1S-bit contents of register RW 
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INC 

INC 

NEG 

NEG 

NOT 

NOT 

RCL 
RCL 
RCR 
RCR 
ROL 
ROL 
ROR 
ROR 
SAL 
SAL 
SAR 
SAR 
SHL 
SHL 
SHR 
SHR 

POP 

POP 
POP 

POPF 

PUSH 

Operand(s) Object Code 

RB FE 11000ddd 

RW 01000ddd 

RB F611011ddd 

RW F7 11011ddd 

RB F6 11010ddd 

RW F7 11010ddd 

RB,N ~ 10100vO 11010ddd 
RW,N ~10100v1 11010ddd 
RBN ~ 10100vO 11011ddd 

RW,N ~ 10100vl 110l1ddd 
RB,N 110100vO 11 OOOddd 
RW,N 110100v1 11000ddd 
RB,N 110100vO 11001ddd 
RW,N ~ 10100v1 11001ddd 
RB,N 110100vO 11100ddd 

RW,N ~ 10l00v1 11100ddd 
RB,N 110100vO f1111ddd 
RW,N ~ 10100v1 1llllddd 
RB,N 
RW,N 
RB,N 110100vO 11101ddd 
RW,N ~ 10100vl 1ll0lddd 

DADDR SF aaOOObbb 
[DISP][DISP] 

RW 01011ddd 
SR 000rr111 

90 

DADDR FF aa1l0bbb 
[DISP][DISP] 

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

Statuses 
Clock Cycles Operation Performed 

O 0 I T S Z A P C 

3- X, X X X X [RB] - [RB] + 1 
Increment the a-bit contents of register RB 

2- X X X X X [RW] - [RW] + 1 
Increm..!!!! the 16-bit contents of register RW 

3- X X X X X X [RB] - [RB] + 1 
Twos ~Iement the a-bit contents of register RB 

3- X X X X X X [RW] - [RW] + 1 
Twos complement the 16-bit contents of register RW 

3- [RB] - [RBi 
Ones c<l!!!e!ement the a-bit contents of register RB 

3- [RW]-[RW] 

Ones complement the l6-bit contents of register RW 
X X Rotate left through Carry the 8-bit contents of RB register, or the l6-bit 
X X contents of RW register, as illustrated for memory operate 
X X Rotate right through Carry the a-bit contents of RB register, or the 16-bit 

X X contents of RW register, as illustrated for memory operate 
X X Rotate left the 8-bit contents of RB register, or the 16-bit contents of RW 

N=1 2-
X X register as illustrated for memory operate 

N>1 4N+8 
X X Rotate right the a-bit contents of RB register, or the 16-bit contents of RW 
X X register, as illustrated for memory operate 
X X X U X X Shift left the a-bit contents of RB register, or the 16-bit contents of RW 

X X X U X X register, as illustrated for memory operate 
X X X U X X Shift right the a-bit contents of register RB, or the l6-bit contents of register 
X X X U X X RW, as illustrated for memory operate 
X X X U X X See SAL 
X X X U X· X See SAL 

N=l 2- X X X U X X Shift right the a-bit contents of register RB, or the 16-bit contents of register 
N>1 4N+8 X X U X X RW, as illustra!ed for memory operate 

17+EA [EA] - [[SPll,' [SP] ..:... [SP] + 2 
Load the 16-bit Stack word, addressed using Stack addressing, into the 16-
bit data memory word addressed by DADDR. Increment SP by 2 

8 [RW or SR] - [[SP]], [SP] - [SP] + 2 
a Load the 16-bit Stack word, addressed using Stack addressing, into the 

specified 16-bit register. Increment SP by 2. 
8. X X X X X_ .X XX X [SFR] - [[SPll, [SP] - [SP] + 2 

Load the 16-bit Stack word, addressed using Stack addressing, into the 
Status Flags register 

16+EA [SP] - [SP] - 2, [[SP]] - [EA] 
Store the 1 6-bit contents of the data memory word addressed by DADDR in 
the 16-bit Stack word addressed using Stack addressinQ.' Decrement SP by 2 

--



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

., Statuses 
a. Mnemonic Operand(s) Object Code Clock Cycles Operation Performed > 
I- 0 0 I T S Z A P C 

PUSH RW 01010rrr 11 [SP) +- [SP) -2, [(SPII +- [RW or SR) 
.... PUSH SR 000rr110 10 Store the contents of the specified 1 6-bit register in the 1 6-bit Stack word c 
0 addressed using Stack addressing. Decrement SP by 2 g 
~ PUSHF 9C 10 [SP) +- [SP) +2, [[SPII - [SFR) 
u 

Store the Status flags register contents in the 16-bit Stack word addressed ca 
U; 

using Stack addressing. Decrement SP by 2 

INT 3 CC 52 0 0 Execute a software interrupt and vector through table entry 3 
J!! INT V CD YY 51 0 0 Execute a software interrupt and vector through table entry V a. 
E INTO CE 4 or 53 0 0 If the 0 status is 1, execute a software interrupt and vector through table en-
! try 1016 .E 

IRET CF 24 Return from interrupt service routine 

CLC Fa 2· 0 [C)-O 

Clear Carry status 
CLD FC 2· 0 [0)-0 

Clear Decrement/Increment select 

U1 
cO 

CLI FA 2· 0 (1)-0 
Clea!:..!r'terrupt enable status, disabling all interrupts 

o CMC F5 2· X [C) -[C) 

Complement Carry status 
LAHF 9F 4· Transfer flags to AH register as follows: 

7 6 5 4 3 2 1 0 Bit no. 

I I I I I I I I I AH register 

1/1 S Z 0 A 0 P I C a 
f! SAHF 9E 4· X X X X X Transfer AH register contents to status flags as follows: U) 

7 6 5 4 3 2 1 0 Bit no. 

I I I I I I I I IAH register 

S Z A P C 

STC F9 2· 1 [C)-1 

Set Carry status to 1 
STD FD 2· 1 (0)-1 

Set Decrement/Increment status to 1 
STI FB 2· 1 (1)-1 

Set interrupt enable status to 1, enabling all interrupts 



Table 5-4. A Summary of 8086 and 8088 Instructions (Continued) 

II Statuses 
a. IMnemonlc! Operand(s) Object Code Clock Cycles Operation Performed >-
I- 0 D I T S Z A P C 

ESC DADDA 11011xxx 8+EA 7 - [EA) 
aaxxxbbb The contents of the data memory location addressed by DADO A is read out of 

[DISP][DISP) memory and placed on the data bus; however, it is not input to the CPU 

HI-T F4 2" CPU Halt 
~ LOCK FO 2" Guarantee the CPU bus control during execution of the next sequential in-
-S 
0 struction 

SEG SA 001reg110 +2 The next sequential allowed memory reference instruction accesses the seg-
ment identified by Segment register SA. See Table 20-1 for allowed memory 
reference instructions 

WAIT 98 3+5n CPU enters the WAIT state until TEST pin receives a high input signal 

NOP 90 3" No operation (This is the same object code as XCHG, AX, AX.) 

C11 

~ 

i 

I 

I 



Table 5-5. 8086 and 8088 Instruction Mnemonics 

Instruction Object Code Bytes Clock 
Periods 

AAA 37 1 4-
AAD D50A 2 60 
AAM D40A 2 S3 
AAS 3F 1 4-
ADC AL,DATAS 14 YY 2 4-
ADC AX,DATA16 15 YYYY 3 4-
ADC DADDR,DATAS SO aa010bbb 3,4 or 5 17+EA 

[DISP) [DISP) YY 
ADC DADDR,DAT A 16 1 OOOOOa 1 aaO 1 Obbb 3,4,5 or 6 17+EA 

[DISP) [DISP) YY[YY) 
ADC DADDR,RB 10 aasssbbb 2,3, or 4 16+EA 

[DISP) [DISP) 
ADC DADDR,RW 11 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
ADC RB,DADDR 12 aadddbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
ADC RB,DATAS SO 11010ddd YY 3 4-
ADC RBD,RBS 12 11dddsss 2 3-
ADC RW,DADDR 13 aadddbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
ADC RW,DATA16 100000a111010ddd 3 or 4 4-

YY[YY) 
ADC RWD,RWS 13 11dddsss 2 3-
ADD AL,DATAS 04 YY 2 4-
ADD AX,DATA16 05 YYYY 3 4-
ADD DADDR,DAT AS SO aaOOObbb 3,4 or 5 17+EA 

[DISP) [DlSP] YY 
ADD DADDR,DAT A 16 1 OOOOOa 1 aaOOObbb 3,4,5 or 6 17+EA 

[DISP) [DISP) YY[YY) 
ADD DADDR,RB 00 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
ADD DADDR,RW 01 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
ADD RB,DADDR 02 aadddbbb 2,3 or 4 9+EA 

[DISP) [DlSP] 
ADD RB,DATAS SO 11 OOOddd YY 3 4" 
ADD RBD,RBS 02 11dddsss 2 3" 
ADD RW,DADDR 03 aadddbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
ADD RW,DATA16 100000a1 11000ddd 3 or 4 4" 

YY[YY) 
ADD RWD,RWS 03 11dddsss 2 3" 
AND AL,DATAS 24 YY 2 4" 
AND AX,DATA16 25 YYYY 3 4" 
AND DADDR,DATAS SO aa100bbb 3,4 or 5 17+EA 

[DISP) [DISP) YY 
AND DADDR,DAT A 1"6 81 aa100bbb 4,5 or 6 17+EA 

[DISP) [DISP] YYYY) 
AND DADDR,RB 20 aasssbbb 2; 3 or 4 16+EA 

[DISP] [DISP] 
AND DADDR,RW 21 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP] 
AND RB,DADDR 22 aadddbbb 2,3 or 4 9+EA 

[DISP) [DISP] 
AND RB,DATAS SO 111 OOOdddYY 3 4" 
AND RBD,RBS 22 11dddsss 23-
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Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes 
Clock 

Periods 

AND RW,DADDR 23 aadddbbb 2,3 or 4 9+EA 
[DISP) [DISP) 

AND RW,DATA16 S1 11100sss YYYY 4 4-
AND RWD,RWS 23 11dddsss 2 3-

CALL SRANCH ES DISP DISP 3 19--

CALL BRANCH,SEGM 9A PPOOPPOO 5 2S--

CALL DADDR FF aa010bbb 2,3 or 4 21+EA 
[DISP) [DISP) 

CALL DADDR,CS FF aa011 bbb 2,3 or 4 37+EA--
[DISP) [DISP) 

CALL RW FF 11010reg 2 16--

CBW 9S 1 2 
CLC FS 1 2-
CLD FC 1 2-

CLI FA 1 2-

CMC F5 1 2-

CMP AL,DATAS 3C YY 2 4-

CMP AX,PATA16 3D YYYY 3 4-

CMP DADDR,DAT A8 SO aalll bbb 3,4 or 5 10+EA 
[DISP) [DISP) YY 

CMP DADDR,DAT A 16 1 OOOOOa 1 aa 11 bbb 3,4,5 or 6 10+EA 
[DISP) [DISP) YY[YY) 

CMP DADDR,RB 3S aasssbbb 2,3 or 4 9+EA 
[DISP) [DISP) 

CMP DADDR,RW 39 aasssbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

CMP RB,DADDR 3A aadddbbb 2,3 or 4 9+EA 
[DISP] [DISP) 

CMP RB,DATAS SO 11 111 ddd YY 3 4-

CMP RBD,RBS 3A l1dddsss 2 3-

CMP RW,DADDR 3B aadddbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

CMP RW,DATA16 1 OOOOOa 1 11111 ddd 3 or 4 4-
YY[YY] 

CMP RWD,RWS 3B l1dddsss 2 3-

CMPS BD,BS A6 1 22 
CMPS WD,WS A7 1 22 
CWO 99 1 5 
DAA 27 1 4-

DAS 2F 1 4-

DEC DADDR 1111 lllaa aaOOlbbb 2,3 or 4 15+EA 
[DISP) [DISP] 

DEC RB FE 11001ddd 2 3-

DEC RW 01001ddd 1 2-

DIV (S-bit) AX,DADDR F6 aa110bbb 2,3 or 4 (S6-96)+EA 
[DISP] [DISP] 

DIV (16-bit) DX,DADDR F7 aal10bbb 2,3 or 4 (150-16S)+EA 

[DISP] [DISP] 
DIV RBS F6 11110sss 2 80-90 
DIV RWS F7 11110sss 2 144-162 
ESC DADDR 11 011 xxx aaxxxbbb 2,3 or 4 8+EA 

[DISP) [DISP] 
ESC RW 11011 xxx 11xxxreg 2 2 
HLT F4 1 2-

5-83 



Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes 
Clock 

Periods 

IDIV AX.DADDR FS aa111bbb 2.3 or 4 (107-118)+EA 
[DISP) [DISP) 

IDIV DX.DADDR F7 aa111 bbb 2.3 or 4 (171-190)+EA 
[DISP) [DISP) 

IDIV RBS FS 11111sss 2 101-112 
IDIV RWS F7 11111 SSS 2 165-184 
IMUL AL.DADDR FS aa101bbb 2.3 or 4 (8S-104)+EA 

[DISP) [DISP] 
IMUL AX.DADDR F7 aa101bbb 2.3 or 4 (134-1S0)+EA 

[DISP) [DISP) 
IMUL RBS FS 11101sss 2 80-98 
IMUL RWS F711101sS5 2 128-154 
IN AL[DX] EC 1 8 
IN AL.PORT E4 YY 2 10 
IN AX.[DX) ED 1 8 
IN AX.PORT E5 YY 2 10 
INC DAD DR 1111111 a aaOOObbb 2.3 or 4 15+EA 

[DISP) [DISP] 
INC RB FE 11000ddd 2 3 0 

INC RW 01000ddd 1 2 0 

INT 3 CC 1 52 
INT V CD YY 2 51 
INTO CE 1 4 or 53 
IRET CF 1 24 
JA/JNBE DISP8 17 DISP 2 4 or 1s00 

JAE/JNB DISP8 73 DISP 2 4 or 16.0 

JB/JNAE DISP8 7i DISP 2 4 or 1s00 

JBE/JNA DISP8 7 DISP 2 4 or 1S·0 

JCXZ DISPS 63DISP 2 S or 18.0 

JE/JZ DISPS 74DISP 2 4 or 1s00 

JG/JNLE DISPS 7F DISP 2 4 or 1S·0 

JGE/JNL DISPS 7DDISP 2 4 or 1S·0 

JL/JNGE DISPS 7C DISP 2 4 or 1s00 

JLE/JNG DISPS 7E DISP 2 4 or 1S·0 

JMP BRANCH 111010a 1 DISP [DISP) 2 or 3 15" 
JMP BRANCH.SEGM EA PPOO PPOO 5 1500 

JMP DADDR FF aa100bbb 2.3 or 4 1S+EA 
[DISP) [DISP] 

JMP DADDR.CS FF aa101bbb 23 or 4 24+EA 
[DISP] [DISP) 

JMP RW FF 11100reg 2 11 
JNE/JNZ DISPS 75DISP 2 4 or 1S·0 

JNO DISPS 71DISP 2 4 or 1600 

JNP/JPO DISPS 6S DISP 2 4 or 1S·0 

JNS DISP8 79DISP 2 4 or 1s00 

JO DlSPS 70DISP 2 4 or 1s00 

JP/JPE DISPS 7A DISP 2 4 or 1s00 

JS DISPS 7S DISP 2 4 or 1s00 

LAHF 9F 1 4 0 

LOS RW.DADDR C5 aadddbbb 2.3 or 4 16+EA 
[DISP] [DISP] 

LEA RW.DADDR SO aadddbbb 2.3 or 4 2+EA 
[DISP) [DISP) 

LES RW.DADDR C4 aadddbbb 2.3 or 4 4 or 1600 

[DISP] [DISP] 
LOCK FO 1 2 0 
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Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes 
Clock 

Periods 

LODS BS AC 1 12 
LODS WS AD 1 12 
LOOP DISP8 E2DISP 2 5 or 11** 
LOOPE/LOOPZ DISP8 E1DISP 2 6 or 18** 
LOOPNE/LOOPNZ DISP8 EO DISP 2 5 or 19** 
MOV AL.LABEL AO PPQQ 3 10 
MOV AX. LABEL Al PPQQ 3 10 
MOV DADDR.DAT A8 C6 aaOOObbb 3.4 or 5 10+EA 

[DISP] [DISP] YY 
MOV DADDR.DAT A 16 C7 aaOOObbb 4.5 or 6 10+EA 

[DISP] [DISP] YYYY 
MOV DADDR.RB 88 aasssbbb 2.3 or 4 9+EA 

[DISP] (DlSP] 
MOV DADDR.RW 89 aasssbbb 2.3 or 4 9+EA 

[DISP] [DISP] 
MOV DADDR.SR 8C aaOrrbbb 2.3 or 4 9+EA 

[DISP] [DISP] 
MOV LABEL.AL A2 PPQQ 3 10 
MOV LABEL.AX A 3 PPQQ 3 10 
MOV RB.DADDR 8A aadddbbb 2.3 or 4 8+EA 

[DISP] [DISP] 
MOV RB.DATA8 10110ddd YY 2 4* 
MOV RBD.RBS 8A lldddsss 2 2* 
MOV RW.DADDR 8B aadddbbb 2.3 or 4 8+EA 

[DISP] [DISP] 
MOV RW.DATA16 1 0111 ddd YYYY 3 4* 
MOV RW.SR 8C 110rrsss 2 * 
MOV RWD.RWS 8B 11dddsss 2 * 
MOV SR.DADDR 8E aaOrrbbb 2.3 or 4 8+EA 

[DISP] [DISP] 
MOV SR.RW 8E 11 Orrsss 2 * 
MOVS BD.BS A4 1 18 
MOVS WD.WS A5 1 18 
MUL (8-bit) AL.DADDR F6 aa100bbb 2.3 or 4 (76-831+EA 

[DISP] [DISP] 
MUL (16-bit) AX.DADDR F7 aa100bbb 2.3 or 4 (124-139)+EA 

[DISP] [DISP] 
MUL RBS F6 11100sss 2 70-71 
MUL RWS F7 11100 2 118-133 
NEG DADDR 1111 011 a aaO 11 bbb 2.3 or 4 16+EA 

[DISP] [DISP] 
NEG RB F5 11011ddd 2 3* 
NEG RW F711011ddd 2 3* 
NOP 90 1 3* 
NOT DADDR 1111 011 a aaO 1 Obbb 2.3 or 4 16+EA 

[DISP] [DISP] 
NOT RB F611010sss 2 3* 
NOT RW F711010sss 2 3* 
OR AL.DATA8 OC YY 2 4· 

OR AX.DATA16 00 YYYY 3 4* 
OR DADDR.DAT A8 80 aaOOlbbb 3.4 or 5 17+EA 

[DISP] [DISP] YY 
OR DADDR,DAT A 16 81 aaOOlbbb 4.5 or 6 17+EA 

[DISP] [DISP] YYYY 
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Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes Clock 
Periods 

OR DADDR,RB OB aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

OR DADDR,RW 09 aasssbbb 2,3 or 4 16+EA 
OR RB,DADDR OA aadddbbb 2,3 or 4 9+EA 

[DISP] [DISP] 

OR RB,DATAB BO 11001ddd YY 3 4" 
OR RBD,RBS OA lldddsss 2 3" 
OR RW,DADDR OB aadddbbb 2,3 or 4 9+EA 

[DISP] [DISP] 

OR RW,DATA16 81 11001ddd YYYY 4 4" 
OR RWD,RWS OB lldddsss 2 3" 
OUT Al,[DX] EE 1 8 
OUT Al,PORT E6 YY 2 10 
OUT AX,[DX] EF 1 8 
OUT AX,PORT E7 YY 2 10 
POP DADDR 8F aaOOObbb 2,3 or 4 17+EA 

[DISP] [DISP] 

POP RW 01011ddd 1 B 
POP SR OOOrrlll 1 B 
POPF 9D 1 B 
PUSH DADDR FF aall0bbb 2,3 or 4 16+EA 

[DISP] [DISP] 

PUSH RW 01010sss 1 11 
PUSH SR 000rrll0 1 10 
PUSHF 9C 1 10 
RCl DADDR,N 110100va aaOl Obbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N> 4N+20+EA 
RCl RB,N 11 01 OOvO 1 1 01 Osss 2 N=l 2" 

N>14N+B 
RCl RW,N 11 01 OOv 1 1 1 0 1 Osss 2 
RCR DADDR,N 110100va aaOllbbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N> 4N+20+EA 
RCR RB,N 11 01 OOvO 1 1 0 11 sss 2 N=l 2" 

N> 1 4N+B 
REP N 1111001z 1 +2 
RET C3 1 8"" 
RET CS CB 1 12"" 
RET CS,DATA16 CA YYYY 3 lB"" 
RET DATA16 C2 YYYY 3 17"" 
ROL DADDR,N 1 101 OOva aaOOObbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N>l 4N+20+EA 
ROl RB,N 110100vO 11000ddd 2 N=l 2" 

N>4N + B 
ROl RW,N 1 1 01 OOv 1 11000ddd 2 
ROR DADDR,N 110100va aaOOlbbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N>l 4N+20+EA 
ROR RB,N 1 101 OOvO 11 001 ddd 2 N=12" 

N>14N+B 
ROR RW,N 1 1 01 OOv 1 11001 ddd 2 
SAHF 9E 1 4" 
SALISHL DADDR,N 110100va aal00bbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N> 1 4N+20+EA 
SALISHL RB,N 1 1 01 OOvO 111 OOddd 2 N=l 2" 

N>14N+B 
SALlSHl RW,N 110100vl 11100ddd 2 
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Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes Clock 
Periods 

SAR DADDR,N 11 01 OOva aa 111 bbb 2,3 or 4 N=1 15+EA 
[DISP] [DISP] N>l 4N+20+EA 

SAR RS,N 11 0 1 OOvO 11111 ddd 2 N=12" 
N> 1 4N+8 

SAR RW,N 11 0 1 OOv 1 111 11 ddd 2 
SSS Al,DATAB 1C yy 2 4" 
SSS AX,DATA16 1D YYYY 3 4" 
SSS DADDR,DAT A8 80 aa011bbb 3,4 or 5 17+EA 

[DISP] [DISP] YY 

SSS DADDR,DATA16 1 OOOOOa 1 aaO 11 bbb 3,4,5 or 6 17+EA 
[DISP] [DISP] YY[YY] 

SSB DADDR,RB 18 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

SSB DADDR,RW 19 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

SSB RB,DADDR 1A aadddbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

SSB RB,DATA8 80 11 011 ddd YY 3 4" 
SBB RBD,RBS 1A 11dddsss 2 3" 
SSB RW,DADDR lS aadddbbb 2,3 or 4 9+EA 

[DISP] [DISP] 

SBB RW,DATA16 100000a111011ddd 3 or 4 4" 
YY[YY] 

SSB RWD,RWS 1S 11dddsss 2 3" 
SCAS BD AE 1 15 
SCAS WD AF 1 15 
SEG Prefix SR 001 rrl 01 1 +2 
SHR DADDR,N 110100va aal 01 bbb 2,3 or 4 N=l 15+EA 

[DISP] [DISP] N> 1 4N+20+EA 
SHR RS,N 110100vO 11101 ddd 2 N=l 2" 

N>14N+B 
SHR RW,N 1 1 01 OOv 1 111 01 ddd 2 
STC F9 1 2" 
STD FD 1 2" 
STI FS 1 2" 
STOS BD AA 1 11 
STOS WD AB 1 11 

SUB Al,DATAB 2C YY 2 4" 
SUB AX,DATA16 2D YYYY 3 4" 
SUB DADDR,DATA8 80 aal01bbb 3,4 or 5 17+EA 

[DISP] [DlSP] YY 

SUS DADDR,DATA16 100000a1 aa1 01 bbb 3,4,5 or 6 17+EA 
[DISP] [DISP] YY[YY] 

SUB DADDR,RB 28 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

SUB DADDR,RW 29 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

SUB RB,DADDR 2A aadddbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

SUS RB,DATAS SO 111 01 ddd YY 3 4" 
SUB RBD,RBS 2A 11dddsss 2 3" 
SUB RW,DADDR 2B aadddbbb 2,3 or 4 9+EA 

[DISP] [DlSP] 

SUB RW,DATA16 100000alll101ddd 3 or 4 4" 
YY[YY] 

SUB RWD,RWS 2S 11dddsss 2 3" 
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Table 5-5. 8086 and 8088 Instruction Mnemonics (Continued) 

Instruction Object Code Bytes 
Clock 

Periods 

TEST AL,DATA8 A8 yy 2 4-

TEST AX,DATA16 A9 YYYY 3 4-

TEST DADDR,DATA8 F6 aaOOObbb 3,4 or 5 11+EA 
[DISP] [DISP] YY 

TEST DADDR,DAT A 16 F7 aaOOObbb 4,5 or 6 11 +EA 
[DISP] [DISP] YYYY 

TEST DADDR,RB 84 aaregbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

TEST DADDR,RW 85 aaregbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

TEST RB,DATA8 F6 1000reg YY 3 5* 
TEST RBD,RBS 84 11 regreg 2 3* 
TEST RW,DATA16 F7 11 OOOreg YYYY 4 5-

TEST RWD,RWS 85 11 regreg 2 3* 
WAIT 9B 1 3+5n 
XCHG AX,RW 10010reg 1 3* 
XCHG RB,DADDR 86 aaregbbb 2,3 or 4 17+EA 

[DISP] [DISP] 

XCHG RB,RB 86 11 regreg 2 4* 
XCHG RW,DADDR 87 aaregbbb 2,3 or 4 17+EA 

[DISP] [DISP] 

XCHG RW,RW 87 11 regreg 2 4* 
XLAT 07 1 11 
XOR AL,DATA8 34 YY 2 4* 
XOR AX,DATA16 36 YYYY 3 4* 
XOR DADDR,DATA8 80 aa010bbb 3,4 or 5 17+EA 

[DISP] [DISP] YY 

XOR DADDR,DATA 16 81 aa010bbb 4,5 or 6 17+EA 
[DISP] [DISP] YYYY 

XOR DADDR,RB 30 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

XOR DADDR,RW 31 aasssbbb 2,3 or 4 16+EA 
[DISP] [DISP] 

XOR RB,DADDR 32 aadddbbb 2,3 or 4 9+EA 
[DISP] [DISP] 

XOR RB,DATA8 80 1111 Oddd YY 3 4-

XOR RBD,RBS 32 11dddsss 2 3* 
XOR RW,DADDR 33 aadddbbb 2,3 or 4 16+EA 

[DISP] [DISP] 

XOR RW,DATA16 81 11110ddd YYYY 4 4* 
XOR RWD,RWS 33 11dddsss 2 3* 
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Table 5-6. 8086 and 8088 Instruction Object Codes 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

00 aasssbbb [DISP)[DISP] ADD RBD/DADDR.RBS 
01 aasssbbb [DISP][DISP] ADD RWD/DADDR.RWS 
02 aadddbbb [DISP][DISP] ADD RBD.DADDR/RBS 
03 aadddbbb [DISP)[DISP] ADD RWD.DADDR/RWS 
04 yy ADD AL.DATAS 
05 yy yy ADD AX.DATA16 
06 PUSH ES 
07 POP ES 
OS aasssbbb [DISP][DISP] OR RBD/DADDR.RBS 
09 aasssbbb [DISP)[DISP] OR RWD/DADDR.RWS 
OA aadddbbb [DISP)[DISP] OR RBD.DADDR/RBS 
OB aadddbbb [DISP][DISP] OR RWD.DADDR/RWS 
OC yy OR Al.DATAS 
OD yy yy OR AX.DATA16 
OE PUSH CS 
OF Not used (POP CS) 

10 aasssbbb [DISP)[DISP] ADC RBD/DADDR.RBS 
11 aasssbbb [DISP][DISP] ADC RWD/DADDR.RWS 
12 aadddbbb [DISP)[DISP] ADC RBD.DADDR/RBS 
13 aadddbbb [DISP][DISP] ADC RWD.DADDR/RWS 
14 yy ADC Al.DATAS 
15 yy yy ADC AL.DATA16 
16 PUSH SS 
17 POP SS 
1S aasssbbb [DISP)[DISP] SBB RBD/DADDR.RBS 
19 aasssbbb [DISP)[DISP] SBB RWD/DADDR.RWS 
1A aadddbbb [DISP)[DISP] SBB RBD.DADDR/RBS 
1B aadddbbb [DISP)[DISPI SBB RWD.DADDR/RWS 
1C yy SBB AL.DATAS 
1D yy yy SBB AX.DATA16 
1E PUSH DS 
1F POP DS 
20 aasssbbb [DISP)[DISP] AND RBD/DADDR.RBS 
21 aasssbbb [DISP)[DISP] AND RWD/DADDR.RWS 
22 aadddbbb [DISP)[DISP] AND RBD .DADDR/RBS 

23 aadddbbb [DISP)[DISP] AND RWD.DADDR/RWS 
24 yy AND AL.DATAS 
25 yy yy AND AX.DATA16 
26 SEG ES 
27 DAA 
2S aasssbbb [DISP][DISP] SUB RBD/DADDR.RBS 
29 aasssbbb [DISP)[DISP] SUB RWD/DADDR.RWS 
2A aadddbbb [DISP][DISP] SUB RBD.DADDR/RBS 
2B aadddbbb [DISP)[DISP] SUB RWD.DADDR/RWS 
2C yy SUB AL.DATAS 
2D yy yy SUB AX.DATA16 
2E SEG CS 
2F DAS 

30 aasssbbb [DISP][DISP] XOR RBD/DADDR.RBS 

31 aasssbbb [DISP)[DISP] XOR RWD/DADDR.RWS 
32 aadddbbb [DISP)[DISP] XOR RBD.DADDR/RBS 

33 aadddbbb [DISP)[DISP] XOR RWD.DADDR/RWS 
34 yy XOR Al.DATAS 

35 yy yy XOR AX.DATA16 

36 SEG SS 
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Table 5-6. 8086 and 8088 Instruction Object Codes (Continued) 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

37 AAA 

38 aasssbbb [DISP)[DISP] CMP RBD/DADDR.RBS 

39 aasssbbb [DISP][DISP] CMP RWD/DADDR.RWS 

3A aadddbbb [DISP][DISP] CMP RBD.DADDR/RBS 

3B aadddbtlb [DISP][DISP] CMP RWD.DADDR/RWS 

3C yy CMP AL.DATA8 

3D yy yy CMP AX.DATA16 

3E SEG OS 

3F AAS 
40 INC AX 

41 INC CX 

42 INC OX 

43 INC BX 

44 INC SP 

45 INC BP 

46 INC SI 

47 INC 01 

48 DEC AX 

49 DEC CX 

4A DEC OX 

4B DEC BX 

4C DEC SP 

40 DEC BP 

4E DEC SI 

4F DEC 01 

50 PUSH AX 

51 PUSH CX 

52 PUSH OX 

53 PUSH BX 

54 PUSH SP 

55 PUSH BP 

56 PUSH SI 

57 PUSH 01 

58 POP AX 

59 POP CX 

5A POP OX 

5B POP BX 

5C POP SP 

50 POP BP 

5E POP SI 

5F POP 01 

60-6F Not used 
70 DISP JO DISP8 

71 DISP JNO DISP8 

72 DISP JB or JNAE or JC DISP8 
73 DISP JNB or JAE or JNC DISP8 

74 DISP JE or JZ DISP8 

75 DISP JNE or JNZ DISP8 

76 DISP JBE or JNA DISP8 

77 DISP JNBE or JA DISP8 
78 DISP JS DISP8 

79 DISP JNS DISP8 

7A DISP JP or JPE DISP8 

7B DISP JNP or JPO DISP8 

7C DISP JL or JNGE DISP8 
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Table 5-6. 8086 and 8088 Instruction Object Codes (Continued) 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

70 DISP JLE or JGE DISP8 
7E DISP JLE or JNG DISP8 
7F DISP JNLE or JG DISP8 
80 aaOOObbb [DISP][DISP] yy ADD RBD/DADDR,DA T A8 
80 aa001bbb [DISP][DISP] YY OR RBD/DADDR,DAT A8 
80 aa010bbb [DISP][DISP] yy ADC RBD/DADDR,DAT A8 
80 aa011 bbb [DISP][DISP] YY SBB RBD/DADDR,DAT A8 
80 aa100bbb [DISP][DISP] YY AND RBD/DADDR,DA T A8 
80 aa101 bbb [DISP][DISP] YY SUB RBD/DADDR,DAT A8 
80 aa110bbb [DISP][DISP] YY XOR RBD/DADDR,DAT A8 
80 aa111bbb [DISP][DISP] YY CMP RBD/DADDR,DATA8 
81 aaOOObbb [DISP][DISP] YYYY ADD RWD/DADDR,DATA 16 
81 aa001bbb [DISP][DISP] YYYY OR RWD/DADDR,DATA 16 
81 aa010bbb [DISP][DISP] YYYY ADC RWD/DADDR,DATA 16 
81 aa011bbb [DISP][DISP] YYYY SBB RWD/DADDR,DATA 16 
81 aa100bbb [DISP][DISP] YYYY AND RWD/DADDR,DATA 16 
81 aa101bbb [DISP][DISP] YYYY SUB RWD/DADDR,DATA 16 
81 aa110bbb [DISP][DISP] YYYY XOR RWD/DADDR,DATA 16 
81 aa111 bbb [DISP][DISP] YYYY CMP RWD/DADDR,DATA 16 
82 aaOOObbb [DISP][DISP] YY ADD RBD/DADDR,DAT A8 
82 xxOO1xxx Not used 
82 aa010bbb [DISP][DISP] YY ADC RBD/DADDR,DAT A8 
82 aa011 bbb [DISP][DISP] YY SBB RBD/DADDR,DAT A8 
82 xx100xxx Not used 
82 aa101 bbb [DISP][DISP] YY SUB RBD/DADDR,DAT A8 
82 xx110xxx Not used 
82 aa111 bbb [DISP][DISP] YY CMP RBD/DADDR,DAT A8 
83 aaOOObbb [DISP][DISP] YYYY ADD RWD/DADDR,DATA 16 
83 xx001xxx Not used 
83 aa010bbb [DISP][DISP] YYYY ADC RWD/DADDR,DATA 16 
83 aa011bbb [DISP][DISP] YYYY SBB RWD/DADDR,DATA16 
83 xx100xxx Not used 
83 aa101bbb [DISP][DISP] YYYY SUB RWD/DADDR,DATA 16 
83 xx110xxx Not used 
83 aa111bbb [DISP][DISP] YYYY CMP RWD/DADDR,DATA 16 
84 aasssbbb [DISP][DISP] TEST RBD/DADDR,RBS 
85 aasssbbb [DISP][DISP] TEST RWD/DADDR,RWS 
86 aadddbbb [DISP][DISP] XCHG RBD/DADDR,RBS 
87 aadddbbb [DISP][DISP] XCHG RWD/DADDR,RWS 
88 aasssbbb [DISP][DISP] MOV RBD/DADDR,RBS 
89 aasssbbb [DISP][DISP] MOV RWD/DADDR,RWS 
8A aadddbbb [DISP][DISP] MOV RBD,DADDR/RBS 
8B aadddbbb [DISP][DISP] MOV RWD,DADDR/RWS 
8C aaOrrbbb [DISP] [DISP] MOV RWD/DADDR,SR 

8C xx1 xxxxx Not used 
80 aadddbbb [DISP][DISP] LEA RWD,DADDR 
8E aaOrrbbb [DISP][DISP] MOV SR,RWD/DADDR 
8E xx1 xxxxx Not used 
8F aaOOObbb [DISP][DISP] POP RWD/DADDR 
8F xx001xxx Not used 

to 8F xx111xxx Not used 
90 XCHG AX,AX (NOP) 
91 XCHG AX,CX 
92 XCHG AX,DX 
93 XCHG AX,BX 
94 XCHG AX,SP 
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Table 5-6. 8086 and 8088 Instruction Object Codes (Continued) 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

95 XCGH AX,BP 
96 XCHG AX,SI 
97 XCHG AX,DI 
9S CBW 
99 CWO 
9A PP OOPPOO CALL BRANCH,SEGM 
9B WAIT 
9C PUSHF 
90 POPF 
9E SAHF 
9F LAHF 
AO PP 00 MOV AL,LABEl 
A1 PP 00 MOV AX,LABEl 
A2 PP 00 MOV LABEL,AL 
A3 PP 00 MOV LABEL,AX 
A4 MOVS BD,BS 
A5 MOVS WD,WS 
A6 CMPS BD,BS 
A7 CMPS WD,WS 
AS yy TEST AL,DATAS 
A9 yy yy TEST AX,DATA16 
AA STOS BD 
AB STOS WD 
AC LODS BS 
AD LODS WS 
AE SCAS BD 
AF SCAS WD 
BO yy MOV AL,DATAS 
B1 yy MOV CL,DATAS 
B2 yy MOV DL,DATAS 
B3 yy MOV BL,DATAS 
B4 yy MOV AH,DATAS 
B5 yy MOV CH,DATAS 
B6 yy MOV DH,DATAS 
B7 yy MOV BH,DATAS 
BS yy yy MOV AX,DATA16 
B9 yy yy MOV CX,DATA16 
BA yy yy MOV DX,DATA16 
BB yy yy MOV BX,DATA16 
BC yy yy MOV SP,DATA16 
BD yy yy MOV BP,DATA16 
BE yy yy MOV SI,DATA16 
BF yy yy MOV DI,DATA16 

CO-C1 Not used 
C2 yy yy RET CS,DATA16 
C3 RET 
C4 aadddbbb [DISP][DISP] LES RWD,DADDR 
C5 aadddbbb [DISP][DISP] LEA RWD,DADDR 
C6 aaOOObbb [DISP][DISP] YY MOV DADDR,DAT A8 
C6 xxOO1xxx Not used 

to C6 xx111xxx Not used 
C7 aaOOObbb [DISP][DISP] YYYY MOV DADDR,DAT A 1 6 
C7 xx001xxx Not used 

to C7 xx111xxx Not used 
C8-C9 Not used 
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Table 5-6. 8086 and 8088 Instruction Object Codes (Continued) 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

CA yy yy RET CS.DATA16 
CB RET 
CC INT 3 
CD yy INT V 
CE INTO 
CF IRET 
DO aaOOObbb [DISPJ[DISP) ROL RBD/DADDR.1 
DO aa001bbb [DISP)[DISP) ROR RBD/DADDR.1 
DO aa010bbb [DISPJ[DlSP) Ret RBD/DAODR.1 
DO aa011bbb [DISP)[DISP) RCR RBD/DADDR, 1 
DO aa100bbb [DISPJ[DISP) SAL or SHL RBD/DADDR.1 
DO aa101bb1 [DISP)[DlSP) SHR RBD/DADDR.1 
DO xx110xxx Not used 
DO aa111 bbb [DISPJ[DISP) SAR RBD/DADDR.1 
D1 aaOOObbb [DISP) [DISP) ROL RWD/DADDR.1 
D1 aa001bbb [DISP)[DlSP) ROR RWD/DADOR.1 
D1 aa010bbb [DISP)[DISP) RCL RWD/DADDR.1 
D1 aa011bbb [DISP)[DISP) RCR RWD/DADOR.1 
D1 aa100bbb [DISP)[DISP) SAL or SHL RWD/DADOR,1 
D1 aa101bbb [DISP)[DISP) SHR RWD/DADDR.1 
D1 xx110xxx Not used 
D1 aa111bbb [DISP)[DISP) SAR RWD/DADDR.1 

02 aaOOObbb [OISP)[OISP) ROL RBD/OAODR.N 
02 aa001bbb [OISP)[DISP) ROR RBD/OADDR.N 
02 aa010bbb [DISP)[DlSP) RCL RBD/DADDR.N 
02 aa011bbb [DISP)[DISP) RCR RBD/OAODR,N 
02 aa100bbb [DISP) [DISP) SAL or SHL RBD/DAODR,N 
02 aa101bbb [DISP)[DISP) SHR RBD/DADDR,N 
02 xx110xxx 
02 aa111 bbb [OISP) [DISP) SAR RBD/DAODR,N 
D3 aaOOObbb [DISP)[DISP) ROL RWD/DADDR,N 
03 aa001bbb [DISP)[DISP) ROR RWD/DADDR,N 
D3 aa010bbb [DISP)[DISP) RCL RWD/DADDR,N 
D3 aa011bbb [DISP)[DISP) RCR RWD/DADDR,N 
D3 aa100bbb [DISP)[DISP) SAL or SHL RWD/DADDR,N 
D3 aa1 01 bbb [DISP)[DISP) SHR RWD/DADOR.N 
03 xx110xxx Not used 
D3 aa111bbb [DISP)[DISP) SAR RWD/DADDR.N 
04 OA AAM 
D5 OA AAD 
06 Not used 
D7 XLAT 

D8-DF aaxxxbbb [DISP)[DISP) ESC DADDR 
EO OISP LOOPNE or LOOPNZ DISP8 
E1 DlSP LOOPE or LOOPZ DISP8 
E2 DISP LOOP DISP8 
E3 DISP JCXZ DISP8 
E4 yy IN AL.PORT 
E5 yy IN AX,PORT 
E6 yy OUT AL,PORT 
E7 yy OUT AX,PORT 
E8 DISP DISP CALL BRANCH 
E9 DISP DISP JMP BRANCH 
EA PP QQ PPQQ JMP BRANCH,SEGM 
EB DISP JMP BRANCH 
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Table 5-6. 8086 and 8088 Instruction Object Codes (Continued) 

Object Code 
Mnemonic 

Byte 1 Byte 2 Other Bytes 

EC IN Al,DX 

ED IN AX,DX 
EE OUT Al,DX 
EF OUT AX,DX 
FO lOCK 
F1 Not used 
F2 REPNE or REPNZ 
F3 REP or REPE or REPZ 

F4 HlT 
F5 CMC 
F6 aaOOObbb [DISP][DISP] YY TEST RBD/DADDR,DAT A8 
F6 xx001xxx Not used 
F6 aa010bbb [DISP][DISP] NOT RBD/DADDR 
F6 aa011 bbb [DISP][DISP] NEG RBD/DADDR 
F6 aa100bbb [DISP][DISP] MUl RBD/DADDR 
F6 aa1 01 bbb [DISP][DISP] IMUl RBD/DADDR 
F6 aa110bbb [DISP][DISP] DIV RBD/DADDR 
F6 aa111bbb [DISP][DISP] IDIV RBD/DADDR 
F7 aaOOObbb [DISP][DISP] YYYY TEST RWD/DADDR,DAT A 1 6 
F7 xx001 xxx Not used 
F7 aa010bbb [DISP][DISP] NOT RWD/DADDR 
F7 aa011bbb [DISP][DISP] NEG RWD/DADDR 
F7 aa100bbb [DISP][DISP] MUl RWD/DADDR 
F7 aa101bbb [DISP][DISP] IMUl RWD/DADDR 
F7 aa110bbb [DISP][DISP] DIV RWD/DADDR 
F7 aa111 bbb [DISP][DISP] IDIV RWD/DADDR 
F8 ClC 
F9 STC 
FA Cli 
FB 511 
FC CLD 
FD STD 
FE aaOOObbb [DISP][DISP] INC RBD/DADDR 
FE aa001bbb [DISP][DISP] DEC RBD/DADDR 
FE xx001 xxx Not used 

to FE xx111xxx Not used 
FF aaOOObbb [DISP][DISP] INC DADDR 
FF aa001bbb [DISP][DISP] DEC DADDR 
FF aa010bbb [DISP][DISP] CAll RW/DADDR 
FF aa011 bbb [DISP][DISP] CAll DADDR,CS 
FF aa100bbb [DISP][DISP] JMP RW/DADDR 
FF aa1 01 bbb [DISP][DISP] JMP DADDR,CS 
FF aa110bbb [DISP][DISP] PUSH DADDR 
FF xx111 xxx Not used 
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Table 5-7. 8080A to 8086 Instruction Mapping 

8080A Equivalent 8086 8080A Equivalent 808~ 
Instruction Instructionls) Instruction I nstructi on Is) 

IN DEV IN PORT RC JNB next-inst 
OUT DEV OUT PORT RET 

RNC JB next-inst 
LDAX B· MOV SI,CX RET 

LODB RZ JNZ next-inst 
LDAX 0 MOV SI,DX RET 

LODB RNZ JZ next-inst 
STAX B MOV DI,CX RET 

STOB RM JNS next-inst 
STAX 0 MOV DI,DX RET 

STOB RP JS next-inst 
MOV REG,M MOV RB,DADDR RET 
MOV M,REG MOV DADDR,RB RPE JPO next-inst 
LOA ADDR MOV AL,LABEL RET 
STA AD DR MOV LABEL,AL RPO JPE next-inst 
LHLD AD DR MOV BX,DADDR RET 
SHLD ADDR MOV DADDR,BX 

ADI DATA ADD AL,DATAS 
ADD M ADD AL,DADDR ACI DATA ADC AL,DATAS 
ADC M ADC AL,DADDR SUI DATA SUB AL,DATAS 
SUB M SUB AL,DADDR SBI DATA SBB AL,DATAS 
SBB M SBB AL,DADDR ANI DATA AND AL,DATAS 
ANA M AND AL,DADDR XRI DATA XOR AL,DATAS 
XRA M XOR AL,DADDR ORI DATA OR AL,DATAS 
ORA M OR AL,DADDR CPI DATA CMP AL,DATAS 
CMP M CMP AL,DADDR 
INR M INC DADDR JC ADDR JB DISPS··· 
OCR M DEC DADDR JNC ADDR JNB DISPS 

JZ ADDR JZ DISPS 
LXI RP,DATA16 MOV RW,DATA16 JNZ ADDR JNZ DISPS 

JP AD DR JNS DISPS 
MVI M,DATA MOV DADDR,DAT AS JM ADDR JS DISPS 
MVI REG,DATA MOV RB,DATAS JPE ADDR JPE DISPS 
JMP AD DR JMP BRANCW· JPO ADDR JPO DISPS 
PCHL JMP BX 

MOV d,s MOV RBD,RBS 
CALL AD DR CALL BRANCH XCHG XCHG DX,BX 
CC ADDR JNB next-inst SPHL MOV SP,BX 

CALL BRANCH 
CNC AD DR JB next-inst ADD REG ADD AL,RBS 

CALL BRANCH ADC REG ADC AL,RBS 
CZ ADDR JNZ next-inst SUB REG SUB AL,RBS 

CALL BRANCH SSB REG SBB AL,RBS 
CNZ ADDR JZ next-inst ANA REG AND AL,RBS 

CALL BRANCH XRA REG XOR AL,RBS 
CP ADDR JS next-inst ORA REG OR AL,RBS 

CALL BRANCH CMP REG CMP AL,RBS 
CM ADDR JNS next-inst DAD RP LAHF 

CALL BRANCH ADD BX,RW 
CPE ADDR JPO next-inst RCR AL 

CALL BRANCH SAHF 
CPO ADDR JPE next-inst RCL AL 

CALL BRANCH or ADD BX,RW lunlike .DAD 
RET RET will affect AF,PF,SF, and ZF) 
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Table 5-7. 8080A to 8086 Instruction Mapping (Continued) 

8080A Equivalent 8086 8080A Equivalent 8086 
Instruction Instruction(s) Instruction Instruction(s) 

INR REG INC RB PUSH RP PUSH RW 
DCR REG DEC RB PUSH PSW LAHF 
CMA NOT AL PUSH AX 
DAA DAA POP RP POP RW 
RLC ROL AL POP PSW POP AX 
RRC ROR AL SAHF 
RAL RCL AL XTHL POP SI 
RAR RCR AL XCHG BX,SI 
INX RP LAHF PUSH SI 

SAHF EI STI 
or INC RW (unlike INX - will DI CLI 
affect AF, PF, SF, and ZF) RST N CALL S'N 

DCX RP LAHF 
DEC RW STC STC 
SAHF CMC CMC 
or DEC RW (unlike DCX - will 
affect AF, PF, SF, and ZF) NOP XCHG AX,AX 

HLT HLT 

'SOSOA registers map into SOS6 registers as follows: 

8080A 8086 8080A 8086 

A AL L BL 
B CH BC CX 
C CL DE DX 
D DH HL BX 
E DL SP SP 
H BH PC IP 

"Addresses on SOS6 jumps and calls are adjusted tb be self-relative. 

"'Conditional jumps to a location out of the short self-relative range must be implemented by using a reversed-sense 
conditional jump around a normal jump to the location, e.g.: 

JC ADDR becomes JNB next-inst 
JMP BRANCH 

Refer to Table 4-4 for a complete description of SOSA mnemonics shown above. 

Refer to Table 20-4 for a complete description of SOS6 mnemonics shown above. 
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THE 8088 CPU 

The 8088 is an 8086 microprocessor with an 8-bit Data Bus. The two parts are otherwise identical. Therefore 
we will describe differences between the 8088 and the 8086 in the text which follows. 

If you are going to use the 8088. first read the description of the 8086 given at the beginning of this chapter. then note 
differences as described below. 

8088 PROGRAMMABLE REGISTERS AND ADDRESSING MODES 
8088 programmable registers and addressing modes are identical to the 8086 in every way. 

8088 CPU PINS AND SIGNALS 
8088 CPU pins and signals are illustrated in Figure 5-12. As compared to the 8086 pins and signals illustrated 
in Figure 5-3, only pin 34 differs. 

For the 8086. pin 34 outputs BHE. This signal discriminates between the high-order byte and the low-order byte on the 
16-bit 8086 Data Bus. Since the 8088 has an 8-bit Data Bus. BHE and associated logic is irrelevant. The 8088 outputs 
maximum mode SSO status at pin 34. 

The 101M signal has opposite polarity for the 8088, as compared to the 8086. This makes the 8088 compatible 
with the 8086. 

Combining 101M, DT/R, and SSO, 8088 bus cycles can be decoded as follows: 

10/M Dr/A" sso 
0 0 0 Code segment access 
0 0 1 Memory read 
0 0 Memory write 
0 1 No operations 

0 0 Interrupt acknowledge 
0 1 I/O read 

0 I/O write 
Halt 

Since the 8088 has no BHE signal. nor need for any such signal. the discussion of external memory addressing and BHE 
given for the 8086 will not apply to the 8088. 
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Maximum { 
System 
Signals 

Minimum 
System 
Signals 

GND 
A14 
A13 
A12 
A11 
A10 

A9 
A8 

AD7 
AD6 
AD5 
AD4 
AD3 
AD2 
AD1 
ADO 
NMI 

INTR 
CLK 
GND 

Pin Name 

ADO-AD7 
A8-A15 
A 16/S3. A 17 /S4 
A18/S5 
A19/S6 
SSO 
RD 
READY 
TEST 
INTR 
NMI 
RESET 
CLK 
MN!MX 
'SO. ST. 52 
RO/GTO. RO/GT1 
OSO.OS1 
LOCK 
MN/MX 
101M" 
WR 
ALE 
DTIR 
DEN 
INTA 
HOLD 
HLDA 
VCC.GND 

----
..... .. --------.. -----
-

1 40 - 2 39 .. 
3 38 - 4 37 .. 5 36 ~ - 6 35 .. 7 34 -... 
8 33 - -.. 
9 32 -

~- 10 8088 31 --- 11 CPU 30 - --.. 12 29 -- 13 28 .. 14 27 -.. 15 26 -.. 16 25 --- 17 24 -- 18 23 -.. 19 22 -~ -
20 21 -..... 

Description 

Address/Data Bus 
Address Bus 
Address/Segment Identifier 
Address/Interrupt Enable Status 
Address/Status 
Status Output 
Read Control 
Wait State Request 
Wait for Test Control 
Interrupt Request 
Non-maskable Interrupt Request 
System Reset 
System Clock 
= GND for a Maximum System 
Machine Cycle Status 
Local Bus Priority Control 
Instruction Oueue Status 
Bus Hold Control 
= VCC for a Minimum System 
Memory or I/O Access 
Write Control 
Address Latch Enable 
Data Transmit/Receive 
Data Enable 
Interrupt Acknowledge 
Hold Request 
Hold Acknowledge 
Power. Ground 

--
-.. -
.. 
-
.. -.. .. --
~---.. -

VCC 
A15 
A16/S3 
A17/S4 
A18/S5 
A19/S6 
SSO 
MN/MX 
RD 
F«l/GTO. HOLD 
lm/GTT: HLDA 
LOCK. WR 
52.IO/M 
Sl.DTlR 
~.ImJ 
OSO, ALE 
OS1, iN'fA 
TEST 
READY 
RESET 

Type 

Bidirectional. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Input 
Input 
Input 
Input 
Input 
Input 

Output. Tristate 
Bidirectional 
Output 
Output. Tristate 

Output. Tristate 
Output. Tristate 
Output 
Output. Tristate 
Output. Tristate 
Output 
Input 
Output 

Figure 5-12. 8088 Pins and Signal Assignments 
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8088 TIMING AND INSTRUCTION EXECUTION 

The 8088 has a 4 byte instruction object code queue; the 8086. in contrast. has a 6 byte in- 8088 
struction object code queue. The 8088 will start executing instruction fetch bus cycles to INSTRUCTION 
fill its 4 byte queue as soon as one or more queue bytes are empty. The 8086. in contrast. QUEUE 
will not start pre-fetching instruction object code bytes until two or more of its 6 queue bytes ..... ------...... 
are empty. The description of bus cycles and queue logic given for the 8086 otherwise applies directly to the 8088. 

8088 MEMORY AND I/O DEVICE ACCESS BUS CYCLES 
Bus cycle timing for the 8088 and the 8086 differ only at the multiplexed Data/Address Bus lines. Timing 
differences are confined to the eight Address Bus lines A8-A 15 and may be illustrated as follows: 

: T1 T2 I T3 I T4 : 

elK- I I I I I 1 

8~~:8A:~~~~; ~I; Add~s O~ 1 I \ Dat:O~ \ ~ 1 ! 
80::8:D:~~::: 'Of: A~~s Om 3) Add,.ss 0"(: D.~ In ~ 1 !E: j j 

8088 AOO-AD7. .• ~ 
CD 
~ 

- Apart from the fact that the 8088 has no BHE signal, all timing for signals other than the Data/Address Bus is 
identical for the 8086 and the 8088. 
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THE 8088 HALT STATE 
When operating in minimum mode. the 8088 delays the ALE pulse by one clock period as compared to 8086 tim­
ing. This may be illustrated as follows: 

T1 T2 T3 

elK 

101M 

sso 

OllA 

ALE 

HALT 

Halt state logic and timing is otherwise identical for the 8086 and the 8088. 

OTHER 8086 COMPATIBLE 8088 LOGIC 
8086 and 8088 logic is absolutely identical for the following states and logic: 

• The Wait state 
• The Hold state 
• RQ/GT logic 
• Lock logic 
• Wait for test state 
• Processor escape 
• Device reset 
• Interrupt processing 
• Single stepping mode 

THE 8088 INSTRUCTION SET 

TH TH 

The 8086 and 8088 instruction sets, listed in Table 5-4, are identical with the exception of execution times. Since the 
8088 has an 8-bit bus, two bus cycles will have to be executed wherever the 8086 would have executed a single bus 
cycle to fetch 16 bits of data. Table 5-5 provides execution times for the 8086 and the 8088. 
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THE INTEL 8284 CLOCK GENERATOR/DRIVER 

The 8284 Clock Generator/Driver is a standard component that will be present in every 8086 microcomputer 
system. In a mtiltimicroprocessor system. each 8086 microprocessor will have its own 8284 Clock Genera­
tor/Driver. While one could conceivably have a single 8284 servicing more than one 8086 microprocessor, it will rarely 
make any economic sense to design a system in this fashion. 

Logic implemented on the 8284 Clock Generator/Driver corresponds generally to the block labeled clock logic in 
Figure 5-1. To be completely accurate, however. a small portion of the bus interface logic should also be illustrated as 
provided by the 8284 device. 

Figure 5-13 illustrates 8284 device internal logic. 

The 8284 is manufactured using bipolar technology. It is packaged as an 18-pin DIP. All signals are TTL-level compati­
ble. 

8284 CLOCK GENERATOR/DRIVER PINS AND SIGNALS 
8284 device pins and signals are illustrated in Figure 5-14. Figure 5-20 illustrates the 8284 device in a single 
8086 microprocessor configuration. 

Signals may be divided between timing and control logic. 

Clock frequency is controlled by a crystal connected across the X1 and X2 pins. Clock frequency must be exactly 
three times the required clock period. Since the standard 8086 clock period is 200 nanoseconds, a 15 MHz crystal fre­
quency is required. 

If an overtone mode crystal is employed, then it must be supported by an external LC network connected to 
TANK to insure oscillation of the overtone frequency. This is standard clock logic practice; for the 8284 it is il­
lustrated along with other normal connections in Figure 5-15. 

You have the option of connecting a crystal across Xl and X2 in order to generate a fundamental frequency, or you can 
inputthe fundamental frequency via EFI. The level of F/C determines whether an external crystal or a signal in­
put will provide the fundamental frequency. If FIE is high, then the fundamental frequency is taken from the EFI in­
put. If Fie is low, then the crystal connected across Xl and X2 provides the fundamental frequency. 

Three clock outputs are generated: 

1) ClK is an MOS level signal designed to meet the requirements of the 8086. 

2) PClK Is a TTL level clock signal. output for support circuits. PClK runs at half the frequency of ClK. 

3) OSC is an oscillator output running at the crystal or EFI input frequency. 

These timing signals may be illustrated as follows: 

EFlor 
Crystal 

OSC 

ClK 

PClK 

2 3 4 5 6 
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RES 0 Q RESET 

.ff 
CK 

X1 
XTAl 

X2 OSCILLATOR OSC 

TANK ClK 

Fie +3 +2 
SYNC SYNC PClK 

EFI 

CSYNC 

RDY1 

READY 
AEN1 SYNC READY 

lOGIC 
AEN2 

RDY2 

Figure 5-13. Logic of the 8284 Clock Generator and Driver 
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CSYNC 
PCLK 
AEN1 
RDY1 

READY 
RDY2 
AEN2 

ClK 
GND 

Pin Name 

RESET 
RES 
RDY1.RDY2 
AEN1. AEN2 
READY 
X1. X2 
TANK 
EFI 
Fie 
ClK 
PClK 
OSC 
CSYNC 
VCC.GND 

- 1 18 . - 2 17 - - 3 16 -.. 4 15 
5 8284 14 - - 6 13 .. 7 12 --- 8 11 -
9 10 

Description 

Control Signal Output to 8086 
Reset Logic Input 
Wait State Ready Inputs 

--------- ----- .. 

VCC (+5 V) 
X1 
X2 
TANK 
EFI 
Fie 
OSC 
RES 
RESET 

Type 

Output 
Input 
Input 

Address Enable Qualifiers for RDY1 and RDY2 Input 
Control Signal Output to 8086 Output 
External Crystal Connections Input 
Overtone Crystal Tank Circuit Connection Input 
Alternate Clock Input Input 
Clock Source Select Input 
MOS level Clock Signal to 8086 Output 
TTL Clock for Peripherals Output 
Crystal Oscillator Output Output 
Clock Synchronizer Input 
Power. Ground 

Figure 5-14. 8284 Clock Generator and Driver Pins and Signal Assignments 
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XTAl 

Cx 

..dl§ 

Xl X2 
RDYl asc 

R~DYand { AENl ClK 
READY ~nable 

RDY2 PClK Inputs 

AEN2 READY 

RESET 

8284 

... -_..-------tRES 
_---tF/C 

RESET) I CR _ ..,:_:_IY_NC...-_--.. 

r 
I 
I 

asc 

ClK 

PClK 

READY 

RESET 

--, Tank circuit used 

I 
I 

with overtone 
crystals only. 

I CT I 

Notes: 

1. Cx should be 3 to 10 pF 

2. Cc (when used) should be 1 to 10 nF 

I 
I 
I 
L.. 

3. CR and RR determine Reset time constant 1 
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Figure 5-15. Normal 8284 Clock Generator Circuit 
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In multi-CPU configurations you will probably need to synchronize all 8086 clock signals. 
You use the CSYNC signal for this purpose. When CSYNC is input high. logic internal to the 
8284 Clock Generator/Driver is stopped. When CSYNC subsequently goes low. clock outputs 
restart. If the same CSYNC signal is input to a number of 8284 devices that receive the same 
EFI input, then all microprocessors in a multi-CPU configuration will be exactly synchronized. 
Appropriate logic is illustrated in Figure 5-16. 

SYNCHRONIZING 
MULTI-8086 
CLOCK 
SIGNALS 

Note that you cannot use individual crystals for 8284 Clock Generator/Drivers that are supposed to be synchronized 
with each; minor variations in crystal frequency. which must occur. will quickly distort clock Signal synchronization. 
You can use a crystal to generate the fundamental frequency for one 8284 Clock Generator/Driver. then use the OSC 
output of this Clock Generator/Driver as the EFI input to other 8284 Clock Generator/Drivers. 

The 8086 requires its RESET input to be synchronized with clock logic. The 8284 will 18086 
receive an asynchronous Reset input at RES and will generate synchronized RESET output, RESET 
which the 8086 requires. Appropriate logic is illustrated in Figure 5-15. Timing is illustrated in ''_ _____ __� 
the data sheets at the end of the chapter. 

The 8284 RES input need not make a sharp transition. The 8284 inputs RES to a Schmit trigger that generates the 
RESET output. RES can make a slow low-to-high transition. 

We have described earlier in this chapter how external logic can extend a bus cycle by inserting 8284 
Waitclock periods between T3 and T4. Figure 5-9 illustrates the READY input that controls Wait WAIT STATE 
states within the 8086 bus controller. As illustrated in Figure 5-9. the 8086 READY input must be LOGIC 
synchronized with the clock signal. The 8284 Clock Generator/Driver outputs an appropriately. ------­
synchronized READY signal to the 8086. The 8284 creates its READY output from one of two inputs: RDY1 or 
RDY2. The 8284 has two READY inputs to support MULTIBUS configurations. A single 8086 may connect to two sepa­
rate System Busses. Memory or I/O devices attached to either bus may wish to create a Wait state within a bus cycle. 
Each System Bus may therefore have its own READY line. In order to arbitrate bus priorities. RDY1 and RDY2 have 
companion enable signals AEN1 and AEN2. respectively. The 8284 will respond to RDY1 only when AEN1 is low. 
Similarly. the 8284 will respond to RDY2 only when AEN2 is low. 

AEN1 and AEN2 are general bus priority signals you must generate through your own bus priority arbitration logic. We 
will describe these two Signals. and methods of generating them. later in this chapter. 
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Figure 5-16. Clock Synchronization Logic in a Multi-CPU 8086 Configuration 
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THE INTEL 8288 BUS CONTROLLER 

In configurations where the MN/MX signal is low, you must use an 8288 Bus Controller in order to decode the 
SO, ST, and S2 status lines, and thus create System Bus control signals. You can also use the 8288 Bus Con­
troller in order to connect more than one processor to a single System Bus, or in order to create more than one 
System Bus for a single 8086. 

Although the primary purpose of the 8288 Bus Controller is to decode the three status signals SO, S1, and S2, a 
simple 1-of-8 decoder could accomplish this limited task. The 8288 has these additional capabilities: 

1) The 8288 can generate control signals for a System Bus or an liD device only bus. 

2) You can float a System Bus's control signals to enable direct memory access, or to arbitrate bus priorities. 

3) The two Write control lines have alternate advanced outputs designed for slow memories or liD devices. 

4) You can suppress control signals as a means of implementing memory protect logic in multi-bus or 
multimicroprocessor configurations. 

5) The 8288 generates control signals needed by line drivers. 

6) The 8288 generates control signals needed by simple or complex interrupt logic. 

The 8288 Bus Controller is manufactured using bipolar technology. It is packaged as a 20-pin DIP. All signals are TTL­
level compatible. 

8288 BUS CONTROLLER SIGNALS AND PIN ASSIGNMENTS 
Figure 5-17 illustrates 8288 Bus Controller signals and pin assignments. Figure 5-21 illustrates an 8288 within 
an 8086 microcomputer system. 

Control signals are generated from SO, S1, and S2 as follows: 

80 81 82 8086 8288 Control Output 

0 0 0 Interrupt acknowledge INTA and MCE 

0 0 1 I/O read 10RC 

0 1 0 I/O write 10WC, AIOWC 

0 1 1 Halt None 

1 0 0 Instruction fetch MRDC 

1 0 1 Memory read MRDC 

1 1 0 Memory write MWTC,AMWC 

1 1 1 No operation None 
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lOB 
ClK 
51 

DT/R 
ALE 
AEN 

MROC" 
lJI.Wr: 
MWTC 

GND 

Pin Name 

"SO.'ST.~ 
ClK 
A£F1 
CEN 
lOB 
JXRU"C" 
~ 
1JAWC 
mAC 
mwc 
AiOWC 
TFJ"fA 
MCE/PDEN 
ALE 
DT/R 
DEN 
VCC,GND 

- 1 20 ... - 2 19 ... - 3 18 
~ 4 - 8288 17 - 5 16 - Bus ... 6 Controller 15 

- 7 14 - 8 13 -- 9 12 
10 11 

Description 

Bus Cycle State Signals 
TTL Clock Signal 
Bus Priority Control/Enable 
Command Enable 
Mode Control 
Memory Read Strobe 
Memory Write Strobe 
Early Memory Write Strobe 
I/O Read Strobe 
I/O Write Strobe 
Early I/O Write Strobe 
Interrupt Acknowledge 
Cascade/Peripheral Data Enable 
Address latch Enable 
Data Direction Control 
Data Buffer Enable 
Power, Ground 

---
-

... .. 
--
.. 

VCC (+5 V) 
SO 
~ 
MCE/PDEN 
DEN 
CEN 
INTA 
mAC 
AIOWC 
mwc 

Type 

Input 
Input 
Input 
Input 
Input 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Output, Tristate 
Output, Tristate 
Output, Tristate 
Output 
Output 
Output 
Output 

Figure 5-17. 8288 Bus Controller Pins and Signal Assignments 
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8288 and 8086 control signal timing is essentially the same. For details. see the data sheets given at the end of this 
chapter. 

If you look again at the Read and Write bus cycle timing descriptions given earlier in this chapter 
for the 8086 you will see that Read control signals pulse low approximately one clock period 
earlier than Write control signals. The 8288 creates two alternate Write control signals whose 
timing is the same as the Read control signals. These alternative Write control signals are re­
ferred to as advanced Write control signals. because they go low one clock pulse in advance of the 
standard Write control signals. 

We can thus summarize 8288 System Bus control signals as follows: 

MRDC is the memory read control. 

MWTC is the memory write control. 

AMWC is a memory write control whose timing conforms to MRDC. 

8288 
ADVANCED 
WRITE 
CONTROL 
SIGNALS 

INTA is a memory read control signal that is output during the two interrupt acknowledge bus cycles. 

10RC is an I/O device read control signal. 

10WC is an I/O device write control signal. 

AIOWC is an alternative I/O device write control signal with timing that conforms to 10RC. 

Devices connected to a bus are likely to use 10WC and MWTC or AIOWC and AMWC. but not all four signals. That is. 
you will use either the normal write control signals or you will use the advanced write control signals. 

All 8288 control signals are tristate. They can be disabled and thus disconnected from the System Bus. 

You have two control options that modify the control signal logic of the 8288 Bus Controller. 

Using the lOB pin, you can operate the 8288 device in I/O bus mode or in System Bus mode. 

Using the CEN pin, you can suppress control signals. 

Let us examine each of these capabilities in turn. 

When the lOB pin receives a high input. the 8288 Bus Controller generates an I/O bus. lOB high 8288 I/O 
floats MflDC. MWTC. and 7f.MWC all of the time but outputs INTA. 10RC. 10WC. and AIOWC. In BUS MODE 
I/O bus mode. these four I/O control signals cannot be floated. Since the four I/O control lines will 
always be active. it is assumed that the I/O bus generated by an 8288 is a logic bus. You cannot share this local I/O bus 
with another microprocessor. 

The 8288 I/O bus has two control signals. PDEN and DT IR. which drive I/O ports and line drivers. DT IA. which we have 
described for the 8086. is used to control a bidirectional bus driver. When high. DT/R puts the bus driver in output 
mode. while when low. DT Iff puts the bus driver in input mode. PDEN pulses low as a data enable signal. PDEN is 
equivalent to DEN. the standard bus data enable signal output by the 8086. 

When lOB is low. a normal System Bus is generated. All seven control signals are active: however. AEN is a bus enable 
control (much as the BUSEN input is used by the 8228 Bus Controller in an 8080A system). 

AEN is inactive when lOB is high and an I/O bus is being generated. AEN is active only when lOB is low and a System 
Bus is generated. 

When lOB is low and AEN is high. all contro~nals are floated. When lOB is low and AEN is low. control signals are 
connected to the System Bus. You will use AEN to implement bus priority arbitration logic. or direct memory access 
logic. as described later in this chapter. 

CEN is used to disable, but not float, control signals. CEN can be used when an 8288 is 
generating a System Bus or an I/O bus. CEN will normally be high. When CEN is low, control 
signals are inactive. CEN does not float signals; it just disables the logic that might other­
wise have made a control signal pulse low. 

Table 5-8 summarizes the effect of lOB and CEN on control signals generated by the 8288 
Bus Controller. 
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Table 5-8. Effect of lOB. CEN. and AEN on Control Signals Output by the 8288 Bus Controller 

Control Unit Effect on Control Output 

AEN 
i"NTA. iOR'C. iOWC. AffiWc MiffiC. MWTC. AMWC 

lOB CEN 
Mode Floated? Active? Mode Floated? Active? 

0 0 0 System Floated Active System Floated Active 
0 0 1 System Floated Inactive System Floated Inactive 
0 1 0 System Connected Active System Connected Active 
0 1 1 System Connected Inactive System Connected Inactive 
1 0 0 1/0 Floated Active Not Used Floated Inactive 
1 0 1 1/0 Floated Active Not Used Floated Inactive 
1 1 0 1/0 Connected Active Not Used Floated Inactive 
1 1 1 1/0 Connected Active Not Used Floated Inactive 

The CEN control enables memory mapping. Here are some possibilities: 

1) In multi-bus configurations. one block of memory addresses may access memory on two or more busses. In order to 
avoid contentions, you can use the CEN signal to selectively disable busses so that only one bus will actually res­
pond when the 8086 accesses duplicated memory addresses. 

2) Privileged memory is frequently present in large microcomputer systems. Privileged memory is likely to become 
more common in microcomputer systems as they grow larger. Privileged memory is memory that can be accessed 
only under special circumstances. Frequently, system programs are run out of privileged memory, while applica­
tion programs are run out of non-privileged memory. This prevents errors in application programs from destroying 
system programs; it also prevents unauthorized access of reserved memory spaces. 

DTIR and DEN, the two standard buffer control signals, are generated by the 8288 when it is creating a normal 
System Bus. These two control signals. when generated by the 8288 Bus Controller. are identical in form and purpose 
to the signals that the 8086 creates. DT/R determines the data direction for bidirectional buffers, while DEN is a latch­
ing strobe. 

The 8288 generates two interrupt control signals: INTA and MCE. INTA is active on a 
System Bus or an I/O Bus. MCE shares a pin with PDEN and is active only on a System Bus. 

As we discussed earlier in this chapter. the 8086 executes two bus cycles when acknowledging 
an interrupt. During each bus cycle. INTA is output as a low read pulse. On the second low INTA 
pulse. the acknowledged device must return an 8-bit code. which the 8086 uses as an interrupt 

8288 BUS 
CONTROLLER 
INTERRUPT 
SIGNALS 

vector. The INT A control signal generated by the 8288 Bus Controller is identical to the 8086 INT A control signal and 
serves the same purpose. on a System Bus or an I/O Bus. The MCE control signal has been added for use in large 8086 
microcomputer systems that use a variation of the 8259A Priority Interrupt Control Unit. When you have a master 
8259A Priority Interrupt Control Unit and slave 8259A Priority Interrupt Control Units. you will use MCE as a control to 
the master. while INT A becomes a control to slaves. The 8086 version of the 8259A Priority Interrupt Control Unit is not 
described in this chapter. 
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THE 8282/8283 8-BIT INPUT/OUTPUT LATCH 

These are simple unidirectional 8-bit latch buffers. The 8283 inverts inputs in order to create outputs; the 8282 
does not. That is the only difference between these two devices. 

Both devices have three-state outputs. When a device is not selected, its outputs are floated. 

These devices are manufactured using bipolar technology. All signals are TTL-level compatible. Outputs have a high 
drive capability. as defined in the data sheets at the end of this chapter. The devices are packaged as 20-pin DIPs. 

THE 8282/8283 INPUT/OUTPUT LATCH PINS AND SIGNAL ASSIGNMENTS 
Figure 5-18 illustrates the pins and signal assignments for the 8282 and 8283 8-bit input/output latches. 

Data must be input at 010-017. 

When STS is high. the internal latches appear transparent and data on the output pins track data on the input pins. The 
transition from high to low of STS latches the data. The outputs remain stable while STS is low. 

Data that is latched internally is output when OE is low. The 8282 outputs data unaltered. while the 8283 inverts 
the data. 

Were you to simply ground DE and tie STS to +5 V. the 8282 or 8283 I/O ports will function as simple bus drivers. The 
outputs will continuously track the inputs. but will support heavier signal loads. 

If you tie STS high. but use the low DE pulse. then input data is constantly available but outputs only become valid 
while DE is low. Timing may be illustrated as follows: 

DIO-DI7 
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010 
011 
012 
013 
014 
015 
016 
017 
or 

GNO 

-:. --
--.. ------

'in Name 

010-017 
000-007 
~ 
STB 

Vee· GNO 

1 
2 
3 
4 8282 
5 or 
6 8283 
7 
8 
9 
10 

Description 

Data Input 
Data Output 
Output Enable 
Input Data Strobe 
Power. Ground 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 -

Input 

-... .. 
-
~--.. 
:. ----

Type 

Vee (+5 VI 
000 
001 
002 
003 
004 
005 
006 
007 
STB 

Output. Tristate 
Input 
Input 

Figure 5-18. 8282 and 8283 Input/Output Latch Pins and Signal Assignments 

When the Strobe and Output Enable signal are both active. I/O port logic may be illustrated as follows: 

DtO-Dt7 

STB 

Latches A B e 

A 
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AO 
A1 
A2 
A3 
A4 
A5 
A6 
A7 
OE 

GND 

------
-
------

Pin Name 

AO-A7 
BO-B7 
OE 
T 
Vee,GND 

~ 1 :. 2 -- 3 - 4 8286 - 5 or 
.~ 6 8287 - 7 - 8 - 9 

10 

Description 

Local Bus 
System Bus 
Output Enable 
Direction Select 
Power, Ground 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 

- -- -- --- -- -- -- --- -- ---- -.. ---
Type 

Vee 
BO 
B1 

B2 
B3 

B4 
B5 

B6 

B7 
T 

Bidirectional, Tristate 
Bidirectional, Tristate 
Input 
Input 

Figure 5-19. 8286 and 8287 Bidirectional Bus Transceiver Pins and Signal Assignments 

THE 8286/8287 8-BIT BIDIRECTIONAL BUS TRANSCEIVERS 

These two devices are used to buffer bidirectional lines on a System Bus. The 8286 transmits data unaltered, 
while the 8287 inverts the data. The two devices are otherwise the same. 

The 8286 and 8287 bidirectional bus drivers are manufactured using bipolar technology. All pins are TTL-level com­
patible. The devices are packaged as 20-pin DIPs. 

8286 AND 8287 BIDIRECTIONAL BUS TRANSCEIVER PINS AND SIGNAL 
ASSIGNMENTS 
Figure 5-19 illustrates pins and signal assignments for the 8286 and 8287 bidirectional bus drivers. 

AO-A7 constitute eight parallel data lines that connect with the microprocessor Data/Address Bus. BO-B7 con­
stitute eight equivalent lines that connect with the System Bus. System Bus outputs have a higher line drive 
capability (as defined in the data sheets at the end of this chapter); otherwise. there is no difference between the two 
busses. 

When the T input is low, data arriving at the B pins is output via the A pins. When T is high, data arriving at the A 
pins are output via the B pins. The actual data transfer occurs only while OE is low. When used as an 8086 Data 
Bus transceiver. T should be connected to DTfR and OE connected to DEN. 
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SOME 8086 MICROPROCESSOR BUS CONFIGURATIONS 

We are now going to look at some 8086 microprocessor bus configurations. 

The flexibility of the 8086 gives rise to such a bewildering array of system configuration possibilities that a 
whole book could be written on the subject. We are going to fulfill the more limited objective of identifying 
possibilities. 

Figure 5-20 illustrates the simplest case. Here we are using the 8086 to generate a simple microcomputer system. 
Addresses taken off the bidirectional 8086 Data/Address Bus are unidirectional. We therefore use 8282 I/O ports to 
latch addresses of the 8086 Data/Address Bus.·ln Figure 5-20 we show just two 8282 I/O ports generating a 16-line 
Address Bus. Address lines A 16 through A 19 are wasted. By adding one' more 8282 I/O port to the logic in Figure 
5-37, you could include the four missing Address Bus lines. 

In Figure 5-20, we ground the Output Enable inputs of the 8282 I/O ports; the Address Bus will therefore never be 
floated. We use the 8086 ALE pulse to strobe addresses into the 8282 I/O ports. 

Since the Data Bus is bidirectional. we use 8286 bidirectional Bus Transceivers in order to create a separate Data Bus 
from the 8086 Address/Data Bus. Two 8286 bidirectional Bus Transceivers are required to create the 16-line Data Bus. 
We can use the DT!R and DEN outputs of the 8086 as the 8286 T and CS inputs. 

We can now illustrate timing for creation of the Address Bus and Data Bus during a read bus cycle, as follows: 

T1 

eLK 

AOO-AO 15--4-.....,1---1 
~------" 

ALE 

M/iO 

OT/R 

8282 01----4 Address Out 

828200 Address Out 

8286 B 

T2 T3 T4 

M~--""+--(= 8282 01 
'--__ ..... ~-....J and 8286A) 

Oata In 

(= 8286 T) 

(= AOO­
.... ------,0.-015) 

~--4_--...., 

AO-A15 

00-015 

(= AOO-
8286A-------------~~~ ___ D_a_ta_l_n ___ ~----------AD15) 
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Figure 5-20. Generating a System Bus for a Simple 8086 Configuration 

M/TO 

INTA 

RD 

WR 

AO 

A7 

A8 

A15 

SHE 

DO 

07 

DB 

015 

READY 

PCLK 

The simple system illustrated in Figure 5-20 will not make use of the dual READY clock logic. A single READY input is 
connected to RDY 1, and both of the READY enables are grou nded. Thus, the 8086 READY input will be created directly 
from the 8284 RDY1 input. 

Figure 5-21 illustrates a slightly more complex 8086 microcomputer configuration. Figure 5-21 uses an 8288 
Bus Controller to generate System Bus control signals. The DEN, DT lA, and ALE control outputs, which in Figure 
5-20 were generated by the 8086 microprocessor, are now generated by the 8288 Bus Controller. 

As a stand-alone microcomputer configuration, Figure 5-21 offers little or no a,dvantage over Figure 5-20. In a Single 
bus, single 8086 microcomputer configuration, there is no compelling reason to use the 8288 Bus Controller. All it does 
is add an extra component to the system without offering any significant ,logic enhancement. 
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Figure 5-21. Generating a System Bus in an 8086 Microcomputer System Using 
an 8288 Bus Controller 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• 8086 CPU 

• 8088 CPU 

• 8282/8283 I/O Ports 

• 8284 Clock Generator 

• 8286/8287 Bidirectional Bus Drivers 

• 8288 Bus Controller 
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8086/8086-2/8086-4 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias.· ...•.... O'C to 70·C 
Storage Temperature ............. - 65'C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D,C. CHARACTERISTICS 

8086: TA=0'Ct070'C,Vcc =5V ±10% 
8086-2/8086-4: TA=O'C to 70'C, Vcc=5V ±5% 

Symbol Parameter 

Vil Input Low Voltage 

VII'i Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

Icc Power Supply Current 
8086/8086-4 
8086-2 

III Input Leakage Current 

ILO Output Leakage Current 

VCl Clock Input Low Voltage 

VeH Clock Input High Voltage 

Capacitance of Input Buffer 
CIN (All input except 

ADo - AD,5, RQ/Gn 

Cia 
Capacitance of I/O Buffer 
(ADo - AD,5, ~/GT) 

Min. 

-0.5 

2.0 

2.4 

-0.5 

3.9 

'NOTICE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions above 
those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

MIx. Unit. T •• t Condition. 

+0.8 V 

Vcc:+, 0.5 V 

0.45 V IOl=2.0 mA 

V IOH= -400IlA 

340 mA 
TA =25"C 

350 rnA 

±10 IlA OV <VIN <Vee 

±10 ~ 0.45V " V OUT" Vee 

+0.6 V 

Vec + 1.0 V 

15 pF fc= 1 MHz 

15 pF fc= 1 MHz 

Data sheets on pages 5-02 through 5-029 are reprinted by permission of Intel Corporation. 
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8086/8086-2/8086-4 

A.C. CHARACTERISTICS 

8086: TA=O·C to 70·C, Vcc=5V ± 10% 
8086-2/8086-4: TA=O·C to 70·C, Vcc=5V ±5% 

8086 MINIMUM COMPLEXITY SYSTEM (FIgures 8, 9, 12, 15) 
TIMING REQUIREMENTS 

Symbol Paramatar 80861808&-4 

Min. Max. 

TClCl ClK Cycle Period - 8086 200 500 
- 8086·4 2SO 500 

TClCH ClK low Time (2;" TClCl)- 15 

TCHCl ClK High Time ('Il TClCl) + 2 

TCH1CH2 ClK Rise Time 10 

TCL2CL1 ClK Fall Time 10 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TR1VCl ROY Setup Time into 8284 (See Notes 1, 2) 35 

TClR1X ROY Hold Time into 8284 (See Notes I, 2) 0 

TRYHCH READY Setup Time into 8086 (2;" TClCl)- IS 

TCHRYX READY Hold Time into 8086 30 

TRYlCl READY Inactive to ClK (See Note 3) -8 

THVCH HOLD Setup Time 35 

TINVCH INTR, NMI, TEST Setup Time (See Note 2) 30 

TIMING RESPONSES 

Symbol P.ramet.r 808618086-4 

Min. Mu. 

TCLAV Addr.ss Valid Delay 10 110 

TCLAX Address Hold Time 10 

TCLAZ Addreee Float Delay TCLAX 80 

TlHll ALE Width TClCH-20 

TCllH ALE Active Delay 80 

TCHll ALE Inactive Delay 85 

TlLAX Address Hold Time to ALE Inactive TCHCl-l0 

TClDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time Alter WR TClCH-30 

TCVCTV Control Active Delay I 10 110 

TCHCTV Control Active Delay 2 10 110 

TCVCTX Control Inactive Delay 10 110 

TAZRl Address Float to READ Active 0 

TClRl 1m Active Delay 10 165. 

TClRH 1m Inactive Delay 10 ISO 

TRHAV AD Inactiva to Next Address Activa TClCl-45 

TClHAV HlDA Valid Dalay 10 160 

TRlRH 1m Width 2TClCl-75 

TWlWH WRWidth 2TClCl-60 

TAVAl Address Valid to ALE low TClCH-60 

NOTES: 1. Signal at 8284 shown tor relerence only. 

8086-2 (Preliminary) 

Min. Max. 

125 500 

(213 TClCl)- 15 

('Il TClCl) + 2 

10 

10 

20 

10 

35 

0 

(2;" TClCl)- 15 

20 

-8 

20 

15 

8086-2 (Preliminary) 

Min. Max. 

10 60 

10 

TCLAX 50 

TClCH-l0 

50 

55 

TCHCl-l0 

10 60 

10 

TClCH-30 

10 70 

10 60 

10 70 

0 

10 100 

10 50 

TClCl -40 

10 100 

2TClCl-50 

2TClCl-40 

TClCH-40 

2. Setup requirement lor asynchronous signal only to guarantea recognition at next ClK. 
3. Applla. only to T2 .tata. (8 ns Into T3) 
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Units T.st Condition. 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Unit. T •• tConelll!_ 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns Cl = 2Q.l00 pF lor 

ns 
aI/ 8086 Outputs 
(In addition to 

ns 8086 sell·load) 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



8086/8086-2/8086-4 

ClK CI214 Output) 

ALE 

ROY CI284 Input) 
SEE NOTE 4 

READY ClOIIlnpul) 

READ CYCLE 

«NOTE 1) 

RD 

IWR. IIii'fA • YOH) DT/R 

FIGure 8. 8086 Bus Timing - Minimum Mode System 
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8086/8086-2/8086-4 

CLK (8284 Oulpul) 

M/iO 

ALE 

WRITE CYCLE I AD,,·ADo _+-_____ ___. 

(foIOTE 1) Di'i 

~"I~~~~) I 

INTI. CYCLE 

(NOTES 110 3) 

1m, WII.voH 
11m. VOL) 

SOFTWARE HALT· 

6EN.IID. WJi .iiiiil VOH 

WR 

DT/R 

i-TCLAZ 

TCHCTV 

TCVCTV_I 

INVALID ADDRESS SOFTWARE HALT 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 808f1 LOCAL ADDRIDATA BUS IS 
FLOATING DURING 80TH INTA CYCLES. CONTROL SIGNALS SHOWN FOR 
SECOND INTA CYCLE. 

4. SIGNALS AT 1284 ARE SHOWN FOR REFERENCE ONLY. 
I. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 9. 8086 BUI Timing - Minimum Mode System (cont'd) 
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8086/8086-2/8086-4 

8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) (Figures 10-14) 
TIMING REQUIREMENTS 

Symbol Parameter 8086/8086-4 8086-2 (Preliminary) 

Min. Ma •. Min. Ma •• 

TClCl ClK Cycle Period - 8086 200 500 125 500 
- 8086-4 250 500 

TClCH ClK low Time (2/3 TClCl)-15 (213 TClCl)- 15 

TCHCl ClK High Time (~~ TClCl) + 2 (1I:J TClCl)'t2 

TCH1CH2 ClK Rise Time 1(1 10 

TCL2Cll ClK Fall Time 10 10 

TOVCl Data In Setup Time 30 20 

TClDX Data In Hold Time 10 10 

TR1VCl ROY Setup Time into 8284 (See Notes 1, 2) 35 35 

TClR1X ROY Hold Time into 8284 (See Notes 1, 2) 0 0 

TRYHCH READY Setup Time into 8086 (213 TClCL)-15 (213 TClCl)- 15 

TCHRYX .READY Hold Time Into 8086 30 20 

TRYlCl READY Inactive to ClK (See Note 4) -8 -8 

TINVCH Setup Time for Recognition 30 15 
(INTR, NMI, TESn (See Note 2) 

TGVCH RO/GT Setup Time 30 15 

TCHGX RO Hold Time into 8086 40 30 

TIMING RESPONSES 

Symbol Parameter 80861808&-4 8086-2 (Preliminary) 

Min. Ma •• Min. 

TClMl Command Active Delay (See Note 1) 10 35 10 

TClMH Command Inactive Delay (See Note 1) 10 35 10 

TRYHSH READY Acllve to Status Passive (See Note 3) 110 

TCHSV Status Active Delay 10 110 10 

TClSH Status Inactive Delay 10 130 10 

TCLAV Address Valid Delay 10 110 10 

TCLAX Address Hold Time 10 10 

TCLAZ Address Float Delay TCLAX 80 TCLAX 

TSVlH Status Valid to ALE High (See Note 1) 15 

TSVMCH Status Valid to MCE High (See Note 1) 15 

TCllH ClK low to ALE Valid (See Note 1) 15 

TClMCH ClK low to MCE High (See Note 1) 15 

TCHll ALE Inactive Delay (See Note 1) 15 

TClMCl MCE Inactive Delay (See Note 1) 15 

TClDV Data Valid Delay 10 110 10 

TCHDX Data Hold Time 10 10 

TCVNV Control Active Delay (See Note 1) 5 45 5 

TCVNX Control Inactive Delay (See Note 1) 10 45 10 

TAZRl Address Float to Read Active 0 0 

TClRl RD Active Delay 10 165 10 

TClRH RD Inactive Delay 10 150 10 

TAHAV RD Inacllve to Next Address Active TClCl-45 TClCl-40 

TCHDTl Direction Control ActivO! Delay (See NOle 1) 50 

TCHDTH Direction Control Inactive Delay (See Note 1) 30 

TClGl GT Active Delay 0 85 0 

TClGH ~ Inactive Delay 0 85 0 

TRlRH RDWldth 2TClCl-75 2TClCl-5O 

NOTES: 1. Signal at 8284 or 8288 shown for reference only. 
2. Setup ..,qulrement for asynchronous signal only to guarantee recognition at next ClK. 
3_ Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3l. 
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Ma •• 

35 

35 

65 

60 

70 

60 

50 

15 

15 

15 

15 

15 

15 

60 

45 

45 

100 

80 

50 

30 

50 

50 

Unit. Te.t Condition. 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3_5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Unll. Te.t Condition. 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns Cl = 20·100 pF for 

ns all 8086 Outputs 
(In addition to 

ns 8086 self·load) 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



8086/8086-2/8086-4 

OSo,OS, 

!i.II.SO (EXCEPT HALT) 

I 
ALE (82" OUTPUn 

SEE NOTE S 

ROY (82U IN Pun 

READY (1OIIINPUn 

READ CYCLE 

RD 

DT/" 

1288 OUTPUTS I iiRi5C OR Rme 
SEE NOTES 5.' 

DEN 

TCVNX-

Figure 10. 8086 Bus Timing - Maximum Mode System (Using 8288) 
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8086/8086-2/8086-4 

ClK 

S2,~,SO (EXCEPT HAL n 

WRITE CYCLE 

DEN 

8288 OUTP\ITS 
SEE NOTES 5,6 AMWC OR AIOWC 

INTA CYCLE 

SOnwARE HALT -

MWTC OR 10WC 

AD,.-ADo 
(SEE NOTES 3 I 4) 

82811 0UTPIIlS 
SEE NOTES 5.6 

MCEJ 
Prf£N 

DTIR 

INTA 

DEN 

T, T2 TJ T. 

Tw 

TCHDX-

DATA 

TCVNX-

TCLMH-

TSVMCH-

(DEN. VOL;JI1),MJ\lie,WliC,iiWTe,.\iIWe,iQWC,AiOW(:,iNfA,. VOH) 

INVALID ADDRESS 

TClAV 

-----... jr------.,..\-------
\'-. _____ -J, \. _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED, 

2. RDY IS SAMPLED NEAR THE END OF T2, T •• Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLE. 
4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 6011 lOCAL ADDRIDATA BUS IS 

FLOATING DURING BOTH INTA CYCLES. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT '284 OR 1281 ARE SHOWN FOA REFERENCE ONLY . 
•. THE ISSUANCE OF THE 8211 COMMAND AND CONTROL SIGNALS (1ilI1le, 

1iW'R:, .\iIWe, ~, illWC, iiOi¥C, iNfA AND DEN) LAGS THE ACTIVE HIOH 
8ZIICEN. 

7. All TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 
NOTED . 

•. STATUS INACTIVE IN STATE JUST PRIOR TO T •• 

Figure 11. 8086 Bus Timing - Maximum Mode System (Using 8288) (cont.) 
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8086/8086-2/8086-4 

CL'~ 
I I L TINYCH t_ "0'. '1 

I-':=X : 
NOTE: 1 SeTUP REQUIREMENTS FQR ASYNCHRO­
NOUS SIGNALS ONl Y TO GUARANTEE RECOGNITION 
AT NEXT ClK 

Figure 12. Asynchronous Signal Recognition 

P
nYCL'CYCI.~ __ 

e!..k 

rClAv -

Figure 13. Bus Lock Signal Timing (Maximum Mode Only) 

_ "Cl~----_I r\ f\ 
_ lClOH C;l---'==l '-----/ I '--I 

_-C 
1 THE COPROCESSOR MAY NOT DIilIVE THE BUSlS O\JTSIDE THE REGION 

SHOWN WITHOUT RISKING CONTENTION 

"DI50·"Oo. 
A,tlS.·AltlS]. 

~S7"'il5. 
OTt •• i1Ili. DEN 

Figure 14. Request/Grant Sequence Timing (Maximum Mode Only) 

Figure 15. Hold/Hold Acknowledge Timing (Minimum Mode Only) 
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8088 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to lO·C 
Storage Temperature ............. - 6S"C to + 1S0·C 
Voltage on Any Pin with 

Respect to Ground .................. -'.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 
8088: TA=0·Ct070·C, Vce=5V ±10% 

Symbol Parameter Min. 
----

VIL Input Low Voltage - 0.5 

'NOTlCE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions above 
thOse indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum rating conditions for extended 
periOds may afll1ct device reliability. 

Max. Units Test Conditions 

+0.8 V 
.... - ~. 

VIH Input High Voltage 2.0 Vce + 0.5 V 
'--_ .. 

V i IOL = 2.0 mA VOL Output Low Voltage 0.45 
.-r------~ 

VOH Output High Voltage 2.4 ~H 0400"" . --------~--.- ....... - f----~--- .. 

Icc Power Supply Current 340 mA 
._. c--.--

III Input Leakage Current ±10 iJA + OV<VIN<Vee 
-~-,. 

0.45V';;; Vour';;; Vce ILO Output Leakage Current ± 10 iJA 
1-----._- --------------" ------ --_ ..... _ .... -f..-

vCL Clock Input Low Voltage -0.5 +0.6 V 
.. -_.-f------.-t---. --

VCH Clock Input High Voltage 3.9 Vec + 1.0 V 

Capacitance of Input Buffer 
GIN (All input except 15 pF fc = 1 MHz 

ADO-AD? RQ/GT) 
+--. 

. 1.-

CIO 
Capacitance of I/O Buffer 15 pF fc = 1 MHz 
(ADo-AD? RQ/GT) 
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8088 

A.C. CHARACTERISTICS 

8088: TA=O·C to 70·C, Vcc= 5V± 10% 

8088 MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Paramatar Min. M8It. Unit. Ta.t Condltlona 

TClCL ClK Cycle Penod 200 500 ns 

TClCH ClK low Time (2IJTClCl)-15 ns 

TCHCl ClK High Time ('IJTClCl) + 2 ns 

TCH1CH2 ClK Rise Time 10 ns From 1.0V t03.5V 

TCL2Cll ClK Fall Time 10 ns From 3.5V to 1.0V 

TOVCl Data In Set'Jp Time 30 ns 

TClOX Data In Hold Time 10 ns 

TR1VCl ROY Setup Time into 8284 (See Notes 1.2) 35 ns 

TClR1X ROY Hold Time into 8284 (See Notes 1. 2) 0 ns 

TRYHCH READY Setup l,me ,nto 8088 (2IJTClCl)-15 ns 

TCHRYX READY Hold Time Into 8088 3(, ns 

TRYlCl READY Inactive to ClK (S 1e Note 3) -8 ns 

THVCH HOLD Setup Time 35 ns 

T1NVCH INTR. NMI. TEST Setup Time (See Note 2) 30 ns 

TIMING RESPONSES 

Symbol Parameter Min. Max. Units Test Conditions 

TCLAV Address Valid Delay 15 110 ns 

TCLAX Address Hold Time 10 ns 

TCLAZ Address Float Delay TCLAX 80 ns 

TlHlL ALE Width TClCH-20 ns 

TCllH ALE Active Delay 80 ns 

TCHLl ALE Inactive Delay 85 ns 

TlLAX Address Hold Time to ALE Inactive TCHCl-l0 ns 

TClDV Data Valid Delay 10 110 ns Cl = 20-100 pF for 

TCHDX Data Hold Time 10 ns all 8088 Outputs 
In addition to 

TWHDX Data Hold Time Alter WR TClCH-30 ns internal loads 

TCVCTV Control Active Delay 1 10 110 ns 

TCHCTV Control Active "Delay 2 10 110 ns 

TCVCTX Control Inactive Delay 10 110 ns 

TAZRL Address Float to READ Active 0 ns 

TClRl RD Active Delay 10 165 ns 

TClRH RD Inactive Delay 10 150 ns 

TRHAV RD Inactive to Next Address Active TClCl-45 ns 

TClHAV HlDA Valid Delay 10 160 ns 

TRlRH RD Width 2TClCl-75 ns -------
TWlWH WR Width 2TClCl-60 ns 

TAVAl' Address Valid to ALE low TClCH-60 ns 

NOTES: 1. Signal at 8284 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T2 state (8 ns Into T3 state). 
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8088 

I T, Tz T3 Tw T. 

VCH v----\I-- TClCl--iTCH1CH21 ,U I" TCl2CL1r~\ j~ 
ClK (8284 Output} vi.. l ~l-J 'II L-..J "-------' : '--

~ TCHCTV I ~ ~ - TCHCL I - TCLCH-

to/M.SSo 

I \~ 
A'5-Aa -t---+._" 1\,--+ __ +-__ ~A·'~5~-~Aa_(_Flo+._t d_u_'i_n9_I_NT+A_1 --t----t-J1\'-----

=-TtDV 

ALE 

RDY (8284 Input} 
SEE NOTE 5 

A07-ADo 

RO 

TClAV-
TClAX-

TCHDX-

\ All-A" S7-~3 \'/ 
---t __ +-.JJI '--+----1----', I\.'--I----+----+--+-----t-.JJ\'-----

t TLH~L--=: - T~lAX TCllH-

r--
-' .I \1\.'4---+--1I---+----+--+----+---'f~ ---

-t----..I
TCHU

_ r j -TR1VCl 

V,H ~I--",I ',..-+-\....---4---+--.............. ..,..,,'""'"'"~~..,....,~ 
I ''f. ' ""\' .;, <,~ :,:':<~~>~:,~~~ rTAVAl-

~ 
I\. 

Vt - :...11'-::1- !--TClR1X 

fR'::'C::-I -

\ ] 
II ~-----t-" 

-TCHRYX 11,---+",,\ 

TRYHCH~I - 1\ 
I 

-TClAZ 
1 

TDVCl-- '-TCLDX~1 

AD AD ' DATA IN \I , ;''''- r:{ """- - FLOAT I'-­
-TRHAV---l 

TCHCTV 

READ CYCLE 

(NOTE I} 

('NIl. INn c VOH} 
.=L r-""",, "J--I" /' TRlRH f---..;,", 

OT/R ' '\ 

'--------------r--+---~---__ r--~-J 
""'''- {/ ""'''- )Qlr-+L--____ _ 

Figure 11: 8088 Bus'Tlmlng - Minimum Mode System 
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8088 

ClK (828~ Output) 

[.0,-." --+--+------

WRITE ~~~~~ I DE .. -+----1-----.----1-.. 1---11--­

ViR 
~ __ ~--------------~-JI 

INTA CYCLE 

NOTES 1.3 

(RD. W1i - VOH) 

AD7-ADo 

DT/R 

SOFTWARE HALT -

DEN.iiD,Wii.INTA = VOH AD7-ADo INVALID ADDRESS SOFTWARE HALT 

TClAV 

NOTES: I. All SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T2. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO-BACK. THE 11088 LOCAL ADDAIDATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE. 

~. SIGNALS AT 8214 ARE SHOWN FOR REFERENCE ONLY. 
5. All TIMING MEASUREMENTS ARE MADE AT I.SV UNLESS OTHERWISE 

NOTED. 

Figure 12. 8088 Bus Timing - Minimum Mode System (cont.) 
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8088 

8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol P.r. meter 

TCLCL CLK Cycle Period 

TCLCH CLK Low Time 

TCHCL CLK High Time 

TCH1CH2 CLK Rise Time 

TCL2CLI CLK Fall Time 

TOVCL Data In Setup Time 

TCLDX Data In Hold Time 

TR1VCL ROY Setup Time into 8284 (See Notes 1. 2) 

TCLRIX ROY Hold Time into 8284 (See Notes 1,2) 

TRYHCH READY Setup Time InlO 8088 

TCHRYX READY Hold Time IOto 8088 

TRYLCL READY Inactive to CLK (See Note 4) 

TlNVCH Setup Time lor Recognition (INTR. NMI. TESn (See Note 2) 

TGVCH RQ/GT Setup Time 

TCHGX RQ Hold Time into 8086 

TIMING RESPONSES 

Symbol P.r.meter 

TCLML Command Active Delay (See Note 1) 

TCLMH Command Inactive Delay (See Note 1) 

TRYHSH READY Active to Status Passive (See Note 3) 

TCHSV Status Active Delay 

TCLSH Status Inactive Delay 

TCLAV Adaress Valid Delay 

TCLAX Address Hold Time 

TCLAZ Address Float Delay 

TSVLH Status Valid to ALE High (See Note 1) 

TSVMCH Status Valid to MCE High (See Note 1) 

TCLLH CLK Low to ALE Valid (See Note 1) 

TCLMCH CLK Low to MCE High (See Note 1) 

TCHLL ALE Inactive Delay (See Note 1) 

TCLMCL MCE Inactive Delay (See Note 1) 

TCLDV Data Valid Delay 

TCHDX Data Hold Time 

TCVNV Control Active Delay (See Note 1) 

TCVNX Control Inactive Delay (See Note 1) 

TAZRL Address Float to Read Active 

TCLRL RD Active Delay 

Min. Max. Unlls 

200 500 ns 

('hTCLCL)-15 ns 

('IJTCLCL) + 2 ns 

10 ns 
-- ----_. 

10 ns 

30 ns 

10 ns 

35 ns 

0 ns 

(,hTCLCL)-15 ns 

30 ns 

-8 ns 

30 ns 

30 ns --f---
40 ns 

Min. MIX. Unll. 

10 35 ns 

10 35 ns 

110 ns 

10 110 ns 

10 130 ns --
15 110 ns 

10 ns 

TCLAX 80 ns 

15 ns 

15 ns 
--

15 ns 
--

15 ns 
--------

15 ns 
--

15 ns --
15 110 ns 

10 ns 

5 45 ns 

10 45 ns --
0 ns 

--
10 165 ns ------1-----

TCLRH RD Inactive Delay 10 150 ns 
----

TRHAV RD Inactive to Next Address Active TCLCL-45 ns 
.. _._-----

TCHDTL Direction Control Active Delay (See Note 1) 50 ns 
--f-----.-

TCHDTH Direction Control Inactive Delay (See Note 1) 30 ns 
--- ------

TCLGL GT Active Delay 110 ns 
-- f--- ---.-----------1--------

TCLGH GT Inactive Delay 85 ns 
-- --.--------- ----_._._--- ---.- -

TRLRH RD Width 2TCLCL-75 ns 

NOTES: 1. Signal at 8284 or 8288 shown lor relerence only. 
2. Setup requirement lor asynchronous signal only to guarantee recognition at next CLK. 
3. A~lies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3 state). 
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Te.t Conditions 

From 1.0V to 3.5V 
---------

From 35V to 1.0V 
--

Tilt Conditions 

CL = 2().100 pF lor 
ali 8088 Outputs 
in addition to 
internal loads 

i 



8088 

ClK 

OSo.OS, 

S"S"So (EXCEPT HAL T) 

SEE NO!F 5 

I ALE (8288 OUTPUT) 

tROY (8284 INPUT) 

READY (8088 INPUT) 

READ CYCLE 

8288 OUTPUTS 

SEE NOTES 5,8 

RD 

DTiA 

It MRDC OR IOhc 

DEN 

VCl 

I 

I 

TClAV--i 

I 
TCHDTL -I 

T, T, 

TClMH __ I 

TCVNX­
I 

Figure 13.8088 Bus Timing - Maximum Mode System (Using 8288) 

5-D15 



8088 

C1.K 

Ii. s,. iii (EXCEPT HAL TJ 

WAITE CYCLE 

AO,-AOO 

DEN 

.2811 OUIPUI'S 
SEE NOTES 5,8 AiiWC 011 AiOWC 

INTA CYCLE 

A,.-Aa 
(SEE NOTES 3.4) 

82. OUIPUI'S 

AO,·AOo 

MCEI 

PlmI 

DT/Ii 

SEE NOTES 5.6 \ INTA 

DEN 

FLOAT 

TSVMCH 

TCLMCH-

:W-~::N _ vOL;RI).~.IOJIe.iIW'fe.AM\vC.~.AroWC.iffn.. = VOH 
TCVNX-

AD, - ADo. A" - Aa 

s..s..~ 

INVALID ADDRESS 

TCLAV 

~ /------~\-------
\1.... _____ .....J. \. _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED 

2. ROY IS SAMPLED NEAR THE END OF T2. T,. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES 

4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 808a LOCAL ADORIDATA 
BUS IS flOATING DURING BOTIi INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 828< OR 8288 ARE SHOWN FOR REFERENCE ONLY . 
•. TliE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(MIf!le. MWTl: . .{'f;lWt. IOIIC. roWC.lIOWl:. TRn AND DEN)' . GS THE 
ACTIVE HIGH 1288 CEN 

7. All TIMING MEASUREMENTS ARE MADE AT , .5V UNLESS OTHERWISE 
NOTED. 

a. STATUS INACTIVE IN STATE JUST PRIOR TO T •. 
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8088 

NOTE: 1. SETUP REQUIREMENTS FOA ASYNCHRONOUS 
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT elK 

Figure 15. Asynchronous Signal Recognition 

~- Any CLK Cr~ __ ~_Any CLK cye;=! 

CLK I~ }-----I 
---1 TeLAV 1-- --tTClAVr: 

Figure 16. Bus Lock Signal Timing (Maximum Mode Only) 

,,,~""D-L ~ 
'CLGH ~_ +-- "CLCL-- _.-=\ i:---,'c"H

V
';;., _I'CLG',__ l :_TCLGH 1 

~
' PULSE' : . ~' : PULSE' ,---+------\ 

- - -_.' COPROCESSOR . ; PULSE :I . COPROCESSOR 

AOIGT; RO. \ IOI1G1 I RELEASE 

P'.YIOUS gran. --, t- TCLAZ 

A,oIIo· A,,,.,, C 
Au-Ai 

A"'-ADo 

~~ ~----------------------~ ~---(S-EE~N~OT~E-'I---------J 
NOTE: 1. THE COf'JIOCUIOIII; IllAY NOT DRIVE THE .UsaE' OUTSIOE THE KEQtOH 

SHOWN WITHOUT ftllKING CONTENTION. 

Figure 17. Request/Grant Sequence Timing (Maximum Mode Only) 

"\J'C
"CLKCYCU-

Clk 
I 

-.. -THVeH 

I 

I (SEE NOTE 't 

HOLO~ 

r-"A 
-~ I·~ 

~I._H:LH.V \i~j ,J, 
, \ 

~------------~~----~ ,~------~ 
~ _____________ ~~ ____ ~ 1'~--~T~CL~Al~ _____ ~,~ __________ ~ 

COPROCESSOR 

Figure 18. Hold/Hold Acknowledge Timing (Minimum Mode Only) 
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8282/8283 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .•.•.....•.....•. O·C to 70'C 
Storage Temperature .•.... , ...... - 6SoC to + 1S0·C 
All Output and Supply Voltages ........ - O.SV to + 7V 
All Input Voltages .............. " •• - 1.0V to + S.SV 
Power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS 
Conditions: Vee = 5V ± 10%, TA = ooe to 70 0 e 

Symbol Parameter Min 

Ve Input Clamp Voltage 

Icc Power Supply Current 

IF Forward Input Current 

IR Reverse Input Current 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

10FF Output Off Current 

Vil Input Low Voltage 

VIH Input High Voltage 2.0 

CIN Input Capacitance 

Not •• : 1. Output loading 10l = 32 mAo IOH = - 5 mA, Cl = 300 pF 

A.C. CHARACTERISTICS 
Conditions: Vee = 5V ± 10%, TA = ooe to 700 e 

"NOTICE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating on:,. and 
functional operattoh of the device at these or any other conditions above 
those ;ndicated in the operational sections of this specification is hot 
implied. Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

Max Units Test Conditions 

-1 V Ie = -S mA 

160 mA 

-0.2 mA VF = 0.45V 

50 JAA VA = S.2SV 

.45 V IOL = 32 mA 

V IOH = -5 mA 

± 50 JAA V OFF = 0.45 to 5.25V 

0.8 V Vee= 5.0V See Note 1 

V Vee= 5.0V See Note 1 

F= 1 MHz 
12 pF VBIAS= 2.5V, Vce= 5V 

TA=2SoC 

Loading: Outputs - 10l = 32 mA, 10H = - 5 mA, Cl = 300 pF 

Symbol Parameter Min Max Units Test Conditions 

TIVOV Input to Output Delay (See Note 1) 
-Inverting 22 ns 
- Non-Inverting 30 ns 

TSHOV STB to Output Delay 
-Inverting 40 ns 
- Non-Inverting 45 ns 

TEHOZ Output Disable Time 18 ns 

TELOV Output Enable Time 10 30 ns 

TIVSL Input to STB Setup Time 0 ns 

TSLIX Input to STB Hold Time 25 ns 

TSHSL STB High Time 15 ns 

NOTE: 1. See waveforms and test load circuit on following page. 
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8282/8283 

INPUTS 1= )K 
'" ' r~'==tm"-l 
3~~~+",,----1,---______ _ 

I I 

o,,~:--I-ii ----1l-T-IV·-o'-1-l-~---------i'"o,;=,~ _,::~ {'-------
---t------''t..l.... __ -=--------------' VOL ,-.lV 

f..--- TSHOV _ SEE NOTE 1 

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED, 

1.SV 1.SV -

33Q 180Q 

2.14V 

S2.7Q 

OUT <r---< OUT 0-----< aUTo----< 

! 300pF ! 300 pF ! 300 pF 

3·STATE TO VOL 3·STATE TO VOH SWITCHING 

Figure 4. Output Test Load Circuits 
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OUTPUT DELAY VS. CAPACITANCE 

u 
III 
/I) 

Z 
>-
~ 

.111 
Q 

U 
III 
/I) 

Z 

>­
C 
oJ 
III 
Q 

50 

40 

20 

50 

10 

8283 

pF LOAD 

8282 

pF LOAD 

Figure 5. Output Delay VI. Capacitance 
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ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ....•..•••....... O·C to 70·C 

Storage Temperature ..••.•••...•• - 65·C to + 150·C 

All Output and Supply Voltages ••.•.... - 0.5V to + 7V 

All Input Voltages •......•....••.... - 1.0V to + 5.5V 
Power Dissipation •....•••.•....••.......... 1 Watt . 

D.C. CHARACTERISTICS 

Conditions: T,,=O·C to 70·C; Vcc=5V± 10% 

Symbol Parameter 

IF Forward Input Current 

IR Reverse Input Current 

Vc Input Forward Clamp Voltage 

Icc Power Supply Current 

V,L Input lOW Voltage 

V,H Input HIGH Voltage 

V'HR Reset Input HIGH Voltage 

VOL Output lOW Voltage 

VOH Output HIGH Voltage ClK 
Other Outputs 

VIHR-V,LA RES Input HystereSiS 

A.C. CHARACTERISTICS 

Conditions: TA=O·C to 70·C; Vcc=5V± 10% 
TIMING REQUIREMENTS 

Symbol Plramlt.r 

TEHEL External' Frequency High Time 

TELEH External Frequency low Time 

Min 

2.0 

2.6 

4 
2.4 

0.25 

'NO TlCE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions above 
those indicated in the operational sections of this specification is no' 
implied. Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

Max Units Test Conditions 

-0.5 mA VF=0.45V 

50 ~ V A = 5.25V 

-1.0 V Ic= -5 mA 

140 mA 

0.8 V Vcc= 5.0V 

V Vcc =5.0V 

V Vce= 5.0V 

0.45 V 5 mA .-
V -1 mA 

V -1 mA 

V Vce= 5.0V 

MIn MIX Unit. T •• t CondItIon. 

13 ns 90% - 90% Y,N 
13 ns 10% - 10% Y,N 

TElEl EFI Period TEHEL + TElEH .;. d ns (Note 1) 

XTAl Frequency 12 25 MHz 

TRtVCl ROYI. ROY2 Set·Up to ClK 35 ns 

TCLA1X AOYI. ROY2 Hold to ClK 0 ns --
TAtVRtV ArfIT. ArR!Set·Up to ROYI. ROY2 15 ns 

TClA1X AENI. AEN2 Hold to ClK 0 ns 
----- -

TYHEH CSYNC Set·Up to EFI 20 ns 

TEHYl CSYNC Hold to EFI 20 ns 

TYHYl CSYNC Width 2 TELEL ns 

TllHCl RES Set·Up to ClK 65 ns (Note 2) 

TClllH IiiES Hold to ClK 20 ns (Note 2) 
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TIMING RESPONSES 

Symbol Parameter Min 

TClCl ClK Cycle Period 125 

TCHCl ClK High Time (tI3TCLCl) + 2.0 

TClCH ClK low Time ('I3TClCl) - 15.0 

TCHICH2 ClK Riae or Fan Time 
TCl2ClI 

TPHPl PCLK High Time TClCl- 20 

TPlPH PCLK low Time TClCL- 20 

TRYlCl Ready Inacllve to ClK (See Note 4) -8 

TRYHCH Ready Active 10 ClK (See Note 3) ('hTCLCl)-15.0 

TClil ClK to Reset Delay 40 

TClPH ClK to PClK High Delay 

TClPl ClK to PClK low Delay 
f----

TOlCH OSC to ClK High Delay -5 

TOlCl OSC to ClK low Delay 2 

Notal! 1. ~ .. EFI rlae (5 na max) + EFI fan (6 na max). 
2. ee! up and hold only necesaary to guarantee recognition at next clock. 
3: Applies only to T3 and TW atates. 
4. Applle. only to T2 states. 

osc 

cu, 0 

PClK 0 

ROY.2 I --'\----

"EN,.2 I --+----. 

·~~·I~· ,:~:. 
CSYNC I 

m I TYHYL 

TEHYL 

"ESET 0 
ALL TIMING MEASUREMENTS ARE MADE AT 1 S YOLTS. UNLESS OTHERWISE HOTED 

A.C. TEST CIRCUITS 
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Mill Units T .. t Condition. 

ns 
------

n~ Fig. 3 & Fig. 4 --
ns Fig. 3 & Fig. 4 

10 ns 10V to 3.5V 
.--

ns 

ns 

ns Fig. 5 & Fig. 6 

ns Ftg. 5 & Fig. 6 

ns 

22 na 

22 na 

12 na 

20 na 

_TClltH-~TItHCl-



8286/8287 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. - 1.0V to + 5.5V 
power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS FOR 828618287 

Conditions: Vcc = 5V ±10% TA = DoC to 70°C 

'NO TICE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating only and 
functtonal operatton of the device at these or any other conditions above 
those indicated In the operattonal sections of this specification is not 
Implied. Exposure to absolute maximum rating conditions for extended 
periods may affect deVice reliability 

Symbol Parameter Min Max Units Test Conditions 

Ve Input Clamp Voltage -1 V 

Icc Power Supply Current-8287 130 mA 
-8286 160 mA 

IF Forward Input Current -0.2 mA 

IR Reverse Input Current 50 IJ.A 

VOL Output Low Voltage -BOutputs .45 V 
-A Outputs .45 V 

VOH Output High Voltage -BOutputs 2.4 V 
-AOutputs 2.4 V 

10FF Output Off Curwnt IF 
IOFF Output Off Current IR 

VIL Input Low Voltage -A Side 0.8 V 
-8 Side 0.9 V 

-
VIH Input High Voltage 2.0 V 

GIN Input Capacitance 12 pF 

Note: 1. B Outputs - 1m = 32 mA, IOH = -5 mA. CL = 300 pF A Outputs - 1m = 16 mAo IOH = -1 mAo CL = 100 pF 

A.C. CHARACTERISTICS FOR 828618287 
Conditions: Vee = 5V ±10%, TA = O°C to 70°C 

Loading: B Outputs - IOL = 32 rnA, IOH = -5 rnA, CL = 300 pF 
A Outputs - IOL = 16 mA, IOH = -1 rnA, CL = 100 pF 

Symbol Parameter Min 

TIVOV Input to Output Delay 
Inverting 
Non,lnverting 

TEHTV Transmit/Receive Hold Time TEHOZ 

TTVEL Transmit/Receive Setup 30 

TEHOZ Output Disable Time 

TELOV Output Enable Time 10 

Note: 1. See waveforms and test load circuit on following page. 
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Max Units 

22 ns 
30 ns 

ns 

ns 

18 ns 

30 ns 

le= -5 mA 

VF= 0.45V 

VR=5.25V 

IOL = 32 rnA 
IOL = 16 rnA 

IOH=-5 rnA 
IOH= -1 rnA 

VOFF =0.45V 
VOFF=5.25V 

Vee= 5.0V, See Note 1 
Vee= 5.0V, See Note 1 

Vee= 5.0V, See Note 1 

F= 1 MHz 
VBIAS = 2.5V, Vee= 5V 
TA =25·C 

Test Conditions 

(See Note 1) 



8286/8287 

INPUTS 

OE 

OUTPUTS 

\'1 
J~ 

/ 
J 

\ 
~'------

-Tivov- - TEHOZ 1-. TELOV-C= 
\V 
J~ 

,.-_________ --+ __ ! VOH - .1V 

j
l ______ I 

'--_________ -+ __ , VOL+.1V 

1·---TEHTV ----I ,- . TTVEL 

__________________________________________~r--------------

NOTE: 1. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLE'SS OTHERWISE NOTED. 

8286/8287 TIMING 
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50 50 

8217 

40 40 

u 
III 

30 z 

~ 
II 

20 

10 

pF LOAD pF LOAD 

Figure 4. Output Delay VI. Capacitance 

1.5V 1.5V 2.14V 

~'" ~H' ~~" 
OUT OUT OUT 

r300PF r100PF r300PF 

3-STATE TO VOL 3·STATE TO VOL SWITCHING 

B OUTPUT A OUTPUT B OUTPUT 

1.5V 1.SV 2.28V 

~'U' ~- ~"~ 
OUT OUT OUT 

I 300 pF r100PF r100PF 

)'STATE TO VOH )'STATE TO VOH SWITCHING 

B OUTPUT A OUTPUT A OUTPUT 

Figure 5. Telt Load Circuit' 
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8288 

ABSOLUTE MAXIMUM RA TlNGS· 

Temperature Under Bias 
Storage Temperature 
All Output and Supply Voltages. 
All Input Voltages. 
power Dissipation. 

D.C. CHARACTERISTICS 

.O·C to 70·C 
... -65·Cto +150·C 

- 0.5V to + 7V 
. ..... -1.l. to +5.5V 

. 1.5 Watt 

Conditions: Vcc = 5V ± 10%, T A = O·C to 70·C 

Symbol Parameter 

Vc Input Clamp Voltage 

Min 

'NOTICE: Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions above 
those indicated in the operational sections of this specification is not 
implied. Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

~ _________ p_ow_e_r_S~up~p_l~y~C_U_r_re_nt ______________ _+------~----------+_----____ ~-----------.------~ 
IF Forward Input Current 

IR Reverse Input Current 

VOL Output low Voltage-Command Outputs 
Control Outputs 

Output High Voltage- Command Outputs 
Control Outputs 

Input low Voltage 

2.4 
2.4 

VIH Input High Voltage 2.0. 
---------~--~--~----~----------------~----~~---------4----~---t------------------1 
__ IO_F_F ____ L-. Output Off Currenl 

A.C, CHARACTERISTICS 
Conditions: Vcc=5V ±10%, TA =0·Ct070·C 

TIMING REQUIREMENTS 
.-- ------ - --. r-'--- ------------------,--------,--------------,---------r-----------------------" 

Parameter Symbol Ma. 
~----------_1-------------------.---~-------~--------------~-------~----------~-------1 

Min Unit Loading 

TCLCl ClK Cycle Period 125 ns 
f----.-----f-----------------------~------~I_--------------+---------_+_-------------------I 

TClCH CLK low Time 66 ns 
f---------- --- --- --·-----jf---------------~--------+_---------·---------I 

TCHCl ClK High Time 40 ns 
t--- - ---- - -----.---- - ----------I-----~-------~·--------t__--·-----------------I 

TSVCH Status Active Setup Time 65 
t-- -------1----------------- -----t-------+-------+----f------------I 

ns 

TCHSV Status Active Hold Time 10 ns 
------ - - ----1---- - -- - -.-- f--- . t-

TSHCL Status Inactive Setup Time 55 ns 
t-------- ---- - ----.------- -----:- --t-------------+--------+--------------------I 

TCLSH Status Inactive Hold Time 10 ns 
----- -----._. - -----_ .. - ----_._--_._---

TIMING RESPONSES 
Symbot Paremeter Min Mu Unit Loading 

TCVNV Control Active Delay 45 ns 

TCVNX Control Inactive Delay 10 45 ns 

10 

15 ns 

15 ns 

"ROC } 
15 ns 

IORC 
35 ns MWTC IOL=32 mA 
35 ns IOWC IOH= -5 mA 

50 ns INTA CL=300 pF 

30 ns AMWC 

40 ns 
AlOWC 

~ClLH. TClMCH ALE MCE Active Delay (from ClK) 

t---TSV~!i: .. ~~~~_._ f-~ MCE A:_tl::':E.e~y (from ~~~u:.::s.:...) ___ +-______ +-_____ :::.. ____ ---<~.....:..:~......, 
TCHll ALE Inactive Delay 

TClMl Command Active Delay 10 

TClMH Command Inactive Delay 

TCHDTl Direction ContrOl Active Delay 

TCHDTH Direction Control Inactive Delay 

TAElCH Command Enable Time 

TAEHCZ Command Disable Time 40 ns I Inl = 16mA 
115 200 ns Other { 10H= -1 mA 

20 ns CL=80 pF 
TAElCV Enable Delay Time 

TAEVNV AEN to DEN 

TCEVNV CEN to DEN, PDEN 20 ns 

TCElRH CEN to Command TCLML ns 
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STATE 

eLK 

ADDRESS/DATA 

ALE 

) 
) 

) 
) 

DEN (WRITE ) 

PDEN(WRITE ) 

) DT/Ii (READ 
(INTA ) 

MCE 

---T4----T1 T2------+ T3-- --. 1--- --- T4 -------

In 
- -TClCl~ 

I--TClCH-lr'\ Lr V\ 
~ ~ iL-J lL-

TCHSV- I- - TSVCH - TCHCl~ 

~y"'~ 
TSHCl -

I 

-\ \ l7 
1\ 1\ 

I 
,.~ 

x~ WRITE CD VALID DATA VALID 

TCLlH-r L I.-TCHLl TSVlH 

r 
- rTCLMH 

I v 
/ 

- -TClML ~ i--TCLMl 

\ 
\ IV r\ 

- I-- TCVNV I 

V 
J 

TCVNX- 1---

I 

TCVNV- f--
I 

V \ 
J 1\ 

- f--- TCVNX 

i 
! V 
I J I 

I 
TCHDTH- J-:::' I ___ 0-

IJ J1 
I 

----
TCHDTL 

L I/li@ \ TCHDTH~ 

TClMCH-1 r ~ I ;-j f- TCVNX .--TSVMCH -1. ADDAESSIDATA IM1$IS SHOWN ONLY FOR AEFEREfojCE PURPOSES 
2. UAOtHG EDGE OF ALE ...... 0 Met: IS OETERMIH[O 8Y' THi FALLING EDGE Of CUt OR STATUS OOING ACTIVE. Wt1tCI1EV£A OCCURS LAST 
So AU TlWINQ trUASUftEM[NTS AM ""DE AT LSv V"'tlESS $P£CIFIEO OTHERWISE 

8288 Timing Diagram 
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eEN 

DEN 

DEN, PDEN Qualification Timing 

CO~~::~------------------------------~ 

CEN----------------------------~T~C~EL~A~H-JI 

NOTE: CEN MUST IE lOW OR VALID PRIOR TO T2 TO PREVENT THE COMMAND FROM BEING GENERATED. 

8288 Addre .. Enable (AEN) Timing (3-State Enable/Disable) 

1.SV 1.SV 2.14V 2.28V 

~'~ ~n' ~Q" ~"" OUT OUT OUT 
OUT 

I*PF I*PF r*PF r~PF 

3·STATE TO HIGH '·STATE TO LOW 
COMMAND OUTPUT 

CONTROL OUTPUT TEST LOAD 
TEST LOAD 

Test Load Circuit. - 3 State Command Output Te.t Load 
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Chapter 6 
THE ZILOG Z8000 SERIES 

The Z8000 series of microprocessors represent Zilog's first 16-bit products. The Z8000 is the second of the new 
16-bit microprocessor generation. Inters 8086. described in Chapter 5. was the first product to appear. Motorola's 
MC68000 will likely be the next. 

Two Z8000 series microprocessors have been announced. The l8002 is a 40-pin package device capable of ad­
dressing up to 65.536 bytes of external memory. The l8001 is a 48-pin package.device capable of addressing up to 
eight million bytes of external memory. organized as segments of 65.536 bytes. A third device. the Z801 0 Segmenta­
tion and Memory Manager. is a companion to the Z8001. The Z801 0 allows memory segments to be dynamically al/o­
cated under program control anywhere within the eight million bytes of addressable memory. 

The Z8000 series microprocessors are upward compatible at the source program level with the 8080A ~nd the 
l80. 

The following is a comparison of interesting Z8000 and 8086 innovations: 

1) Z8000 microprocessors do not pipeline instruction object codes. but under some circumstances they do overlap 
the next instruction's fetch with the prior instruction's execute. In contrast. the 8086 has a 6-byte object code 
pipeline. which. with associated instruction fetch overlap timing. effectively eliminates instruction fetCh times. 

2) The Z8001 and the Z8002 can be visualized as supporting complex and simple microcomputer configurations. 
respectively. In contrast. a single 8086 can operate either in complex mode. comparable to the Z8001. or in simPle 
mode. comparable to the Z8002. 

3) Both the Z8001 and the Z8002 have built-in logic to handle bus access priorities,in multi-CPU configurations. The 
8086 has equivalent logic. 

4) In multi-CPU configurations. each Z8000 series CPU can have its own local memory. while simultaneously sharing 
common memory. The common memory may be shared by all CPUs or by selected CPUs. In this respect. the 8086 
and the Z8000 series are comparable. 

5) The Z8001 can address up to eight million bytes of external memory. With the help of the Z801 0 Segmentation 
and Memory Management Device. this large external memory can be accessed as up to 128 relocatable segments. 
where each segment can have up to 65.536 bytes of external memory. The 8086 offers similar relocatable seg­
ments without relying on an additional memory management device; however. the 8086 can directly address only 
one million bytes of external memory and can only manipulate four segments at a time. 

6) Both Z8000 series microprocessors can be operated in separate "System" and "Normal" modes. Certain privileged 
instructions. including all I/O instructions. can be executed in System mode only. System and Normal modes have 
separate Stacks. with separate Stack Pointers. Thus. in program-intensive applications. systems software. executed 
in System mode. can be separated from application programs. executed in Normal mode. The 8086 offers no 
equivalent logic. 

7) The Z8000 has sixteen 16-bit registers that can alternatively be accessed as 8-bit or 32-bit registers. Fifteen of the 
16-bit registers can function as index registers. The 8086. in contrast. has four 16-bit registers. plus three separate 
16-bit index registers. 

The prime sou rce for the Z8000 series is: 

ZILOG. INC. 
10460 Bubb Road 

Cupertino. CA 95014 

6-1 



Second sources include: 

ADVANCED MICRO DEVICES 
901 Thompson Place 
Sunnyvale. CA 94086 

SGS-ATES COMPONENTI ELETTRONICI SPA 
20019 Castelletto d i Settimo 

Agrate (Milano) 
Italy 

The Z8000 series microprocessors are manufactured using N-channel silicon gate MOS technology. The Z8001 is 
packaged as a 48-pin DIP. The Z8002 is packaged as a 40-pin DIP. Both devices require a single +5 V power supply. All 
signals are TTL-level compatible. 

The Z8000 requires an external clock with up to 4 MHz frequency. Instructions execute in a minimum of three clock 
periods. The maximum number of clock periods is approximately 20; however. a number of instructions require more 
time to execute a variety of complex operations. 
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THE Z8001 AND Z8002 CPU'S 

Because these two versions of the Z8000 CPU are so similar. we will describe them together. Functions imple­
mented by Z8000 series microprocessor chips are. in terms of our general illustration. equivalent to those of the 
8086. as illustrated in Figure 5-1. 

Z8001 AND Z8002 PROGRAMMABLE REGISTERS 
Programmable registers for the Z8001 and Z8002 microprocessors are illustrated in Figures 6-1 and 6-2, 
respectively. 

Registers RO through R16 can be used as general purpose accumulators. Registers R1 through R16 can. in addi­
tion. function as index registers. Register RD is the only general purpose register which cannot function as an index 
register. 

Both the Z8001 and the Z8002 can be operated in System mode or Normal mode. A 
status flag setting determines the mode of operation. System mode will normally be used by 
operating system software; Normal mode will be used by application programs. A number of 
instructions. including all I/O instructions. are privileged. and consequently can be executed in 
System mode only. System and Normal modes have separate Stack Pointers. These are 
shown in Figures 6-1 and 6-2 by Sand N suffixes. which represent "System" and "Normal" 
modes. respectively. 

For the ZaOD2. the single 16-bit register R15 serves as the Stack Pointer. 

Z8000 
SYSTEM AND 
NORMAL 
MODES 

Z8000 STACK 
POINTERS 

For the ZaDD" two 16-bit registers are needed to implement a Stack Pointer. since memory addresses may be up to 23 
bits wide. Registers R14 and R15 are used. 

Instructions that access 16-bit registers do not make any special allowance for R15 and/or R14 functioning as Stack 
Pointers. Thus. the Stack Pointer can be accessed as a general purpose register/accumulator, or it can be used as 
the Index register for indexed memory addressing. The fact that there are separate System and Normal mode Stack 
Pointers is inconsequential when these registers are being accessed as accumulators or index registers. Depending on 
the currently selected mode. one or the other Stack Pointer will be accessible. This may be illustrated as follows: 

Normal 
Mode 

R11 .----1 
R12 .-----1 
R13 .----1 
R14 (or R14N) 

~--~ 
R15N L.-__ ...... 

System 
Mode 

R11 
1-----1 

R12 .-----1 
R13 

~----I 
R14 (or R14S) .-----1 
R15S 

Whenever two 16-bit registers provide a memory address for the Z8001. register bits Z8001 32-BIT 
are utilized as follows: ADDRESS 

REPRESENTATION 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 "'-Bit No. 

r-o""'T'---s-e-gm-e-nt-N-o-.---"I~o"l~o"lr--o-ll""'""o""'l-0""'1-0""'1-0""'-0-1 Register RN holds the 
_ ..... __________ ..................................... _ .... _.&.. _.&.. _ .......... 7-bit segment number in 

bits 8-14. Other register bits are O. 

Offset I Register RN+ 1 holds the 
... _______________________ ~_ 16-bit offset. or 
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address within the 
segment identified in 
Register RN. 



15 14 13 12 11 10 9 S 7 6 5 4 3 2 o ~ Bit No. (for all registers) 

RO - Accumulator 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RS 

R9 

R10 

R11 

R12 

R13 

R14S 

R14N 

R15S 

R15N 

Accumulators and 
Index Registers 

System and Normal Stack Pointers. 
Accumulators and Index Registers 

b.b.b.b.b.b.b.b.~~~.lli~b..lli~b.~iill } Flags and Control Wo", 

~~~~~~~iJi.i.~;;';';~,;,J } P"'.n1m Counte' 

} New P", • .am Status A'ea Po;n'e' 

I Refresh Counter 

Figure 6-1. Za001 Microprocessor Programmable Registers 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 4---- Bit No. (for all registers) 

RO - Accumulator 

R4 

R5 

R6 

R7 

R8 

R9 

R10 

R11 

R12 

R13 

R14 

Accumulators and 
Index Registers 

R 15S } System and Normal Stack Pointers, 
R 15N Accumulators and Index Registers 

Flags and Control Word 

Program Counter 

New Program Status Area Pointer 

Refresh Counter 

Figure 6-2. Z8002 Microprocessor Programmable Registers 
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The segment number and offset translate into a 23-bit memory address as follows: 

A22} Memory 
Segment 

.,....-_~A16 

.-+-~~ A 15 } 16-bit 

Offset 
'1---~AO 

23-bit 
Memory 
Address 

Thus. the Z8001 Stack Pointer is shown in Figure 6-1 with bits 8 through 14 of Register R14 pro­
viding the segment number. while the whole of Register R15 provides the segment offset. The 
Z8002 Stack Pointer. shown in Figure 6-2. is a simple 16-bit address register. 

The Program Counter is a simple 16-bit register for the Z8002. but for the Z8001 two 16-bit words 
are used. with the 23-bit address divided into a segment number and an offset. as illustrated 
above. 

Z8000 
STACK 
POINTER 

Z8000 
PROGRAM 
COUNTER 

The Z8000 addresses memory as bytes; however 16-bit words must originate on even byte address bound­
aries. That is why the Z8001 uses two 16-bit words to generate extended memory addresses. even though only 23 bits 
of address are required. 23-bit addresses could be implemented in three bytes. rather than in two 16-bit words; 
however. this would complicate pushing and popping memory addresses. Were the addresses implemented as three 
bytes. all Stack operations would require three byte pushes or three byte pops. By making all addresses occupy two 16-
bit words. Stack operations are reduced to two word pushes or two word pops which require no more time than three 
byte pushes or pops. 

The Flags and Control Word provide. the Z8001 and the Z8002 with Status and Control bits. 
Bits are interpreted as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

~EG ~/N 0 V NV 0 0 0 C l S P/O DA H IE IE 

.~ . ~ .~ A~ ~ ~ .~ . f 
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0 

0 

o '-"-BitNo. 

0 ---
0 ~ 

Reserved word. l8001 only 

Flags and Control Word (FCW) 

Auxiliary Carry 

Decimal Adjust 

Parity or Overflow 

Sign 

lero 

Carry 

Non-vectored interrupt enable/disable 

Vectored interrupt enable/disable 

System/normal mode select 

Segmentation mode select (Z8001 only) 
Always 0 for Z8002 



The Parity, Overflow, Sign, Zero, and Carry statuses are absolutely standard. 
Parity and Overflow share a status bit. 

The Parity status is modified by logical instructions which test the parity of byte data. This status is set to 1 for even 
parity; it is cleared for odd parity. 

The Overflow status is equal to the Exclusive OR of carries out of the high-order and penultimate bits following 
arithmetic and logical operations. 

The Sign status is set to the value of the high-order result bit following arithmetic operations. 

The Zero status is set to 1 when the result of an operation is 0; it is reset to 0 otherwise. 

The Carry status reports carries out of the high-order bit following arithmetic operations. This status is also used by 
most shift and rotate instructions. 

Most microprocessor instructions routinely modify status bits. whether or not such modifications are relevant to the 
operation performed. zaooo status logic generally follows the PDP-11 minicomputer. but the zaooo has a few 
anomalies. You should therefore consult Table 6-3. which summarizes the zaooo instruction set. in order to deter­
mine how a particular status is affected by the execution of any specific instruction. 

The Auxiliary Carry and Decimal Adjust status flags differ somewhat from normal use. These flags are modified by 
byte arithmetic instructions in order to make binary coded decimal arithmetic possible. You cannot set or reset these 
two Status flags using any of the status bit control instructions. and reading the value of these flags provides little 
useful information. The assembly language programmer should ignore these two flags. 

NVIE and VIE are used to enable and disable non-vectored interrupts and vectored interrupts, respectively. You 
enable interrupts by setting the appropriate status bit to 1. and you disable interrupts by resetting the appropriate 
status bit to O. 

The SIN status flag is used to switch between System and Normal modes. When this bit is 1. zaooo 
microprocessors operate in System mode. When this bit is O. zaooo microprocessors operate in Normal mode. Recall 
that System and Normal modes have their own separate Stack Pointers; also. certain privileged instructions can only be 
executed in System mode. 

The SEG status is used by the Z8001 microprocessor only. When this bit is set to 1, the Z8001 operates in Seg­
mented mode; when this bit is set to 0, the Z8001 operates in Nonsegmented mode. 

In Segmented mode. all Za001 addresses are computed 23 bits wide. using two 16-bit memory 
words as previously illustrated. Za001 Nonsegmented. Normal mode is directly equivalent to 
Za002 Normal mode operations. Za001 Nonsegmented System mode is not exactly equivalent to 
Za002 System mode; differences occur in interrupt acknowledge stack handling. as explained 

Z8001 
SEGMENTED 
MODE 

later in this chapter. Thus Za002 Normal mode programs can be executed within any single segment of Za001 memo­
ry. 

The Za001 carries an unused word as a companion to the Flag and Control Word. since all Za001 automatic Stack 
operations push and pop data in word pairs. Status in the Flag and Control Word must also be pushed and popped as a 
32-bit unit - hence the unused companion word. 
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The New Program Status Area Pointer is used by interrupt logic. It consists of one or two 16-bit 
words. as illustrated in Figures 6-1 and 6-2. 

Following any interrupt acknowledge. a vector address is created using the New Program Status 
Area Pointer and a 9- or 1 O-bit displacement provided by interrupt acknowledge logic. as follows: 

ze001 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o .--BitNo. 
P-~----------~------~~~~~--~~--~~~ o Segment No. 

Z8000 NEW 
PROGRAM 
STATUS AREA 
POINTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

SN6 

zeOO2 
15 14 13 12 11 10 

Upper Offset 

A15 A10 

SNO A15 

9 8 7 6 

A11 A10 

Interrupt Vector 
Address 

5 4 3 2 

Displacement 

A9 

Interrupt Vector 
Address 

AO 

0 4--BitNo. 

AO 
,/ 

Although the Z8002 uses just one byte of its New Program Status Area Pointer. 16 bits are provided. since all Z8002 
automatic Stack operations push and pop 16-bit words. Likewise. the Z8001 New Program Status Area Pointer uses 
two 16-bit words. where a Single 16-bit word would suffice. to accommodate automatic Stack handling logic which 
pushes and pops data in 32-bit increments. 

The Refresh Counter will be described later. along with memory refresh. 
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Z8000 REGISTER DESIGNATIONS 
Z8000 series microprocessor Instructions access a-bit, 16-bit, or 32-blt registers, as illustrated in Figure 6-3. 
Register designations used by Zilog assembly language mnemonics are shown in this figure. 

Byte Instructions access sixteen 8-bit registers. illustrated in Figure 6-3 by RHO through RL7. 

Word Instructions access the sixteen 16-bit registers RO through R16. 

Long word instructions access general purpose registers in pairs. Eight 32-bit registers are 
therefore available. shown in Figure 6-3 as RRO through RR14. 

Most Z8000 series instructions that access memory or registers have a word version and a byte 
version. A limited number of instructions have a long word version. 

Z8000 BYTE 
REGISTERS 

Z8000 16-BIT 
REGISTERS 

Z8000 32-BIT 
REGISTERS 

Multiplication and division Instructions sometimes use 64-bit registers, Shown in Figure 6-3 as RQO through 
RQ12. 

Z8001 AND Z8002 MEMORY ADDRESSING MODES 
Most Z8001 memory addreSSing modes have two forms: one for Nonsegmented mode, the other for Seg­
mented mode. 

When operating in Nonsegmented mode. all Z8001 memory reference instructions compute nonsegmented memory 
addresses: the offset address is modified. but the segment number is not altered. 

When operating in Segmented mode. l8001 memory reference instructions compute segmented memory addresses. 
provided the instruction also has a segmented memory addressing option. But there are some memory reference in­
structions that have no segmented option: these instructions compute nonsegmented memory addresses. even for a 
l8001 operating in Segmented mode. 

A segmented memory reference Instruction computes new values for the segment number and offset addre.s. 

The Z8002 Program Counter is a Single. 16-bit register. equ iva lent to the l8001 Program Counter Offset register. 
l8002 memory reference instructions therefore compute nonsegmented memory addresses only. 

In the discussion which follows. we will illustrate l8000 memory addressing options for Segmented and Nonseg­
men ted modes. 

In Segmented mode the base address always specifies the segment. The base address may 
occupy two 16-bit words: 

Word or Register Number 
15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 0 -4--Bit No. 

Segment No. 1 0 1 0 I 0 

Z8001 
BASE 
ADDRESS 

I 0 , 0 I 0 , 0 '0 I } Long form 
segmented mode 
base address 

n + 1 .. 1 __________ 1_6_-B_i_t _o_ff_s_et __________ .. 1 (not in instruction) 

Instruction word 
15 14 1 3 12 11 10 9 a 7 6 5 4 3 2 1 0"-Bit No. 

p I ... --........ se-gm-e-nt-No-. --'-0-'-0-'-0-'-0-'-0 .... '-0 .... '-0-' ..... 0 'I Long form 
segmented mode 
base address 

p + 1 I 16-Bit Offset I (in instruction) 

or it may occupy a single 16-bit instruction word: 

15 14 13 12 11 10 9 a 7 6 5 4 3 2 0 -4--Bit No. 

I
r -o ..... '---S-e-g-m-e-n-t -N-O-. --.....,r------a--b-it-O-ff-se-t----.. Short form segmented 
• . mode base address 
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Z8002 
15 8 7 

Z8001 
o ...--Bit No.--"15 8 7 

'RO} r:~rS~!lrs {RO ~~ 
RRO 

Rl R1 

~::} RR2 {:: 

o 

ROO 

----------------------------

::} RR4 {::~ 
::} RRS {:: 

R04 

----------------

:: } RR8 { :: 

~~~~~~ .. ::~} RR,O {R:::"""""""",!!"""",!!,,!,!, 

R08 

----------------------------

~R12 }RR12{ R12~ 
...................................................................... """R13 R 13 h±~~~;lliiilll 

R012 

~~~~JI} C:~~::"'!., { 

.. [_:':~':iiooiio·: ... ;: ... !:""":·:_: ;'""," ... " ' ..... ' ' .... _~ ... G_i' ... :' :", .... , .... '..,' " ... '; '_1,2"",::,;:,:,·':;;;""'·' .... • .... .'1" .... :} .... 1} P",.,am Co,n'., { :::~~:: ______ iOOiOOi 

..... ____________ ........ .....,;,. ....... .....,;,......,;,......,;,. __ .;.;:.;a} N;;:.~;::.m {~~~~ ...... 

Figure 6-3. Various Register Designations for the Za001 and Za002 Microprocessors 

6-10 



The index or displacement portion of a memory address never specifies the memory segment. The index is always a 
single 16-bit value for any Z8000 microprocessor. operating in any mode. The displacement may be an 8-bit. 12-bit. or 
16-bit value: but once again. it is the same for all Z8000 microprocessors. and all modes of operation. 

Thus. in Segmented mode. there is a clear difference between a base address and an index or displacement. In Non­
segmented mode. there being no segment number. there is no difference between a base address and an index. 

Most Z8000 series memory reference instructions access data memory using implied. direct. or indexed memo­
ry addressing. 

Z8002 implied memory addressing may be illustrated as follows: 

16-bit 
Registers 

..... __ ...... RN-1 

xxxx RN -4--lnstruction 

RN+1 
1---+--1 
..... -+_ ...... -RN+2 

specifies 
memory address 
in register RN. 
Memory byte 
xxx x is accessed. 

x represents any hexadecimal digit 

Memory 

xxxx-l 
1----1 

xxxx 
1-----1 

---­Bytes 

Z8000 
IMPLIED 
MEMORY 
ADDRESSING 

The Z8001 uses only nonsegmented implied memory reference instructions to access data memory. The Z8001 does 
not use either short or long segmented implied memory addressing to access data memory. Z8001 implied memory ad­
dressing may therefore be illustrated as follows: 

16-bit 
Registers 

RN-1 
1----1 

RN ..._Instruction specifies 
1-~f---IRN+1 memory address is 

register RN. Memory 
byte ss xxxx is 
accessed. 

s and x represent any hexadecimal digits 

6-11 

Memory 

ss xxxx-1 
1----1 

ss xxxx 

ss xxxx+3 t ____ ~ 
I Bytes 

Segment number ss 
is current contents 
of Program Counter 
Segment register. 



Some Za001 program memory reference instructions (such as the subroutine call) use long segmented implied memory 
addressing. which may be illustrated as· follows: 

16-Bit 
Registers 

RRN-l 
~----I 

ss 00 RRN -4- Instruction specifies 

RRN+l 
1---\---1 

memory address in 
Register RN. Memory 
byte xxxx in segment 
ss is accessed. 

s and x represent any hexadecimal digits. 

RRN is a 32-bit register designation. 

We will now examine direct memory addressing. 

ss xxxx-l 

ss xxxx 

Program 
Memory 

~---.. 
t-----I 

~ 
Bytes 

For the Za002. direct memory addressing may be illustrated as follows: 

Memory 

pppp I "'__ ___ -I Instruction code 
The direct address xxxx is PPPP+ 1 r 

provided by the instruction pppp+2 xx Direct Address 
object code pppp+3 t----:x;-x_--t 

xxxx 
~---.. 

xxxx+l .----1 
xxxx+2 

t-----11 

x and p represent any hexadecimal digits 

Z8002 
DIRECT 
MEMORY 
ADDRESSING 

Note that the direct address xxxx. being a 16-bit value. must start at a memory byte with an even address. This require­
ment is illustrated above by the address pppp+2. 

Furthermore. the high-order byte of a 16-bit memory word is at the lower address. preceding the low-order byte: 

PPPP 

Program 
Memory 

t-----I 

PPPP+ 1 t-----t 

High-order 

byte 
Low-order 
byte -- --hh II 16-bit data from memory 

pppp+2 h h 1-----..... 

pppp+3 II 

pppp+4 
t-----I 
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A Za001 direct memory address may be nonsegmented, short segmented, or long segmented. Nonsegmented 
Za001 direct memory address logic is as illustrated above for a Za002 direct memory address, except that the most re­
cently computed segmented number is output from the Program Counter Segment register via the seven Za001 seg­
ment number lines. 
Long segmented Za001 direct memory addressing may be illustrated as follows: Za001 LONG 

SEGMENTED 

Memory 

tt pppp 

tt pppp+1 

tt pppp+2 ss 
The direct address tt pppp+3 00 
xxxx, in segment 

tt pppp+4 ss, is provided by xx 

the instruction tt pppp+5 xx 

object code 

• • • • 
SSXXXX_1~ 

ss xxxx 

ss xxxx+ 1 

} Instruction code 

J Long ",gment.d 
direct address 

DIRECT MEMORY 
ADDRESSING 

sand t are any hexadecimal digits that specify a segment number in the range 00 through 7F 16. 
P and x are any hexadecimal digits that specify a memory address within a segment. 

We can illustrate a short segmented Za001 direct memory addessing as follows: 

Segment Number 
Memory 

~ tt pppp } 
t-----I Instruction code 

ss'- tt pppp+ 1 
Offset "' ~---.. } "'- tt pppp+2 ss Short segmented 

OOxx_ tt pppp+3 xx direct address 

The direct address 
OOxx, in segment 
ss, is provided by 
the instruction 
object code 

tt pppp+4 I-~~"""" 

• • 
SSOOXX_1~' • 

ss OOxx 

ss 00xx+1 

Z8002 SHORT 
SEGMENTED 
DIRECT MEMORY 
ADDRESSING 

sand t are any hexadecimal digits that specify a segment number in the range 00 through 7F 16· 
P and x are any hexadecimal digits that specify an offset, or memory address within the segment. 
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Z8001 and Z8002 indexed memory addressing adds the contents of an index register to a direct address. 16-bit 
registers Rl through R15 can function as index registers. Register RO cannot function as an index register. The direct 
address provides the base to which an index is added. 

Z8002 indexed addressing may be illustrated as follows: 

l6-bit 
Registers 

RN-l 
t----f 

RN yyyy 

RN+l 
t---\:-oof 

xxxx 
+ yvyy 

zzzz 

pppp 

pppp+l 

pppp+2 

pppp+3 

zzzz-l .. zzzz 

zzzz+l 

Memory 

xx 

xx 

Z8002 
INDEXED 
ADDRESSING 

} Instruction code 

} Direct 
Address 

P. x. y and z represent any hexadecimal digits. The selected memory address zzzz is the sum of the 
direct address xxxx. which is provided by the instruction ob ject code. and the index yyyy. 
The instruction code specifies Register RN as the Index register. 

The illustration applies also to nonsegmented laOOl indexed addressing. but for the laOOl a segment number (ss) 
would precede the computed address zzzz. Since no segment is computed by the laOOl in Nonsegmented mode. ss 
would be the current contents of the Program Counter Segment register. 

Here is an illustration of Z8001 short segmented indexed addressing: Z8001 SHORT 

RN-l 

RN 

RN+l 

l6-bit 
Registers 

yyyy 

ss OOxx 
+ yyyy 

Memory 

tt pppp 

tt pppp+l 

tt pppp+2 ss 

xx 
..... --,.---t 

ss zzzz-l ..... --~ 
~zzzz ~ ss zzzz ..... ---f 

:=J 
ss zzzz+l 

Segment digits are not 4 
affected by this addition. 

Any carry out of high-order 

digit addition will be lost. 

SEGMENTED 
INDEXED 
ADDRESSING 

} Instruction code 

} 
Short segmented 
direct address 

The effective memory address ss zzzz is not the simple sum of ss OOxx and yyyy. The segment number ss is output 
directly on the segment number pins. bypassing the address addition. OOxx and yyyy are added to create zzzz. the 
offset. which is output on the Address Bus. In the event that adding OOxx to yyyy generates a carry out of the high­
order bit. this carry is lost. Thus the offset addition wraps around from FFFF16 to 000016. without incrementing the 
segment number. 
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Long segmented Z8001 indexed addressing uses a four-byte direct address. with a 16-
bit offset. as follows: 

The computed offset zzzz becomes the sum of xxxx and yyyy. 

Z8001 LONG 
SEGMENTED 
INDEXED 
ADDRESSING 

Note that long segmented indexed addressing offers the same addressing range as short segmented indexed 
addressing: the index, on its own, can address the entire offset space of 65,536 bytes. Therefore, the one-byte short 
segmented base address offset is no handicap. Suppose, for example, you use indexed addressing to access a data ta­
ble in the middle of a segment. Using long segmented indexed addressing, the base of the data table might be provided 
by the direct address offset. while the Index register provides the displacement into the selected table: 

Memory 
Table 

Origin xxxx from--~t----t xxxx 
base address 

Displacement into 
table from Index register 

yyyy 

But you could just as easily have the index originate at the base of the segment: 

Base address 
offset = 00 

Memory 
Table 

n ......... --Start of Segment 
0000 

I I Displacement into 
: : table, from segment 

11 
origin, in Index register 

Start of Table xxxx 

yyyy 

A few l8001 and l8002 instructions access data memory using base relative addressing, 
wherein the contents of an Index register are added to a base address, which is also held in 
CPU registers. Therefore, l8000 base relative addressing might also be called "implied, in­
dexed" addressing. 
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Z8002 base relative addressing may be illustrated as follows: 

16-bit 
Registers 

RM-1 ...... --....... 
xxx x RM 

I---~-I 

RM+1 ...... ___ ....... T---------

RN-1~_ ........... 
RN YYYY Index 

RN+1 
I----t 

x, Y and z represent any hexadecimal digits 

Memory 

xxxx 
zzzz-1 

zzzz ----.,. zzzz 1---....... 
zzzz+1 

I---....-t 

"-v-" 
Byte 

The instruction object code must specify the register number from which the base address and the index are taken. In 
Nonsegmented mode there is no difference between a base address and an index; each is a single l6-bit value. The 
effective memory address zzzz is simply the sum of any two l6-bit registers' contents. 

The illustration above applies also to nonsegmented laOOl base relative addressing. However, for the la001 the 
memory segment ss, currently in the Program Counter Segment register, is output via the seven la001 segment num­
ber lines. 

Consider next Z8001 segmented base relative addressing. The base address specifies the 
segment. thus the base address and the index differ. Short segmented base relative addressing 
may be illustrated as follows: 

RM-1 

16-bit 
Registers 

...... ----1 
ss xx RM 

1--_--1 
RM+1~ __ ~~ ____ --

RN-1 
I-~,,"....-t 

RN yyyy Index 
RN+1 ...... --....... 

Segment number 

Offset 

ss OOxx 
+ yyyy S5 zzzz-1 

Memory 

1---....... 
~~~sszzzzl-__ --1 

ss zzzz+1 
1---....... 

~ 
Byte 

Z8001 SHORT 
SEGMENTED 
BASE RELATIVE 
ADDRESSING 

x, y and z represent any hexadecimal digits specifying offsets, or addresses within memory segment ss. 

ss can have any value in the range 00 through 7F16' 

The index is added to the base address USing the same mechanism described earlier for short segmented indexed ad­
dreSSing. The discussion of addressing range given for Short segmented indexed addressing applies also to short seg­
mented base relative addressing. 
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Long segmented base relative addressing may be illustrated as follows: 
16-bit 

Registers 

R::~ l~-ss-o-o-'" ss zzzz-1 

xxxx ss zzzz 
ss xxx x 

Memory 

~--.... 
RRM+1 + yyyy sszzzz+1 ...... __ --1 

~~ ----" 
RN-1 

...... ---jl--o--l 
RN vyyy Index 

...... ----1 
RN+1 

...... ----1 

Segment number 

Offset 

~ 

Byte 

. Z8001 LONG 
SEGMENTED 
BASE RELATIVE 
ADDRESSING 

x, y and z represent any hexadecimal digits specifying an offset address within memory segment ss. 
RRM designates a 32-bit register, while RN designates a 16-bit register. 
These registers are specified by the instruction object code. 

Some program memory reference instructions use program relative addressing. A displace­
ment provided by the instruction object code is added, as a signed binary number, to the 
contents of the Program Counter. For the Z8002 this may be illustrated as follows: 

Program 
. Memory 

"",,,+4 -ddddt2s 

• I 
I I 

xxxx 

xxxx+1 

Z8002 
PROGRAM 
RELATIVE 
ADDRESSING 

Program relative xxxx+2 dd 

lop~. 
signed binary 

xxxx+3 dd displacement 

xxxx+4 C
addreSSing range 

xxxx+4 + dddd ... 1--_-- I I 
I I 

XXXX+4+ddddt2~ 
In the illustration above. dddd is divided by 2 to show the addressing range of a program relative address; this is 
because dddd is a signed binary number. Therefore. half of the possible values will increase the address in the Program 
Counter (xxxx+4); the other half will decrease this address. 

Depending on the instruction. dddd may be an 8. 12. or 16-bit signed binary value. This displacement is added to the 
contents of the Program Counter after the Program Counter has been incremented to address the first byte of the next 
sequential instruction. This is illustrated above as location xxxx+4. 

Some program relative instructions (such as Jump Relative) have the displacement included in the op-code word. sav­
ing memory space and execution time for short displacements. In these instructions the first byte of the next sequential 
instruction would be xxxx+2. instead of xxxx+4 as illustrated above. 
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za001 program relative addressing, in Segmented or Nonsegmented mode, follows the il­
lustration above; however, the Program Counter also specifies the memory segment. The dis­
placement is added to the Za001 Program Counter Offset register. The Za001 Program 
Counter Segment register is not changed. Thus the displacement for a program relative memo­
ry address cannot cross a segment boundary. 

A few Z8000 jump instructions use indirect memory addressing. That is to say, the con­
tents of the addressed memory location are loaded into the Program Counter. Very few 
microprocessors provide indirect addressing. See Volume 1, Chapter 6 for a detailed descrip­
tion of this addressing mode. 

The Z8000 instruction set includes a number of memory reference instructions with 
auto-increment and auto-decrement. An implied memory address held in a 16-bit register is 
incremented or decremented following an instruction's execution, thus leaving the address 
pointing to the next sequential memory location in a table or string. 

The Z8000 Stack decrements the Stack Pointer before a push and increments the Stack 
Pointer following a pop. In other words, the beginning of the Stack has the highest memory 
address, and the current top of Stack has the lowest memory address. 

Z8001 AND Z8002 PINS AND SIGNALS 

Z8001 PROGRAM 
RELATIVE 
ADDRESSING 

Z8000 INDIRECT 
MEMORY 
ADDRESSING 

Z8000 AUTO­
INCREMENT 
AND DECREMENT 

Signals and pin assignments for the two Z8000 series microprocessors are illustrated in Figure 6-4. 

ADO-AD16 is a multiplexed 16-bit Data/Address Bus. AS is an address strobe which is pulsed low while an ad­
dress is being output. OS is a data strobe which is pulsed low while data is being output or input. 

STO-ST3 are four machine cycle status Signals whose output levels further <identify bus activity, as summarized in 
Table 6-1. 

Table 6-1. zaooo Machine Cycle Status Definitions 

ST3 - STO 
Machine Cycle 

3 2 1 0 

0 0 0 0 Internal operation 
0 0 0 1 Memory refresh 
0 0 1 0 1/0 reference 
0 0 1 1 Special 1/0 reference 
0 1 0 0 Segmentation trap acknowledge 
0 1 0 1 Non-maskable interrupt acknowledge 
0 1 1 0 Non-vectored interrupt acknowledge 
0 1 1 1 Vectored interrupt acknowledge 
1 0 0 0 Data memory access 
1 0 0 1 Stack memory access 
1 0 1 0 Reserved 
1 0 1 1 Reserved 
1 1 0 0 Subsequent instruction fetch 
1 1 0 1 First instruction fetch 
1 1 1 0 Reserved 
1 1 1 1 Reserved 
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AD9 
AD10 
AD11 
AD12 
AD13 
STOP 

Mi 
AD15 
AD14 

VCC 
Vi 

NVI 
NMI 

RESET 
MO 

MREQ 
OS 

ST3 
ST2 
ST1 

--------
--
--

--------------

· 1 -- 2 

· 3 -- 4 -- 5 .. 
6 .. 7 .. 
8 -· 9 -

10 
11 - 12 - 13 - 14 -
15 
16 
17 
18 
19 
20 

40 -- ---- - ADO ADO - .. 1 -
39 - .. AD8 AD9 - · 2 - -
38 -- -- - AD7 AD10 - - 3 -
37 - .. - - AD6 AD11 · 4 - -
36 - . - - AD4 AD12 · 5 - -
35 -- - AD5 AD13 - .. 6 -
34 - .. - - AD3 STOP 7 
33 - .. - - AD2 Mi .. 8 -
32 -- .. - - AD1 AD15 .. 9 - -

Z8002 
31 
30 -- GND AD14 

CLOCK VCC 
· 10 - -

11 
29 .. -
28 .. -

AS Vi 
DECOUPLE NVI 

- 12 - Z8001 · 13 -
27 -- BIW SEGT - 14 
26 .. - Nis NMI · 15 
25 - RIW RESET - 16 
24 .. BUSAK MO - 17 -
23 -- WAIT MREQ 18 
22 - BUSRQ OS -- 19 
21 -- STO ST3 - 20 -

ST2 - 21 
ST1 22 
STO - 23 -
SN3 - 24 -

Pin Name Description Type 

ADO -AD15 Datal Address Bus Bidirectional, Tristate 
SNO - SN6' Segment Number Output, Tristate 
Bm BytelWord Select Output, Tristate 
Rm ReadlWrite Select Output, Tristate 
N/S Normal/System Mode Select Output, Tristate 
STO - ST3 Machine Cycle Status Output, Tristate 
WAIT Wait State Request Input 
CLOCK System Clock Input 
AS Address Strobe Output, Tristate 
OS Data Strobe Output, iristate 
MREQ MemorY Request Output, Tristate 
Vi Vectored Interrupt Request Input 
NVI Non~vectored Interrupt Request Input 
NMI Non-maskable Interrupt Request Input 
RESET System Reset Input 
SEGT' Segmentation Trap Input 
BUSRQ Bus Request Input 
BUSAK Bus Acknowledge Output 
Mi Multi-micro Input Input 
MO Multi-micro Output Output 
STOP Single-Step Stop Input 
DECOUPLE" Negative Bias Generator Output 
VCC,GND Power, Ground 

• Z8001 only "Not presently connected 

Figure 6-4. ZaD01 and ZaD02 Signals and Pin Assignments 
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48 --
47 
48 
45 -44 --
43 --42 
41 
40 -39 -38 --37 
36 
35 --
34 
33 
32 
31 
30 
29 
28 -27 --26 
25 

-· -.. --.. ---· · -· -.. -.. -
--.. --
.. 

-.. 

AD8 
SN6 
SN5 
AD7 
AD6 
AD4 
SN4 
AD5 
AD3 
AD2 
AD1 
SN2 
GND 
CLOCK 
AS 
DECOUPLE 
BIW 
N/S 
Rm 
BUSAK 
WAIT 
BUSRQ 
SNO 
SN1 



MREQ is output low when memory is being addressed. MREO hi.gh. when a valid address is output. therefore 
selects an I/O port. MREO indicates codes 7. 8. 9. C or F output via STO-ST3; but STO-ST3 also provide additional 
variations of memory and I/O access machine cycles. 

DS and MREO can generate a rudimentary memory select signal. as follows: 

DS----Z-... 
MREQ ~------~ 

SELECT 
Memory 

AO A15 

If I/O is being mapped into memory space. you can ignore MREO. 

B/W differentiates between byte and word memory accesses. zaooo memory is organized and addressed as bytes; 
however. the 16-bit Data/Address Bus allows a-bit or 16-bit data accesses within a single machine cycle. B/W Is out­
put high for an 8-blt access; It is output low for a 16-blt access. 

In order to simplify the memory interface logic needed to enable byte and word accesses. the 
Z8000 always reads data from even-addressed bytes on the high-order eight Data Bus lines; 
it reads data from odd-addressed bytes on the low-order eight Data Bus lines. This may be il­
lustrated as follows: 

ADO~~----,---~--------------------------~" 

AD7~------~--~--------------------------~" 
AD8~~----Hr--~----------------~~--~--~" 

AD15~~---~--~------------------~~.-+-~~~ 

Memory 

xxxx 
1------1 

xxxx+3 

Z8000 
MEMORY 
INTERFACE 
LOGIC 

During a one-byte Read instruction. a zaooo microprocessor will take data from the high-order eight Data Bus lines if 
the memory address is even; it takes data from the low-order eight Data Bus lines if the memory address is odd. The 
data is transferred by the CPU to the selected a-bit register. 

In response to a 16-bit read. a zaooo microprocessor takes data from the 16-bit bus and loads it into the selected 
register. The high-order byte of the 16-bit word will come from the even-addressed memory byte. The low-order byte of 
the 16-bit word will come from the odd-addressed memory byte. This may be illustrated as follows: 

15 8 7 O"--BitNo. Memory 

R:~I I~ xxxx-2 

pp qq xxxx-1 

~ pp xxx x RN+1 
qq xxxx+1 

xxxx+2 
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When a zaooo microprocessor executes a one-byte Write instruction. the same byte of data is output on the eight 
high-order and low-order Data Bus lines. This may be illustrated as follows: 

16-bit Registers 

RN-1 
~----~~----~ 

RN pp 

RN+1 
I-~~-+----I 

ADO 4 , 

AD7 4 ' 
AD84 , 

AD154 ' 

. ~} , pp '. ,.} , pp 
'~ 

During execution of a 16-bit write instruction. a ZSOOO microprocessor will output the selected 16 bits of data in the 
usual way: across ADO-AD15. the 16-bit Data Bus. 

There ere a. number of ways In which memory interface logic can be designed to comply with Z8000 Data Bus 
protocols. but the simplest methocfis to divide memory into two halves. with even-addressed bytes in one-half and 
odd-addressed bytes in the other half. The two halves of memory will in fact have parallel addresses taken from AD1-
AD15. with ADO and B/W combining to generate appropriate select logic. This may be illustrated as follows: 

Bm 
AS 

AlDO 
A/D1 

AlD7 
A/DB 

A/D15 

· · · 
, · · 

Byte Memory 
with 

odd addresses 

AO A14 DO 07 

j .. ! j , . ~ 
II 

I 

~~ II~ 
Byte Memory 

with 
even addresses 

AO A14 DO 07 

j .. ! J .. ~ ~ .. .. 
--," 

• , . 
= 1~:" 
'--

The illustration above shows two blocks of memory with parallel addresses decoded from the same 15 address 
lines: AD1-AD15. The block of memory labelled" odd addresses" has a Data Bus connection to ADO-AD7. The block of 
memory labelled "even addresses" has a Data Bus connection to ADS-AD15. 

The block of memory with odd addresses is selected when SO is low: this occurs when B/W and ADO are both low. or 
when they are both high. Thus. odd-addressed memory responds to byte accesses with odd addresses. or to word ac­
cesses with even addresses. 

The block of memory with even addresses is enabled when SE is low. This occurs for any even address access. 

The illustrated memory select logic ensures that no memory is selected by a word access with an odd address. To 
ZSOOO microprocessors this is an Illegal condition. 

The zaooo microprocessors also access 32-bit memory "long words." Such accesses occur serially. as two 16-bit 
words. therefore no special memory interface logic is required. 

N/S and various STO-ST3 combinations can be used to separate memory functionally. 

N/S Is output low when a Z8000 microprocessor is operating in System mode; it is output high in Normal mode. 
Thus. N/S can be used to condition memory select logic so that separate System and Normal mode memory can exist in 
parallel address spaces. Similarly. if STO-ST3 is input to a 4-to-16 decoder. statuses 2 and 3 can enable separate I/O 
spaces. statuses a and 9 can select separate Data and Stack memories. while statuses C and D select program memory. 
Some or all of these status combinations can be used. with or without N/S. to implement a variety of special memory 
spaces. If all external memory exists in a Single address space. which is how most microcomputer memory is con­
figured. then you can ignore N/S. 
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For the Z8001 only, memory is segmented. and the currently selected segment is identified by the '-bit output 
SNO-SN6. In the absence of a Z801 0 Memory Management Device. SNO-SN6 is directly decoded to select appropriate 
memory segments. I n the presence of a Z801 0 Memory Management Device. however. memory select logic can ignore 
the concept of segmentation. instead deriving addresses from a 24-bit Address Bus which is output by the Z8010 
Memory Management Device. 

During a memory or I/O access machine cycle. R/W is output high for a read and low for a write. 

Slow memory or 1/0 devices can input WAIT low in order to extend a machine cycle, thereby gaining more access 
response time. WAIT timing is described later in this chapter. 

CLOCK is the single & V clock signal required by all Z8000 microprocessors. 

There are three interrupt request inputs: 

NMI is the highest priority, non-maskable interrupt request. 
VI is the vectored interrupt request. 
NVI is the lowest priority, non-vectored interrupt request. 

NMI is active on high-to-Iow transitions. Vi and NVI are active-low signals. 

SEGT is a segmentation trap interrupt request which is transmitted by the Z801 0 Memory Management Device to 
the Z8001 in response to an illegal segmentation condition. 

The response of Z8000 series microprocessors to interrupt requests is described in detail later in this chapter. 

When iiEffi is input low, Z8000 microprocessors are reinitiallzed. Reset logic is described later. following descrip­
tions of logic which is affected by a Reset. 

The BUSRQ and BUSAK signals are used by direct memory access logic; they may also be used by CPU priority arbitra­
tion logic in mUlti-CPU configurations. When BUSRQ is input low. a Z8000 series microprocessor will respond by 
floating its three-state bus lines and outputting BUSAK low at the end of the next machine cycle. Timing for these 
two Signals is given later in this chapter. 

MI and MO are used by CPU priority arbitration logic in multi-CPU configurations. Under program control. Z8000 
series microprocessors can test the level of Mi and control the level of MO. thus enabling a primitive level of handshak­
ing between CPUs. 

STOP allows Z8000 programs to be executed one instruction at a time, thus enabling implementation of typical 
computer single-stepping debug logic. The STOP signal is described later. together with Z8000 refresh logic. 

DECOUPLE is not currently connected. This Signal will be used by later versions of the Z8000 microprocessor; it will 
function as an output from an internal negative bias generator. 
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Z8001 AND Z8002 TIMING AND INSTRUCTION EXECUTION 

Z8000 series microprocessors execute instructions in straightforward sequences of machine cycles. Z8000 
machine cycles may vary in length from 3 to 10 clock periods. 

Z8000 MEMORY REFERENCE MACHINE CYCLES 
Normal memory reference machine cycles have three clock periods. Timing for memory read and memory write 
machine cycles is illustrated in Figures 6-5 and 6-6, respectively. 

Beginning with the memory read machine cycle. note that the levels output at STO-ST3 
represent the only difference between a memory read or an instruction fetch machine 
cycle. A valid 16-bit address is output via ADO-AD15 during the first clock period. AS is 
pulsed low at this time: external logic should use the trailing low-to-high transition of the AS 
pulse as its valid address strobe. For a Za002 this 16-bit address is the total address informa­
tion output by the microprocessor. But for the Za001. this 16-bit address is an offset within the 
segment specified by SNO-SN7. The segment is specified during the last clock period of 

Z8000 MEMORY 
READ MACHINE 
CYCLE 

Z8000 
INSTRUCTION 
FETCH MACHINE 
CYCLE 

the previous machine cycle so that the Za010 Memory Management Device will have one 
clock period within which to compute an effective address. Timing may be illustrated as follows: 

~TLAST--~~--T1--~·*I··---T2--~~---T3---'·~I·~--T1~ 
I 
1 __ -

External logic must have stable data on the Data/Address Bus during T3. 

During a memory write machine cycle. as illustrated in Figure 6-6. the address is output dur­
ing the first clock period and is valid on the trailing low-to-high transition of the AS pulse. as 
described for a memory read. Data output appears at ADO-AD 15 immediately after the ad­
dress. Data output is stable during the low OS pulse. 

Z8000 MEMORY 
WRITE MACHINE 
CYCLE 

External logic can extend any memory reference machine cycle by inserting Wait state 
clock periods between T2 and T3. The CPU samples WAIT in the middle of T2; if WAIT is low. 
then a Wait state clock period is inserted. Wait state clock periods continue to be inserted until 
WAIT is sampled high in the middle of a Wait clock period. Timing may be illustrated as follows: 

I: 
Wait State ~ 

---·+I·--T2----·+o----TW---++----TW---...... ---TW---j-T1--\ 

Signal levels and conditions that existed at the end of T2 are maintained for the duration of Wait clock periods. 
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..-1. --T1-----t·~I·--T2--..... ·I·I--· --T3--·1 

Address 
Valid 

Figure 6-5. A zeooo Memory Read or Instruction Fetch Machine Cycle 
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ADO-AD15 

RtW 

STO-ST3 

14----T1---_.I ..... r-----T2---...... ~I .... ---T3---~·1 
I 
I 

Address 
Valid 

Figure 6-6. A Z8000 Memory Write Machine Cycle 

Z8000 INPUT IOUTPUT MACHINE CYCLES 
Input and output machine cycle. each have a minimum of four clock period., a. iIIu.trated in Figure. 6-7 and 
6-8. 
Input and output machine cycles are very similar to memory read and write machine cycles. These are the significant 
differences: 

1) One Wait clock period is always inserted between T2 and T3 for an I/O machine cycle. Additional Wait clock 
periods can be inserted uSing the WAIT control input. 

2) MREQ is high during an I/O machine cycle since memory is not being referenced. 

3) The status output at 5TO-5T3 is 2 or 3. depending on the nature of the I/O instruction. 

A 16-bit address is output during all I/O machine cycles. Therefore. up to 65.536 I/O ports may be addressed. 
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ADO-AD15 

Rm 

STO-ST3 

I---T1---t·~I·--T2 -~·*"'I·f---Tw--i-. -T3 - ....... ·1 
I 

Address 
Valid 

1,.-.-...... 

Figure 6-7. A Z8000 I/O Port Input Machine Cycle 
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CLOCK 

ADO-AD15 

AS 

STO-ST3 

I--T1--1 .... • --T2 --"-1---TW ---t"~14-----T3 --+i_I 

I· 
I 
I 

~ 

, 
\ 
t 
\ 

Address 
Valid 

Figure 6-8. A Z8000 I/O Port Output Machine Cycle 

T1 .. I· T2 -I- T3 

I I 
I I 

f I \ J \ 

\ Undefined \ 
I 

"" 

.. I 
I 
I 

I 

Figure 6-9 A Z8000 Three-Clock-Period Internal Operation Machine Cycle 

Z8000 INTERNAL OPERATION MACHINE CYCLES 

\ 

Internal operation machine cycles may have from 3 to 8 clock periods. During the first clock period an undefined 
address is output. together with an address strobe; STO-ST3 are output low to identify the internal operation. MREQ, 
OS, and R!W are all high. Timing for a three-clock-period internal operation machine cycle is illustrated in Figure 
6-9. 
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Z8000 INSTRUCTION FETCH OVERLAP 
The Z8000 has a limited instruction fetch overlap ability. If any instruction concludes with one or more internal 
operation machine cycles, then the last internal operation machine cycle can overlap the next instruction's first instruc­
tion fetch machine cycle. This may be illustrated as follows: 

n-2 n-1 n ....-Machine Cycle No. 

Instruction x EX liNT OP liNT OP I 
2 3 ....-Machine Cycle No. 

Instruction x + 1 .. I_I_F_ ...... _E_X_ ...... _E_X_ 

INT OP - Internal operation machine cycle 
EX - Any machine cycle 
IF - Instruction fetch machine cycle 

Note that the next instruction's instruction fetch machine cycle cannot overlap a memory load instruction since there 
are no trailing internal operation cycles. Also, the last machine cycle of a jump instruction cannot be overlapped since 
the location of the following instruction has not been determined. 

The ZBOOO will only overlap a single instruction fetch machine cycle. For example, suppose an instruction concludes 
with four internal operation machine cycles, and the next instruction has two words of object code; the first object 
code word will be fetched during the previous instruction's last internal operation machine cycle, even though there 
are sufficient trailing internal operation machine cycles to fetch both words of the next instruction's object code. This 
may be illustrated as follows: 

n-4 n-3 n-2 n-1 n '--Machine Cycle No. 

Instruction x EX liNT OP liNT OP liNT OP liNT OP I 
2 3 4 ""-Machine Cycle No. 

~---~-~--~----Instruction x + 1 IF IF EX 

The instruction fetch overlap is constant for a given instruction and addressing mode and is accounted for in comput­
ing the number of clock cycles per instruction. The number of clock cycles is counted from the start of the instruction 
fetch to the start of the next instruction fetch so that the number of clock cycles in an instruction sequence can be 
computed by simply adding the number of clock cycles given for each instruction without worrying about which in­
structions overlap and which don't. 

Z8000 DYNAMIC MEMORY REFRESH 
Z8000 microprocessors have built-in dynamic memory refresh logic. This logic is based on a 
Refresh Counter that can be accessed by special assembly language instructions. The 
Refresh Counter Is a 16-bit register which may be illustrated as follows: 

15 14 13 12 11 10 9 8 65432 o ....-BitNo. 

Z8000 
REFRESH 
COUNTER 

Refresh Counter 

L.----------Row identifier 

L.....---------------------Rate constant 

'----------------------------Enable 

Refresh logiC is enabled by setting bit 15 of the Refresh Counter to 1. The refresh rate is determined by the six rate con­
stant bits. The value in these six bits is decremented on every fourth CLOCK pulse. The rate constant initial value is 
saved and restored when the rate constant decrements to O. At this time a refresh machine cycle is enabled. 

Thus, using a standard 4 MHz clock, the value loaded into the rate constant bits of the refresh counter allows any inter­
val ranging between 1 and 64 microseconds to separate memory refresh machine cycles: 

Rate = 4 x CLOCK x (RA TE CONSTANT) ; RATE CONSTANT :f:. 0 
Rate = 4 x CLOCK x 64; RATE CONSTANT = 0 
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I: 
Memory Refresh 

:1 T1 -\- T2 -I· T3 

I I 
I I 

ADO-AD15 

STO-ST3 Refresh =1 

Address Output = Row from Refresh Counter 

Signals not illustrated preserve values at end of prior machine cycle. 

Figure 6-10. A Z8000 Memory Refresh Machine Cycle 

When the rate constant bits of the Refresh Counter decrement to 0 and trigger a refresh machine cycle, this 
machine cycle will in fact occur at the next available refresh access point in the normal sequence of instruction 
execution machine cycles. These are the available access points: 

1) Following the first instruction fetch machine cycle of any instruction's execution. 

2) In between repeated sequences of machine cycles for instructions with long execution times. These include MUL T. 
MUL TL. DIV. DIVL. HALT. MREQ. all shift instructions. and all block move instructions. 

3) During a Stop condition. This is a special case which is described below. 

Memory refresh machine cycle timing is illustrated in Figure 6-10. The refresh address which is output is taken from 
the nine row bits of the Refresh Counter. The Refresh Counter row bits are then incremented by 2. Thus 256 rows may 
be addressed. 

THE Z8000 STOP AND SINGLE-STEPPING LOGIC 
The STOP input signal can be used to suspend an instruction's execution. This logic is frequently used to imple­
ment single-stepping, whereby a program can be executed one instruction at a time, while being debugged. 

The STOP signal, when input low, puts a Z8000 microprocessor into a Stop condition. The Stop condition begins 
with an instruction fetch machine cycle, and continues with dynamic memory refresh machine cycles. The Stop 
condition lasts until STOP is input high again. This may be illustrated as follows: 

EX EX IF MR ~~ MR MR MR MR EX EX 

STOP \ I 12 
EX - Instruction execute machine cycle. 
IF - Instruction fetch machine cycle. 
MR - Memory refresh machine cycle. 
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The signal is sampled in the middle of the last clock period during the last machine cycle of every instruction's execu­
tion. This may be illustrated as follows: rn ·1· T2 ·1· T3 I· T1----1 

I I 
I I I I I 

CLOCK~ \ I \ I 
~-

I \ I L 
Sample STOP 

Within the Stop condition. the STOP signal is sampled in the middle of the last Clock period of every refresh machine 
cycle. 

The initial instruction fetCh machine cycle which begins the Stop condition fetches the next sequential instruction. 
This instruction is also executed if it happens to be a short instruction that executes within the one instruction fetch 
machine cycle. But if the fetched instruction requires additional execution machine cycles. then these are suspended 
until the end of the Stop condition. 

Therefore. the Stop condition may separate two Instructions. or it may split a single instruction. 

If a one-machine-cycle instruction follows STOP being detected low. then this entire instruction is executed at the 
beginning of the Stop condition. and a new instruction is executed at the end of the Stop condition. This may be illus­
trated as follows: 

EX IF MR MR : MR MR MR MR IF I EX 

I 
..... 

f STOP \ I 
Instruction n Instruction n + 1 

executed executed 

In this case. the STOP signal must be brought low before the end of the next machine cycle in order to stop after the 
next instruction fetch for Single-stepping. This may be illustrated as follows: 

I EX I IF I MR I MR 
H 

MR I MR I MR I IF I MR I MR ...... 
' .. 

n .~ 

STOP \ ...... I \ .... 

Instruction n Instruction n + 1 
executed executed 

If. on the other hand. a multi-machine cycle instruction is to be executed after STOP is detected low. then the first in­
struction fetch machine cycle occurs at the beginning of the Stop condition. but remaining machine cycles for the in­
struction occur at the end of the Stop condition. This may be illustrated as follows: 

Instruction n 
executed 

Figure 6-11 summarizes Z8000 Stop condition timing. 
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Last machine cycle Instruction fetch Refresh machine cycles while CPU is stopped Continue execution 

T1 I T2 I T3 T1 I T2 T3 T1 T2 T3 T1 T2 

ADO-AD16 

Program Counter Contents 

First word of next instruction object code 

Refresh row address 

Refresh row address 

Figure 6-11. Z8000 Stop Condition Timing 

While STOP Is being Input low. refresh logic bypasses the refresh rate constant. The rate constant continues to 
decrement every fourth clock cycle; however. continuous refresh machine cycles are executed. with the nine row bits 
of the Refresh Counter being incremented by 2 following each refresh machine cycle. 

While STOP is input low. refresh machine cycles are executed. as described above. even if refresh logic has been dis­
abled. 

THE Z8000 HOLD STATE 
The BUSRO Input and iUiAi output provide Z8000 microprocessors with Hold state logic. External logic that 
wishes to acquire bus control Inputs BUSRO low to the CPU. The CPU samples BUSRQ at the beginnin~ 
machine cycle. If BUSRO Is low. then at the conclusion of the current machine cycle. the CPU outputs BUSAK 
low and floats all three-state signals. This condition lasts until iUSRO. Is input high again: three clock periods 
later. suspended instruction execution resumes with the machine cycle which would have been executed. had the 
bus not been floated. Timing Is Illustrated In Figure 6-12. 

Note that the MI and MO signals are not comparable to BUSRO and BUSAK. MI and MO provide program con­
trolled inter-CPU handshaking; alternatively. they can be looked upon as undefined status input and control output sig­
nals. 

THE Z8000 HALT STATE 
Following execution of the Halt Instruction. a Z8000 microprocessor will enter a Halt state. during which an 
endless sequence of internal operation machine cycles will be executed. If memory refresh logic has been 
enabled. then memory refresh machine cycles will be interspersed among the internal operation machine cycles. The 
time interval between memory refresh machine cycles will be determined by normal Refresh Counter logic. This is in 
sharp contrast to the Stop condition. during which an endless sequence of refresh machine cycles are output. bypass­
ing Refresh Counter logic. 

No special signal or status is output by a Z8000 microprocessor to identify the Halt state. A Halt state is ended by 
an interrupt. a segmentation trap. or a Reset. These signals are acknowledged as they would be during any internal 
operation machine cycle. This logic is described next. 
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InIT:-I--T3----11··I~ .. • -T-X-----
CPU Float~: --T-X---TX-.-J"I 

I 
I 

AS, STO-ST3, SNO-SN6, MREQ, OS, --__ --t 
B/W,RiW,Nis ..... ---.....,~l-------f~ .... __ 

AOO-A015 

Signal levels at ® are restored at ® 

Figure 6-12. zaooo Hold State 

THE zeooo INTERRUPT ACKNOWLEDGE SEQUENCE 

T1 

A non-maskable interrupt is requested by a high-to-Iow transition ofNMI. VI, NVI, and SEGT, on the other hand, 
are level-sensitive signals; low levels input at these signals request vectored interrupts (for vn, non-vectored 
Interrupts (for NVn, or a segmentation trap interrupt (for SEGT). 

The Z8000 microprocessors have three software traps. They are: 

1. System Call. This interrupt is initiated by the execution of a System Call instruction. (See Ta­
ble 21-2.) 

Z8000 
SOFTWARE 
TRAPS 

2. Illegal Instruction. This trap is initiated by an attempt to execute an undefined instruction object code. 

3. Privileged Instruction. Certain instructions are available for execution in System mode only. An attempt to execute 
one of these instructions in Normal mode will cause a Privileged Instruction trap. 

zaooa CPU logic checks for interrupt conditions at the beginning of T3, in the last machine cycle of every instruction's 
execution. A prior high-to-Iow transition of NMI or a low level at VI. NV!. or SEGT initiates the interrupt acknowledge se­
quence. In addition, internal traps can generate interrupts. In the event that two or more interrupting conditions exist 
simultaneously, priorities are arbitrated as follows: 

Internal trap (highest) 
Non-maskable interrupt 
Segmentation trap 
Vectored interrupt 
Non-vectored interrupt (lowest) 

The interrupt acknowledge sequence, as Illustrated in Figure 6-13, begins with an aborted instruction fetch 
machine cycle. During this machine cycle the next instruction's object code is fetched in the usual way, but this object 
code is discarded, and the Program Counter is not incremented. The CPU operating mode is automatically switched 
from Normal to System. 
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Aborted 
Last machine cycle Instruction fetch 

T1 T2 T3 T1 T2 T3 T1 T2 

ADO-AD15 

STO-ST3 D 

Interrupt acknowledge 

TW TW I Twi Twi TW 
I I I 
I I I 

Identifier 

4.5.6 or 7 

T3 T4 T5 

Status 
Saving 

T1 1T2 
I 
I 

__ J~ __________ ~ __________________________________ ~~ __ ~ 

Figure 6-13. Z8000 Interrupt Acknowledge Sequence 

Following the aborted instruction fetch. there follows an interrupt acknowledge machine cycle which has five 
Wait states automatically inserted between T2 and T3. External logic can insert additional Wait states. using the WAIT 
input. as previously described. During the T3 clock period of the interrupt acknowledge machine cycle. external 
logic must place an "identifier" on the Data Bus. The way in which this identifier is used will vary. depending on the 
nature of the interrupt being acknowledged. The identifier is used by Z8000 interrupt acknowledge logic. in con­
junction with the New Program Status Area Table. illustrated in Figure 6-14. As shown in Figure 6-14. this table 
can reside anywhere in memory. providing it originates at the beginning of a 256-byte page. The New Program Status 
Area Pointer addresses the origin of the New Program Status Area. 

Each identifiable interrupt has its own data stored in the new program status area. For a non segmented Z8002. 
two 16-bit words are stored as follows: 

New Flag and Control 
Word Contents 

New Program Counter 
Contents 

For a segmented l8001. four l6-bit words are stored as follows: 

Reserved Word 
(always zero) 

New Flag and Control 
Word Contents 

New Program Counter 
Segment Number 

New Program Counter 
Offset 

We described these registers earlier. for the l8001 and the l8002. when examining Z8000 programmable registers. 
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l8002 l8001 

New Program 
Status Area Pointer 

New Program 
Status Area Pointer 

New Program 
Status Area 

ssOO 

~XOO r------~POO 

Non-Segmented addresses xxOO Not used ppOO Segmented offset addresses 

Vi 

(y = x + 2) 

I FCW = Flags and Control Word 

PC = Program Counter 

I 

I 

I 

xx04 

xx08 

xxOC 

xx10 

xx14 

xx18 

xx1 C 

xx1E 

xx20 

xx22 

xx24 

xy1C 

Illegal 
Instruction 

Privileged 
Instruction 

System Call 

Segmentation Trap 
(l8001 only) 

pp08 

pp10 

pp18 

pp20 

pp28 

pp30 

FCW pp38 ~ 
~--------------~ 

PC pp3C 
t--------i 

PC pp40 

PC pp44 
~--------------~ 

PC pp48 

I 
PC 

PC 

PC pq38 (q = p + 4) 

Figure 6-14. zaooo New Program Status Area 
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The segmentation trap. internal software traps. non-maskable interrupt. and non-vectored interrupt have dedicated 
locations in the New Program Status Area. For these interrupts. the identifier which is fetched during the acknowledge 
cycle can be used in any way. Typically. it will identify the source or nature of the interrupt. For a non-maskable inter­
rupt. a non-vectored interrupt. or segmentation trap. or an internal software trap. all 16 bits of the identifier are avail­
able. 

For vectored interrupts. the low-order byte of the identifier must provide the offset of the New Program Status Area ad­
dress for the interrupting device's status area entry. This may be illustrated as follows: 

New Program Status Area Pointer I .. -_x_x_o_o-... 11 
FCW from xx1 Cor pp38 

_---_ PC from xxOO + (ss-2 + 7E) or ppOO + (ss-4 + 3C) 

Identifier LI __ r_r _5s_ ...... 1 

We can summarize identifier interpretations as follows: 

Identifier 
Segmentation trap: iiii 

System Call: wwii 
Illegal Instruction: wwww 

Privileged Instruction: wwww 
Non-Maskable Interrupt: iiii 
Non-Vectored Interrupt: iiii 

Vectored Interrupt: iill 

The summary given above lists the identifier contents as a sequence of four hexadecimal digits. Letters are used as 
follows: 

1) i represents any programmer defined identifier information. 

2) I represents the offset for the memory address in the New Program Status Area where the new Program Counter 
contents are stored. 

3) w represents the first word (or byte) of the Instruction object code for the instruction which causes a software tap. 

Following the interrupt acknowledge machine cycle. data is pushed onto the System Stack. and is loaded into registers. 
in the following sequence: 

za002 

Push PC 
Push FCW 
Push Identifier 
Load FCW 
Load PC 

za001 

Push PC offset 
Push PC segment 
Push FCW 
Push identifier 
Load FCW 
Load PC segment 
Load PC offset 

A Return-from-Interrupt instruction discards the word at the top of the System Stack - assuming this to be the iden­
tifier - then pops the top of the System Stack. restoring the saved Program Counter. and the Flag and Control Word 
contents. The mode is determined by the saved FCW. thus restoring conditions to those that existed before the inter­
rupt acknowledge. 
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THE Z8000 RESET 
You r ••• t a Z8000 microproc ••• or by holding the RESET input low for at I.a.t five clock p.rlod •. This causes sig­
nals to be adjusted as follows: 

1) ADO-AD 15 are floated 

2) AS. OS. MREQ. BUSAK. and MO are output high 

3) STO-ST3 and SNO-SN6 are output low 

4) RIW. B/W and N/S are unaffected; they retain whatever signal levels they previously had 

5) Dynamic memory refresh logic is disabled 

When RESET goes high again. three clock periods elapse. then two consecutive memory read machine cycles are ex­
ecuted. The Flag and Control Word and the Program Counter are reinitialized as follows: 

Z8002 Z8001 
FCW from 0002 FCW from 0002 
PC from 0004 PC segment from 0004 

PC offset from 0006 

Program execution then proceeds with the program identified by the new Program Counter contents. 

THE Z8000 INSTRUCTION SET 
Th. Z8000 in.tructlon •• t i •• ummarlz.d in Tabl. 6-3. In.truction obj.ct cod •• and .x.cution tim •• ar. giv.n 
alphab.tically in Tabl. 6-4. In.truction obj.ct cod •• ar. giv.n num.rically in Tabl. 6-5. 

Th. most striking charact.ri.tic of the Z8000 in.tructlon •• t i. it. ord.rlin •• s. Despite its complexity. this instruc­
tion set should be relatively easy to learn. since variations are consistent. and therefore predictable. This is in sharp 
contrast to Zilog's previous offering. the Z80. which was frequently criticized for its complex and disorderly assembly 
language. 

The Z8000 instruction set is also powerfu I; it at least equals that of any other 16-bit microprocessor. and will rival most 
16-bit minicomputers. 

L.t u •• xamln. the Z8000 in.truction •• t by in.truction cat.gori •• , as giv.n in Tabl. 6-3. 

All I/O port. ar. addr •••• d u.ing 16-bit I/O port addr.s ••• , which may be .p.cifi.d dir.ctly, or via a 16-bit 
r.gi.t.r. Thus 65.536 I/O ports may be addressed. 

All I/O in.truction. have a byte v.rsion and a word v.r.ion. The byte version inputs and outputs 8-bit data. The 
word version inputs and outputs 16-bit data. 8-bit data is output twice. on both halves of the 16-bit Data/Address Bus. 
Input data is read off the eight low-order Data/Address Bus lines for input instructions with odd addresses; it is read off 
the eight high-order Data/Address Bus lines for input instructions with even addresses. Note that this is the same as 
byte addressing for memory locations. 

A general characteristic of Zilog microprocessor components is the extensive use of block 
transfer logic. Instructions that repeatedly re-execute to move blocks of data occur throughout 
the Z8000 instruction set. beginning with I/O instructions. Both the byte and word v.r.ion. 

Z8000 I/O 
INSTRUCTIONS 

of IN and OUT instruction. have auto-incr.m.nt and auto-d.cr.m.nt variation. that may be illustrated as follows: 

xxxxxx::~ 
xxxx+2 

xxxx+3 . . . . 
xxxx+n-l~ 
xxxx+n~ 

---~ 

This I/O port 

~ 0 address is 
... -4----- held in a 

1 6-bit register 

This address. held in a A 1 6-bit register 
16-bit register. is initially holds n. 

incremented or decremented the byte count 
between re-executions 
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Block transfer instructions may transfer a single data byte or word and then stop. leaving cou nters and pointers ready 
to handle the next byte; alternatively. instructions may transfer the entire data block within a single execution. In the 
latter case. interrupt requests are acknowledged between byte or word transfers; also. dynamic memory refresh cycles. 
if enabled. will be inserted at the proper time. 

The entire input and output instruction set is repeated for a set of "special" 1/0 instruc­
tions. (The simple input and output instructions are repeated only for the direct 1/0 port varia­
tion.) The special I/O instructions are intended for use with a Za010 Memory Management 
Device or other special system components which may become available in the future. The 

Z8000 
SPECIAL 1/0 
INSTRUCTIONS 

only difference between special I/O instructions and normal I/O instructions is that special I/O instructions output 0011 
via the status lines STO-ST3. Normal I/O instructions output 0010. 

zaooo memory reference instructions generally use one of seven memory addressing modes. 
all except the first one represented in Tables 6-3. 6-4. and 6-5 by the label adrsx. These 
seven addressing modes are: 

Mode 
1) Nonsegmented. implied 
2) Nonsegmented. direct 
3) Short segmented. direct 
4) Long segmented. direct 
5) Nonsegmented. indexed 
6) Short segmented. indexed 
7) Long segmented. indexed 

The operand abbreviations used above are defined prior to Table 6-3. 

Operand 
@ris 
addr 
addrss 
addrls 
adddri) 
addrss(ri) 
addrls(ri) 

Z8000 
PRINICIPAL 
MEMORY 
ADDRESSING 
MODES 

Refer to the earlier description of zaooo memory addressing modes for a more complete description of the seven 
modes summarized above. 

Although zaooo primary memory reference instructions generally use the seven memory ad­
dressing modes listed above. base relative addressing. implied. indexed addressing. and pro­
gram relative addressing options are also available. 

All primary memory reference instructions have byte and word version; most also have long 
word versions. 

Secondary memory reference instructions use only the seven memory addressing modes. 
There are byte and word versions for nearly all secondary memory reference instructions. but 
long word versions are scarce. 

An anomaly of the Z8000 instruction set is the shortage of Add-with-Carry and Subtract­
with-Borrow instructions: they are only available as register-register operate instructions. No 
long word Add-with-Carry or Subtract-with-Borrow is available. 

Z8000 
PRIMARY 
MEMORY 
REFERENCE 
INSTRUCTIONS 

Z8000 
SECONDARY 
MEMORY 
REFERENCE 
INSTRUCTIONS 

Multiply and divide instructions have register-register and memory-register versions. Both have word and long 
word options. 
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The divide instruction holds the dividend in CPU registers; the divisor may reside in memory or in 
CPU registers, or it may be an immediate operand. Both the divisor and the dividend are treated as 
signed binary numbers. After the division instruction has been executed, the quotient is returned 
in the low-order half of the dividend register space, while the remainder is returned in the high­
order half of the dividend space. A word division may be illustrated as follows: 

16-bit 

{ RN;f::~ I: liii 
RR RN+ 1 qqqq . zzzz 

RN+2 

ppppqqqq (. d .... ) ---yyyy = zzzz remain er = JJJJ 

RN is the high-order register 
RN+ 1 is the low-order register 
j, p, q, y, and z represent any hexadecimal digits 
RN is a 16-bit register 
RR represents a 32-bit register pair. as illustrated in Figure 6-3. 

Long word division may be illustrated as follows: 

16-bit 
Registers 

jjjj 

kkkk 

vvvv 

wwww 

ppppqqqqsssstttt 
~-'--~-'---- = vvvvwwww 

j. k, p, q. s. t. v. w. x. and y represent any hexadecimal digits. 
RQ represents a 64-bit register, as illustrated in Figure 6-3. 

The sign of the remainder is always the same as the sign of the dividend. 

The divisions instruction modifies status flags as follows: 

16-bit Register. or 
2 memory bytes 

yyyy 

32-bit Register. or 
4 memory bytes 

W 
~ 

Z8000 
DIVIDE 
INSTRUCTION 

Carry (C). If the quotient overflows or underflows, then C is set. For a word divide, the quotient underflows if it is less 
than -2 15; it overflows if it is 215 or more. For a long word divide. the quotient overflows if it is less than -231 ; it over­
flows if it is 231 or more. 

Zero (Z). The Zero status is set to 1 if the quotient or divisor is O. It is cleared otherwise. 

Sign (S). The Sign status reports the sign of the quotient; it is set if the quotient is negative; it is reset if the quotient is 
positive. 

Overflow (0). The Overflow status is set to 1 if the divisor is 0, or if the quotient cannot fit into the low-order half of the 
dividend space. 

The divide instruction's execution is aborted if the dividend high-order half absolute value is larger than the divisor ab­
solute value. This may be illustrated as follows: 

Abort if Ippppi > Iyyyyl 
Abort if IPpppqqqq\ > Ixxxxyyyyl 
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The multiply instruction also has word and long word versions. The multiplicand is held in CPU 
registers. The multiplier may be held in data memory. in CPU registers. or it may be provided im­
mediately by the multiply instruction. The product is returned in CPU registers. The word option 
may be illustrated as follows: 

16-bit 
Registers 

{R:~~pppp 
RR~ zm emz . yyvy ~ ppppqqqq 

P. q. y. and z represent any hexadecimal digits. 

RR represents a 32-bit register pair. as illustrated in Figure 6-3. 

Long word multiplication may be illustrated as follows: 

16-bit 
Registers 

P. q. s. t. v. w. x. and y represent any hexadecimal digts. 

RQ represents a 64-bit register. as illustrated in Figure 6-3. 

16-bit Register. or 
2 memory bytes 

yyyy 

32-bit Register. or 
4 memory bytes 

xxxx 
yyyy 

Z8000 
MULTIPLY 
INSTRUCTION 

The multiply instruction treats all numbers as signed binary values. Status flags are adjusted as follows: 

Carry (CI. C is set for overflow or underflow. For word multiplication. underflow occurs if the answer is less than -215; 
overflow occurs if the answer is 215 or more. For long word multiplication. underflow occurs if the product is less than 
-231 ; overflow occurs if the product is 231 or more. Carry is cleared if there is no underflow or overflow. 

Zero (Z). The Zero status is set if the result is 0; it is cleared otherwise. 

Sign (S). The Sign status is set for a negative result; it is reset otherwise. 

The Overflow status is always cleared. 

The LOPS instruction is somewhat unusual in that it loads both the Program Counter and the Flag 
and Control Word. Data is taken from memory as follows: 

Non-Segmented 
(Memory bytes) 

FCW (HI) 

FCW (LO) 

PC (HI) 

PC (LO) 

The LDPS jump instruction uses indirect memory addressing. 
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Segmented 
(Memory bytes) 

00 

00 

FCW (HI) 

FCW (LO) 

PCSEG(HI) 

PCSEG(LO 

PCOFF(HI) 

PCOFF(LO) 

Z8000 LDPS 
INSTRUCTION 



A subroutine CALL can use segmented implied memory addressing: 

{ 
RN~ 

RR RN+'~ 

The System Call instruction generates an interrupt acknowledge sequence. You will recall 
from the discussion of Z8000 interrupt acknowledge logic given earlier in this chapter that an in­
terrupt identifier is pushed onto the Stack during every interrupt acknowledge sequence. For the 
System Call instruction, this identifier is the System Call instruction object code; the low-order 

Z8000 
SUBROUTINE 
CALL 

Z8000 
SYSTEM 
CALL 

byte is an 8-bit immediate data value which you specify in the instruction operand. This may be illustrated as follows: 

SC xx 
~ 
7F xX16 

Note that the JP conditional jump instruction can use segmented implied memory ad­
dressing. As we might expect from a Zilog high-end microprocessor, the Z8000 has a 
large number of block transfer and search instructions. These instructions come in 
groups of eight. For each type of instruction there are four word versions and four comparable 
byte versions. The four versions include an increment. an increment and repeat. a decrement. 
and a decrement and repeat. See our earlier discussion of block transfer I/O instructions for a 
general description of these four variations. 

The LDM block transfer instructions move data between a number of 16-bit registers 

Z8000 
CONDITIONAL 
JUMP 
INSTRUCTIONS 

Z8000 BLOCK 
TRANSFER 
INSTRUCTIONS 

and memory. You can transfer data from memory words to 16-bit registers or from 16-bit registers to memory words. 
You can transfer from 1 to 16 words in a Single execution. Register addressing is wrap-around. For example, the in­
struction: 

LDM R13.THERE,6 

will transfer six words of data from memory to registers. in the following sequence: 

Memory 

THERE R13 

THERE+2 R14 

THERE+4 R15 

THERE+6 RO 

THERE+8 R1 

THERE+10 R2 

Among the block transfer and search instructions there is a group of translate instructions. These are table look-up in­
structions; they work as follows: 

16-bit Registers 

RM I popp 

• . 

TRxB @RM.@RN.RW 

~• ----I .--r xxxx 
RN xxxx -----~ + yy 

ppp-1 

zzzz---...... ~ 

zzzz+1 

8-bit Memory 

..... --....... 

..... --....... 

RW is decremented and RM is incremented or decremented, depending on the instruction. 
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As illustrated above. the contents of the destination memory location serve as an 8-bit index into a memory table. The 
contents of the addressed table byte replace the index. RH1 is used. and left with an undefined value. Translate instruc­
tions are typically used to convert characters from one code to another. For example. a single translate instruction 
could convert an EBCDIC character to an ASCII character. In this case the EBCDIC character code would constitute an 
index into a 256-byte ASCII code table. At the location specified by the EBCDIC code. you would store the ASCII 
equivalent. Executing a translate instruction would then cause the ASCII equivalent of an EBCDIC code to be loaded 
into the memory location in which the EBCDIC code had been stored. 

A variation of the Translate instruction is a Translate-and-Test. which loads the addressed table byte into Register RH1. 
but leaves it there. The Z flag is set if RH1 is O. and Overflow is set if the counter decrements to O. 

~!""""""'~~ ........ - .. 
There are a deceptively large number of shift Instructions listed in the register operate Z8000 SHIFT 
group. In fact, the only difference between an arithmetic and a logical left shift lies in the INSTRUCTIONS 
Overflow status. For an arithmetic shift this status is set if the high-order (Sign) bit changes 
following the shift; the Overflow status is cleared otherwise. Following a logical shift the Overflow status is undefined. 
For right shifts the Sign bit is replicated for arithmetic shifts. while zeros are filled in for logical shifts. 

The only difference between a dynamic shift and a non-dynamic shift is in the location of the shift bit count. A dynamic 
shift takes its bit count from a CPU register. 

A non-dynamic shift takes its bit count from immediate data provided by the instruction operand. 

Note from our earUer discussion of the Z8000 Stack that the Stack address is incre-
mented for a pop and decremented for a push. In other words. the bottom of the Stack has 
the highest memory address. and the top of the Stack has the lowest memory address. 

Four instructions control the MI input and MO output signals. They are MBIT, MREQ, 
MRES, and MSET. 

MBIT simply inverts the level of the Mi input and returns it in the Sign status. 

MRES outputs a high signal via MO. while MSET outputs a low signal via MO. 
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MREQ uses MI and MO to request external access. This instruction uses Zero and Sign statuses. MREQ execution logic 
may be illustrated as follows: 

z=o 

MO= 1 

Decrement 
Counter 

to 0 

5=0 
MO=O 

Z=l 

Yes 

Yes 

5=0 
MO=O 

5=1 

When the MREQ instruction begins execution, the Zero status is cleared; it is set to 1 after MREQ has completed execu­
tion if a request was signalled. 

The MI input is tested to see if the external resource being arbitrated is available. If MI is low, then the resource is not 
available; MO is output high and the Sign status is reset to O. 

If MI is being input high, then the external resource is available. MO is output low, then a time delay is inserted by 
decrementing the contents of a 16-bit register to O. This delay gives external logic time to receive and propagate MO. 
External logic must acknowledge the resource request by inputting MI low. In response to MI low, MREQ sets the SJ.9.!! 
status and the Zero status to 1. But if MI is still high after the counter has decremented to 0, then MREQ outputs MO 
high, resets the Sign status to 0, and sets the Zero status to 1. Therefore, following execution of the MREQ instruction, 
CPU logic interprets results as follows: 

Sign Zero 

o 
o 
o 
o 
1 
1 
1 
1 

o 
o 
1 
1 
o 
o 
1 
1 

MO 

o No request made 
1 Not possible 

~} :::U:::s:~ede but not granted 

1 Request made and granted 
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THE BENCHMARK PROGRAM 
The Z8000 can execute our benchmark program using just three instructions. We assume the following memory 
map: 

These words 
must be 

moved 

l6-bit 
Memory 

Locations 

NLOC IOBUF 
t------I 

NLOC+2 FREE 
t------I 

NLOC+4 COUNT 

· · I 

IOB~~ 

I I Words 
• • 
I • 

IOBUF+NB 
I • 

• • · '-TABLE§ 
• • 
• I · . 'REE'a';'" , ... Tobie Wo", 

I , 

• • s 
Using the LDM Multiple Register Load instruction. we can initialize the addresses and word count in appropriate 
registers for an LDIR Block Transfer and Repeat instruction. Finally. we update the address of the first free table word. 
Here is the necessary instruction sequence: 

!LOAD 10BUF STARTING ADDRESS INTO R1. TABLE STARTING 
!ADDRESS INTO R2. WORD COUNT INTO R3 

LDM R1. NLOC. 3 
LDIR @R2. @R1. R3 !MOVE DATA BLOCK 
LD NLOC+2. R2 !UPDATE ADDRESS OF FIRST FREE WORD IN 

TABLE 

NLOC DA 10BUF !I/O BUFFER BASE ADDRESS 
DA FREE !DATA TABLE FIRST FREE WORD ADDRESS 
DA COUNT !WORD COUNT 
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The nomenclature used to identify Z8000 registers is given in Figure 6-3. 

The following abbreviation. are u.ed in Table. 6-3, 6-4, and 6-5: 

addr 
addrls 
addrss 
adrsx 
b8 
b16 
cc 
data8 
data16 
data32 
disp 
FCW 
FLAGS 
flag 
int 
ioaddr 
(I/O) 
MI 
MO 
MSB 
n16 
NSPOFF 
NSPSEG 
PC 
PCOFF 
PCSEG 
PSAPOFF 
PSAPSEG 
rb 
rbd 
rbs 
REFRESH 
ri 
rid 
ris 
rid 
rls 
rqd 
rw 
rwd 
rws 
SP 

any 16-bit nonsegmented address 
any 32-bit long segmented address 
any 16-bit short segmented address 
one of six standard memory addressing modes 
immediate value in the range 0-7 
immediate value in the range 0-15 
condition codes. as summarized in Table 6-2 
8-bit immediate data value 
16-bit immediate data value 
32-bit immediate data value 
address displacement 
the Flags and Control Word 
low-order byte of FCW 
any or all of C. S. P. O. Z 
either or both of NVI. VI 
an I/O device 16-bit address 
an identifier specifying that the prior address is an I/O address 
the MI signal input level 
the MO signal output level 
the most significant (high-order) bit of any data value 
immediate value in the range 1-16 
Normal Stack Pointer offset 
Normal Stack Pointer segment 
Program Counter 
Program Counter offset 
Program Counter segment 
Program Status Area Pointer offset 
Program Status Area Pointer segment 
any byte register 
any byte register serving as a destination 
any byte register serving as a source 
Refresh Counter 
any 16-bit index register 
any 16-bit register providing implied destination address 
any 16-bit register providing implied source address 
any 32-bit register serving as a source 
any 32-bit register serving as a source 
any 64-bit register serving as a destination 
any 16-bit register 
any 16-bit register serving as a destination 
any 16-bit register serving as a source 
Stack Pointer (R15 or RR14) 
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Object Code b - immediate value corresponding to b8 or b16 
c - condition code (see Table 6-2) 

Statuses 

d - destination register 
f - code for flags operated on: CZSP/V 
i-index or implied register. If i = 0 no register is specified 
n - immediate value corresponding to n16 
pppp - 16-bit address word or most significant word of 32-bit address 
qqqq - least significant word of 32-bit address 
r - register 

0000 = RO. RRO. ROO. or RHO 
0001 = Rt or RH1 

0111 = R7. or RH7 
1000 = R8. RR8. R08. or RLO 

1110 = R14. RR14. or RL6 
1111 = R 1 5 or RL 7 

s - source register 
ttttttt - 7-bit unsigned displacement 
vv - code for interrupts (VI and/or NV\) 
xx - 8-bit address displacement 
xxx - 12-bit address displacement 
xxxx - 16-bit address displacement 
yy - 8-bit immediate data 
yyyy - 16-bit immediate data or most significant word of 32-bit data 
zzzz - least significant word of 32-bit immediate data 
The Z8000 has the following status flags: 

C - Carry status 
Z - Zero status 
S - Sign status 
P - Parity status 
o -Overflow status 
D - Decimal-Adjust 
H - Half-Carry 

The following symbols are used in the Status columns: 

x - flag is affected by operation 
(blank) - flag is not affected by operation 
1 - flag is set by operation 
o - flag is reset by operation 
U - flag is unknown after operation 

[ [] ] contents of the memory location or I/O port whose address is contained in the designated register 
[] contents of memory location. I/O port. or register 

data is transferred in the direction of the arrow 
data is exchanged between the designated locations on both sides of the arrows 

V logical OR 
A ~g~aIAND 
E9 logical Exclusive OR 
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Instruction Mnemonics: 

The fixed part of an assembly language instruction is shown in UPPER CASE. the variable part (immediate data. register 
name. etc.) is shown in lower case. 

Instruction Object Codes: 

Instruction words are shown as hexadecimal digits with 4-bit variable fields indicated by lower case letters (e.g .. 67ib). 

Instruction words with variable fields that are not multiples of 4 bits are shown as a pair of hexadecimal digits followed 
by 8 binary bits (e.g., 7C 000001 vv) 

Instruction Execution Times: 

Tables 6-3 and 6-4 list instruction execution times in clock cycles. Real time is obtained by dividing the number of 
clock cycles by the clock speed. 

When several possible execution times are indicated (i.e .. 15-19) the number of clock cycles depends on addressing 
and segmentation modes. The relationship is as follows: 

Clock Cycles = x-y 
Addressing Mode Clock Cycles 

2) addr x 
3) addrss y-3 
4) addrls y-1 
5) addr(ri) x+1 
6) addrss(ril y-3 
7) addrls(ril y 

For two execution times (i.e .. 10, 15) the first is for Nonsegmented mode. the second for Segmented mode. 

Instruction times which depend on condition flags are indicated with a slash (i.e., 10. 15/7) with the first time(s) for 
condition met and the second for condition not met. 

Table 6-2. Condition Codes Used by the zaooo Assembly Language Instruction Set 

Code CC Value Meaning Status Conditions 

- 8 Always true Any 

C 
7 

Carry 
C=1 

ULT Unsigned less than 

EQ 
6 

Equal 
Z=1 

Z Zero 

GE 9 Signed greater than or equal S$O=O 

GT A Signed greater than Z V (S E9 0) = 0 

LE 2 Signed less than or equal Z V (S E9 0) = 1 

LT 1 Signed less than S{90=O 

MI 5 Minus S=1 

NC No Carry 
C=O 

UGE F Unsigned greater than or equal 

NE 
E 

Not equal 
Z=O 

NZ Not zero 

NOV No overflow 
PIO = 0 

PO 
C Parity is odd 

PE Parity is even 
PIO = 1 

OV 4 Overflow 

PL 0 Plus S=O 

UGT B Unsigned greater than CVZ=O 

ULE 3 Unsigned less than or equal CVZ=1 
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Table 6-3. A Summary of the Z8000 Instruction Set 

= 
Clock Status 

Type Mnemonic Operand(s) Op Code >- Operation Performed 
ID Cycles H D 0 P S Z C 

IW rwd,@rw 30sd 2 10 [rwdl - [[rwllU/O) 
IN" rwd,ioaddr 3Bd4 pppp 4 12 [rwdl- [ioaddrlU/O) 

Input to 16-bit register rwd a data word from the 1/0 port addressed 
directly by ioaddr, or implied by rw. 

INB" rwd,@rw 3Csd 2 10 [rbdl- [[rwllU/O) 
INB" rwd,ioaddr 3Ad4 pppp 4 12 [rbdl - [ioaddrlU/O) 

Input to 8-bit register rbd a data byte from the 1/0 port addressed 
directly by ioaddr, or implied by rw. 

INO" @rid,@ris,rw 3Bs8 Ord8 4 21 X [[ridll- [[risllU/O). [ridl- [ridl- 2. [rwl- [rwl- 1 
If [rwl = 0 then 0 = 1. Otherwise 0 = O. 

INOB" @rid,@ris,rw 3As8 Ord8 4 21 X [[ridll- [[risllU/O). [ridl - [ridl - 1. [rwl - [rwl - 1 
If [rwl = 0 then 0 = 1. Otherwise 0 = O. 
Input a 16-bit data word (for INO) or a data byte (for INOB) from the 
1/0 port implied by ris to the memory word (for INO) or byte (for INOB) 
implied by rid. Decrement the implied memory address in rid by 2 (for 
INO) or by 1 (for INOB). Decrement the 16-bit counter rw by 1. If rw 

m contains 0, set the Overflow status. 

~ 
-...I g INOR" @rid,@ris,rw 3Bs8 OrdO 4 21/10"" X [[ridll - [[risl](I/O). [ridl - [ridl- 2. [rwl - [rwl - 1 

If [rwl = 0 then 0 = 1. Otherwise reexecute. ~ 

INORB" @rid,@ris,rw 3As8 OrdO 4 21/10"" X [[ridll- [[risllU/O). [ridl- [ridl- 1. [rwl- [rwl- 1 
If [rwl = 0 then 0 = 1. Otherwise reexecute. INOR and INORB are 
identical to INO and INOB, respectively, except that INOR and INORB 
are reexecuted until [rwl = O. 

INI" @rid,@ris,rw 3BsO Ord8 4 21 X [[ridll- [[risllU/O). [ridl- [ridl + 2. [rwl- [rwl-l 
If [rwl = 0 then 0 = 1. Otherwise 0 = O. 

INIB" @rid,@ris,rw 3AsO Ord8 4 21 X [[ridll- [[risllU/O). [ridl- [ridl + 1. [rwl- [rwl- 1 
If [rwl = 0 then 0 = 1. Otherwise 0 = O. INI and INIB are identical to 
INO and INOB, respectively, except that rid is incremented. 

INIR" @rid,@ris,rw 3BsO OrdO 4 21/10"" X [[ridll- [[risllU/O). [ridl- [ridl + 2. [rwl- [rwl- 1 
If [rwl = 0 then 0 = 1. Otherwise reexecute. 

INIRB" @rid,@ris,rw 3AsO OrdO 4 21/10"" X [[ridll - [[risllU/O). [ridl - [ridl + 1. [rwl - [rwl - 1 
If Irwl = 0 then 0 = 1. Otherwise reexecute. INIR and INIRB are iden-
tical to INO and INOB, respectively, except that rid is incremented; 
also INIR and INIRB are reexecuted until [rwl = O. 

OTOR" @rid,@ris,rw 3BsA OrdO 4 21/10"" X [[ridllU/O) - [[risll. [risl- [risl- 2. [rwl- [rwl- 1 
If [rwll=O then reexecute. If [rwl = 0 then 0 = 1 and end execution. 

" Privileged instruction - can be executed only in system mode. 

"" Number of clock cycles depends on the number of repetitions for n/m""; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )I"m. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

III Clock Status 
Type Mnemonic Operand(s) Op Code ! Operation Performed >- Cycles III H D 0 P S Z C 

OTORB' @rid,@ris,rw 3AsA OrdO 4 21110" X [[ridl)(l/O) - [[ris]]. [risl- [risl- 1. [rwl- [rwl- 1 
If [rwlI=O then reexecute. If [rwl = 0 then 0 = 1 and end execution. 
Output a block of 1S-bit words (for OTOR) or 8-bit bytes (for OTORB) 
from memory to an I/O port. rw specifies the number of words or 
bytes. Memory is addressed, using implied memory addressing, by 
1S-bit register ris, which is decremented after each output. 1S-bit 
register rid specifies the 110 port. 

OTIR' @rid,@ris,rw 3Bs2 OrdO 4 21/10" X [[ridIW/O) - [[risll. [risl - [risl + 2. [rwl - [rwl - 1 
If [rwll= 0 then reexecute. If [rwl = 0 then 0 = 1 and end execution. 

OTIRB' @rid,@ris,rw 3As2 OrdO 4 21/10" X [[rid]]U/O) - [[ris]]. [risl- [risl + 1. [rwl- [rwl- 1 

If [rwll=O then reexecute. If Irwl = 0 then 0 = 1 and end execution. 
OTIR and OTIRB are identical to OTOR and OTORB, respectively, ex-
cept that OTIR and OTIRB increment the memory address in ris. 

OUT' @rw,rws 3Fds 2 10 [[rwlHl/O) - Irwsl 
OUT" ioaddr,rws 3BsS pppp 4 12 [ioaddr)(l/O) - [rwsl 

0) 

~ 
00 

~ Output the data word from 1S-bit register rws to the I/O port ad-
G 

dressed directly by ioaddr or implied by rw. ~ c .. OUTB' @rw,rbs 3Eds 2 10 [[rwl)(l/O) - [rbsl c 
0 OUTS' ioaddr,rbs 3AsS pppp 4 12 [ioaddr](l/O) - [rbsl g 
g Output the data byte from 8-bit register rbs to the I/O port addressed 

directly by ioaddr or implied by rw. 
OUTO' @rid,@ris,rw 3SsA Orda 4 21 X [[ridIW/O) - [[ris]]. [risl- [risl- 2. [rwl- [rwl- 1 

If [rwl = 0 then 0 = 1; otherwise 0 = O. 
OUTOB' @rid,@ris,rw 3AsA Orda 4 21 X [[ridIW/O) - [[ris]]. [risl- [risl- 1. [rwl- [rwl- 1 

If [rwl = 0 then 0 = 1; otherwise 0 = O. Output a data word (for 
OUTO) or byte (for OUTOS) from the memory location addressed by 
16-bit register ris to the I/O port addressed by 16-bit register rid. 
Oecrement ris by 2 (for OUTO) or 1 (for OUTOS). Oecrement the 
counter 16-bit register rw. 

OUTI' @rid,@ris,rw 3Bs2 Orda 4 21 X [[ridl)(l/O) - [[ris]]. [risl- [risl + 2. [rwl- [rwl- 1. 
If [rwl = 0 then 0 = 1; otherwise 0 = O. 

OUTIB' @rid,@ris,rw 3As2 Orda 4 21 X [[ridIW/O) - [[ris]]. [risl - Iris] + 1. [rwl - [rwl - 1. 
If [rwl = Othen 0 = 1; otherwise 0 = O. OUTI and OUTIS are identi-
cal to OUTO and OUTDS, respectively, except that the memory ad-
dress in ris is incremented. 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )'m. 

----



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

• Clock Status 
Type' Mnemonic Operand Is) OpCode t Operation Performed 

III Cycles H D 0 P S Z C 

SIW rwd,ioaddr 3Bd5 pppp 4 12 These instructions output "special 1/0" status via STO - ST3; other-
SINB· rbd,ioaddr 3Ad5 pppp 4 12 wise, they are identical to 1/0 instructions as follows: 
SIND· @rid,@ris,rw 3Bs9 Ord8 4 21 X SIN - IN(l) SINB - INBll) 
SINOB· @rid,@ris,rw 3As9 Ord8 4 21 X SIND -INO SINOB -INOB 
SINOR· . @rid,@ris,rw 3Bs9 OrdO 4 21/10·· X SINOR -INOR SINORB - INORB 
SINORB· @rid,@ris,rw 3As9 OrdO 4 21110·· X SINI-INI SINIB -INIB 
SINI" @rid,@ris,rw 3Bsl Ord8 4 21 X SINIR -INIR SINIRB - INIRB 

1 SINIB· @rid,@ris,rw 3Asl Ord8 4 21 X SOTOR - OTOR OOTORB - OTO'iB 
~ SINIR· @rid,@ris,rw 3Bsl OrdO 4 21/10·· X SOTIR - OTIR SOTIRB - OTiMo c 
~ SINIRB· @rid,@ris,rw 3Asl OrdO 4 21/10·· X SOUT - OUTll) SOUTB - OUTBll) c 
0 SOTOR· @rid,@ris,rw 3BsB OrdO 4 21/10·· X SOUTO - OUTO SOUTOB - OUTOB g 
g SOTORS· @rid,@ris,rw 3AsB OrdO 4 21110·· X SOUTI - OUTI SOUTIS - OUTIB 

SOTIR· @rid,@ris,rw 3Bs3 OrdO 4 21/10·· X (1 )Only the direct addre~sing option exists for the special 110 version of, 
SOTIRB· @rid,@ris,rw 3As3 OrdO 4 21/10·· X 

this instruction. 
SOUr- ioaddr,rws 3Ss7 pppp 4 12 
SOUTS· ioaddr,rbs 3As7 pppp 4 12 

en SOUTO· @rid,@ris,rw 3SsS Ord8 4 21 X 

~ SOUTOB· @rid,@ris,rw 3AsB Ord8 4 21 X 
co SOUTI @rid,@ris,rw 3Bs3 Orda 4 21 X 

SOUTIS @rid,@ris,rw 3As3 Ord8 4 21 X 

LO rwd,adrsx 61id pppp qqqq 4/6 9-13 [rwdl - [adrsxl 
LO rwd,@ris 21id 2 7 [rwd] - Urisll 

G) Load data from the 1 6-bit memory word addressed by adrsx or Iris] 
u into 16-bit register rwd. c 
G) 

LO rwd,risldisp) 31id 4 14 [rwd] - Uris] + disp] 
~ 

xxxx 

II: 
Load into 16-bit register rwd the contents of the 16-bit memory word 

~ addressed using base relative addressing. 
0 LO rwd,rislrw) 71id OrOO 4 14 [rwd]- Uris] + [rwll E 
G) Load into 16-bit register rwd the contents of the 16-bit memory word 
~ addressed using implied, indexed addressing. 
~ 
III LOS rbd,adrsx 60id pppp qqqq 4/6 9-13 [rbdl - [adrsxl 
.5 LOS rbd,@ris 20id 2 7 [rbd] - [[ris]] 
~ Load into 8-bit register rbd the contents of the memory byte ad-

dressed by adrsx or Iris]. 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti tion 
of operation. The number of clock cycles for an instruction which repeats k times is n + Ik-l ).m. 

----- ---- ----
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

'" Clock Status 
Mnemonic Operand Is) Op Code t Operation Performed 

III Cycles H D 0 P S Z C 

LOB rbd,risldisp) 30id xxxx 4 14 [rbd] - [[ris] + disp] 
Load into 8-bit register rbd the contents of the memory byte ad-
dressed using base relative addressing. 

I..,OB rbd,ris(rw) 70id OrOO 4 14 [rbd]- [[ris] + [rwll 
Load into 8-bitregister rbd the contents of the memory byte ad.-
dressed using implied, indexed addressing. 

LOL rld,adrsx 54id pppp qqqq 4/6 12-16 [rid] - [adrsx] 
LOL rld,@ris 14id 2 11 [rld]-Urisll 

Load into 32-bit register rid the contents of the 32-bit memory loca-
tion addressed by adrsx or [ris]. 

LOL rld,ris(disp) 35id xxx x 4 17 [rid] - [[ris] + disp] 

Load into 32-bit register rid the contents of the 32-bit memory loca-
tion addressed using base relative addressing. 

LOL rld,ris(rw) 75id OrOO 4 17 [rid] - Uris] + [ridll 
Load into 32-bit register rid the contents of the 32-bit memory loca-
tion addressed using implied, indexed addressing. 

LO adrsx,rws 6Fis pppp qqqq 4/6 11-15 [adrsx) - [rws) 
LO @rid,rws 2Fds 2 8 [[ridll - [rws] 

Store data from 16-bit register rws into memory word addressed by 
adrsx or [rid]. 

LO rid(disp),rws 33is xxxx 4 14 [[rid) + disp) - [rws) 
Store data from 16-bit register rws into memory word addressed 
using base relative addressing. 

LO rid(rw),rws 73is OrOO 4 14 [[rid] + [rwll- [rws] 

Store data from 16-bit register rws into memory word addressed 
using implied, indexed addressing. 

LOB adrsx,rbs 6Eis pppp qqqq 4/6 11-15 [adrsx] +- [rbs] 
LOB @rid,rbs 2Eds 2 8 [[ridll +- [rbs] 

Store data from 8-bit register rbs into memory byte addressed by 
adrsx or [rid]. 

LOB rid(disp),rbs 32is xxxx 4 14 [[rid) + disp) +- [rbs) 

Store data from 8-bit register rbs into memory byte addressed using 
base relative addressing. 

Privileged instruction - can be executed only in system mode. 
Number of clock cycles depends on the number of repetitions for n/m""; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1) om. 



Table 6-3. A Summary of the zeooo Instruction Set (Continued) 

I/) 
Clock Status 

Type Mnemonic Operand(s) Op Code 
CD Operation Performed ... 
> Cycles ID H D 0 P S Z C 

LOB rid(rw),rbs 72is OrOO 4 14 [[rid] + [rwll- [rbs] 
Store data from 8-bit register rbs into memory byte addressed using 
implied, indexed addressing. 

LOL adrsx,rls 50is pppp qqqq 4/6 14-18 [adrsx] - [rls] 
LOL @rid,rls 1 Ods 2 11 [[ridll - [rls] 

Store data from 32-bit register rls into 32-bit memory long word ad-
dressed by adrsx or [rid]. 

LOL rid(disp),rls 37is xxxx 4 17 [[rid] + disp] - [rls] 
Store data from 32-bit register rls into 32-bit memory long word ad-
dressed using base relative addressing. 

LOL rid(rw),rls 77is OrOO 4 17 [[rid] + [rwll- Iris] 
'::a Store data from 32-bit register rls into 32-bit memory long word ad-CD 
~ 

dressed using implied, indexed addressing. 'S c LOA rwd,adrsx 76id pppp 4 12-13 [rwd] - adrsx 0 
y Load the unsegmented address into 16-bit register rwd. 

CD LOA rld,adrsx 76id pppp qqqq 4/6 15-16 [rid] - adrsx u 

~ 
C11 ... 

c Load the segmented address, in segmented address format, into 32-f .; bit register rid. 
a: LOA rwd,ris(disp) 34id xxx x 4 15 [rwd] - Iris] + disp 
~ LOA rld,ris(disp) 34id xxxx 4 15 [rid] - Iris] + disp 0 
E Load the base relative address into 1 6-bit register rwd (nonseg-
CD 

~ mented mode) or 32-bit register rid (segmented model. 

~ LOA rwd,ris(rw) 74id OrOO 4 15 [rwd]- Iris] + [rw] 
III 

LOA rld,ris(rw) 74id OrOO 4 15 [rid] - Iris] + [rw] .E 
A: Load the implied, indexed memory address into 16-bit regiser rwd 

(nonsegmented mode) or 32-bit register rid (segmented mode). 
LOAR rwd,disp16 340d xxx x 4 15 [rwd] - [PC] + disp16 

Load the program relative memory address into 16-bit register rwd. 

LOAR rld,disp16 340d xxxx 4 15 [rld]- [PC] + disp16 
Load the program relative segmented memory address, in segmented 
format. into 32-bit register rid. 

I LOR rwd,disp16 310d xxx x 4 14 [rwd] - [[PC] + disp16] 
LORB rbd,disp16 300d xxxx 4 14 [rbd) - [[PC] + disp16] 

I 

I . Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti1tion 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l ).m. 

i - --- ---- ----- --



Table 6-3. A Summary of the zaooo Instruction Set (Continued) 

III 
Clock Status 

Type Mnemonic Operand(s) Op Code ;. Operation Performed 
CD Cycles H 0 0 P S Z C 

LDRL rld.disp16 350d xxx x 4 17 [rldl- [[PCl + disp16l 
"Iii Load the memory word (for LOR). byte (for LOR B) or long word (for 

~! LDRU addressed using program relative addressing into the 16-bit. o c 
E '+I 8-bit or 32-bit register. • c 
~~ LOR disp16.rws 330s xxxx 4 14 ([PC] + disp16] - [rws] 
~-; LDRB disp16.rbs 320s xxxx 4 14 [[PC] + disp16] - [rbsl 
III U 
E C .- . LDRL disp16.rls 370s xxxx 4 17 ([PC] + disp16] - [rls] 
~ ~ 

Load the register word (for LOR). byte (for LDRB) or long word (for A.o! 
II: LDRL) into the memory location addressed using program relative ad-

dressing. 

ADD rwd.@ris 01id 2 7 X X X X [rwdl - [rwdl + [[risll 
ADD rwd.adrsx 41id pppp qqqq 4/6 9-13 X X X X [rwdl - [rwdl + [adrsxl 

Add the contents of the addressed memory word to the 1 6-bit 
destination register. 

ADDB rbd.@ris OOid 2 7 X 0 X X X X [rbdl - [rbd] + [[risll 

m 
(" 
N 

ADDB rbd.adrsx 40id pppp qqqq 4/6 9-13 X 0 X X X X [rbd] - [rbdl + [adrsxl 
Add the contents of the addressed memory byte to the 8-bit destina-

G 
tion register. U 

C 

! AOOL rld.@ris 16id 2 14 X X X X [rid] - [rid] + [(risll • ADDL rld.adrsx 56id 4/6 15-19 X X X X [rid] - [rid] + [adrsx] .... pppp qqqq • II: Add the contents of the addressed memory long word to the 32-bit 
~ destination register. 0 
E AND rwd.@ris 07id 2 7 X X [rwd] - [rbd] AND [[risll • ~ AND rwd.adrsx 47id pppp qqqq 4/6 9-13 X X [rwdl - [rbd] AND [adrsx] 
~ AND contents of destination 16-bit register with contents of memory 
III 

" word. e 
0 ANDB rbd.@ris 06id 2 7 X X X [rbdl - [rbdl AND [[risll U • 4/6 9-13 X X [rbdl - [rbdl AND [adrsx] U) ANDB rbd.adrsx 46id pppp qqqq X 

AND contents of destination 8-bit register with contents of memory 
byte. 

CLR @rid ODd8 2 8 [[ridll-O 
CLR adrsx 4Di8 pppp qqqq 4/6 11-15 [adrsxl-O 

Clear the memory word. 
CLRB @rid OCd8 2 8 ([(ridll -0 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l ).m. 



Table G-3. A Summary of the Z8000 Instruction Set (Continued) 

• Clock Status 
Type Mnemonic Operand(s) Op Code ! Operation Performed > Cycles III H D 0 P S Z C 

CU~B adrsx 4Ci8 pppp qqqq 4/6 11-15 [adrsx) -0 
Clear the memory byte. 

COM @rid ODdO 2 12 X X [[ridlJ - [[ridlJ 
COM adrsx 4DiO pppp qqqq 4/6 15-19 X X [adrsx) - [adrsx) 

Ones complement the memory word. 

COMB @rid OCdO 2 12 X X X ([ridlJ - [[ridlJ 
COMB adrsx 4CiO pppp qqqq 4/6 15-19 X X X [adrsx) - [adrsx) 

Ones complement the memory byte. 
CP rwd,@ris OBid 2 7 X X X X [rwd) - [[rislJ 

CP rwd,adrsx 4Bid pppp qqqq 4/6 9-13 X X X X [rwd) - [adrsx) 
;; CPB rbd,@ris OAid 2 7 X X X X [rbd) - [[ris)J • ~ 

CPB rbd,adrsx 4Aid 4/6 9-13 X X X X [rbd) - [adrsx) -s pppp qqqq 
c CPL rld,@ris 10id 2 14 X X X X [rid) - [[rislJ 
0 
9 CPL rld,adrsx 50id pppp qqqq 4/6' 15-19 X X X X [rid) - [adrsx) 

• Compare contents of register and memory location. Do not modify u c contents of register or memory location, but set status flags. Use 16-e 
0) 

a, i bit register/memory word for CP, 8-bit register/memory byte for CPB, 
II: 32-bit register/memory long word for CPL. 

Co) ~ CP @rid,data 1 6 ODdl yyyy 4 11 X X X X [[ridlJ - data 16 
E CP adrsx,data 1 6 4Di1 yyyy 6/8 • 14-18 X X X X [adrsx) - data 1 6 

~ pppp qqqq 

~ CPB @rid,data8 OCd1 yyOO 4 11 X X X X. [[ridlJ - data8 
III CPB adrsx,data8 4Cil yyOO 6/8 14-18 X X X X [adrsx) - data8 " c 
0 pppp qqqq Compare contents of memory location with immediate data. Do not u • modify memory location, but set status flags. Use 16-bit memory (I) 

word for CP, 8-bit memory byte for CPB. 
DEC @rid,n16 2Bdn 2 11 X X X [[ridlJ - [[ridlJ - n 1 6 
DEC adrsx,n16 6Bin pppp qqqq 4/6 13-17 X X X [adrsx) - [adrsx) - n 16 
DECB @rid,n16 2Adn 2 11 X X X [[ridlJ - [[ridlJ - n 16 
DECB adrsx,n16 ·6Ain pppp qqqq 4/6 13-17 X X X [adrsx) - [adrsx) - n 16 

Subtract the immediate value n 1 6 from the memory word (for DEC) 
or memory byte (for DECB) addressed by adrsx or [rid). Values in the 
range 1-1 6 are subtracted. 

. Privileged instruction - can be executed only in system mode . .- Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti.tion 

of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )-m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

(I) 
Clock Status 

Mnemonic Operand(s) Op Code S Operation Performed >- Cycles III H D 0 P S Z C 

DIV rld.@ris lBid 2 note 1 X X X X O;y'do } 
DIV rld.adrsx 5Bid pppp qqqq 4/6 note 1 X X X X Divide see text for a discussion of these instructions 
DIVL rqd.@ris lAid 2 note 1 X X X X Divide long 
DIVL rqd.adrsx 5Aid pppp qqqq 4/6 note 1 X X X X Divide long 
EX rwd.adrsx 6Did pppp qqqq 4/6 15-19 [rwd) - - [adrsx) 
EX rwd.@ris 2Dsd 2 12 [rwd) - - ([ris)) 
EXB rbd.adrsx 6Cid pppp qqqq 4/6 15-19 [rbd) - - [adrsx) 
EXB rbd.@ris 2Csd 2 12 [rbd) - - ([ris)) 

Exchange contents of the addressed memory location with the 
selected register. Use 8-bit (for EXB) or 16-bit (for EX) registers and 
memory locations. 

INC @rid.n16 29dn 2 11 X X X [[rid)) - [[rid)) + n 1 6 
INC adrsx.n16 69in pppp qqqq 4/6 13-17 X X X [adrsx) - [adrsx) + n 1 6 
INCB @rid.n16 28dn 2 11 X X X [[rid)) - ([rid)) + n 1 6 
INCB adrsx.n16 68in pppp qqqq 4/6 13-17 X X X [adrsx) - [adrsx) + n 1 6 

Add the immediate value n 16 to the memory word (for INC) or memo-
ry byte (for INCB) addressed by adrsx or [rid). Values in the range 1 -
16 are added. 

MULT rld.@ris 19id 2 note 2 0 'X X X Multlp'y } 
MULT rld.adrsx 59id pppp qqqq 4/6 note 2 0 X X X Multi I .... 

p y see text for a diSCUSSion of these instructions 
MULTL rqd.@ris 18id 2 note 2 0 X X X Multiply long 
MULTL rqd.adrsx 58id pppp qqqq 4/6 note 2 0 X X X Multiply long 
NEG @rid ODd2 2 12 X X X X [[rid)) - - ([rid)) 
NEG adrsx 4Di2 pppp qqqq 4/6 15-19 X X X X !adrsxl - - !adrsxl 
NEGB @rid OCd2 2' 12 X X X X ([rid)) - - ([rid)) 
NEGB adrsx 4Ci2 pppp qqqq 4/6 15-19 X X X X [adrsx) - - [adrsx) 

Replace the contents of the memory word (for NEG) or byte (for 
NEGB) addressed by adrsx or [rid) with its twos complement. 

OR rwd.@ris 05id ,2 7 X X !rwd) - [rwd) OR ([ris)) 
OR rwd.adrsx 45id pppp qqqq 4/6 9-13 X X [rwd) - [rwd) OR [adrsx) 

OR the contents of the specified 16-bit register and memory word. 
Place the result in the 16-bit register. 

ORB rbd.@ris 04id 2 7 X X X [rbd) - [rbd) OR ([ris)) 

Privileged instruction - can be executed only in system mode. 
Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l )-m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

.. 
Clock Status 

Mnemonic Operand Is) Op Code S Operation Performed >- Cycles III H D 0 P S Z C 

ORB rbd,adrsx 44id pppp qqqq 4/6 9-13 X X X [rbd] - [rbd] OR [adrsx] 
OR the contents of the specified 8-bit register and memory byte. 
Place the result in the 8-bit register. 

SUB rwd,@ris 03id 2 7 X X X X [rwd) - [rwd) - [[ris)] 

SUB rwd,adrsx 43id pppp qqqq 4/6 9-13 X X X X [rwd) - [rwd] - [adrsx) 
SUBB rbd,@ris 02id 2 7 X 1 X X X X [rbd) - [rbd) - [[ris)] 
SUBB rbd,adrsx 42id pppp qqqq 4/6 9-13 X 1 X X X X [rbdt - [rbd) - [adrsx) 
SUBL rld,@ris 12id 2 14 X X X X [rid) - [rid) - [[ris)) 
SUBL rld,adrsx 52id pppp qqqq 4/6 15-19 X X X X [rid) - [rid] - [adrsx) 

Subtract the contents of the addressed memory location from the 
selected destination register. Use 8-bit (for SUBB), 16-bit (for SUB) 
or 32-bit (for SUBL) memory locations and registers. 

TEST @rid ODd4 2 a X X X [[rid)) OR 0 

TEST adrsx 4Di4 pppp qqqq 4/6 11-15 X X X [adrsx] OR 0 
TESTB @rid OCd4 2 a X X X X [[ridll OR 0 

TESTB adrsx 4Ci4 pppp qqqq 4/6 11-15 X X X X [adrsx) OR 0 

TESTL @rid lCdO 2 13 X X X [[ridll OR 0 
TESTL adrsx 5CiO pppp qqqq 4/6 16-20 X X X [adrsx) OR 0 

OR the specified memory contents with O. Set status flags. Use a 16-
bit location for TEST, an 8-bit location for TESTB, and a 32-bit loca-
tion for TESTL. 

TSET @rid ODd6 2 11 X [s] - [[rid)](MSB). [[rid)] - FFFF 
TSET adrsx 4Di6 pppp qqqq 4/6 14-18 X [s) - [adrsx](MSB). [adrsx) - FFFF 
TSETB @rid OCd6 2 11 X [s)- [[rid)](MSB). [[rid)] - FF 

TSETB adrsx 4Ci6 pppp qqqq 4/6 14-18 X [s) - [adrsx](MSB). [adrsx) - FF 
Move the most significant bit of the memory word (for TSET) or byte 
(for TSETB) to the sign status. Then fill the word or byte with 1 bits. 

XOR rwd,@ris 09id 2 7 X X [rwd) - [rwd) XOR [[ris)) 
XOR rwd,adrsx 49id pppp qqqq 4/6 9-13 X X [rwd) - [rwd) XOR [adrsx) 
XORB rbd,@ris Oaid 2 7 X X X [rbd) - [rbd) XOR [[risll 
XORB rbd,adrsx 48id pppp qqqq 4/6 9-13 X X X [rbd) - [rbd) XOR [adrsx) 

Exclusive OR the contents of the addressed memory location and 
register. Store the result in the register. Use 16-bit memory and 
registers for XOR. Use a-bit memory and registers for XORB. 

Privileged instruction - can be executed only in system mode . 
Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repet ition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l )·m. 



Table 6-3. A Summary of the zaooo Instruction Set (Continued) 

I/) 
Clock Status 

Type Mnemonic Operand(s) Op Code a! Operation Performed ... 
>- Cycles III H 0 0 P S Z C 

LO rwd,data16 210d yyyy 4 7 [rwd] - data 16 
Load 16-bit immediate data into 16-bit register rwd. 

LO @rid,data 1 6 OOd5 yyyy 4 11 [(rid]] - data 1 6 
LO adrsx,data 1 6 40i5 yyyy 6/8 14-18 [adrsx] - data 16 

pppp qqqq Load 16-bit immediate data into memory word addressed by adrsx or 
[rid]. 

! 
LOB rbd,data8 Cdyy 2 5 [rbd] - data8 

III Load immediate data byte into 8-bit register rbd. 
:a LOB @rid,data8 OCd5 yyOO 4 11 [(rid]] - data8 a! 
E LOB adrsx,data8 4Ci5 yyOO 6/8 14-18 [adrsx] - data8 .5 pppp qqqq Load immediate data byte into memory byte addressed by adrsx or 

[rid]. 
LOL rld,data32 140d yyyy zzzz 6 11 [rid] - data32 

Load 32-bit immediate data into 32-bit register rid. 
LOK rwd,b16 BOdb 2 5 [rwd]-b16 

Load the immediate 4-bit value b16 into the low-order four bits of 

C» rwd. Clear the remaining twelve bits of rwd. 
a. 
C» 

PUSH (See Stack operations). 

JP ,@rid 1Ed8 2 10,15 [PC]- [(rid]] 
JP ,adrsx 5Ei8 pppp qqqq .4/6 7-11 [PC] - [adrsx] 

Jump to the specified memory location. This is the same as a condi-
tional jump with cc = always true. 

JR ,disp E8xx 2 6 [PC] - [PC] + (disp-2) 
Jump program relative. PC is incremented to the next sequential in-
struction before disp-2 is added as a signed binary number. This is 

a. the same as a conditional jump relative with cc = always true (blank). 
E LOPS- @ris 39s0 2 12 X X X X X X X [FCW] - [(ris]]. [PC] - [(ris] + 1] (nonsegmented) :::J ., 

16 X X X X X X X [FCWRES1- [[ris]]. [FCW1- [[ris1 + 11. [PCSEG1- [[ris] + 21 
[PCOFF] - [[ris] +3 ] (segmented) 

LOPS- adrsx 79iO pppp qqqq 4/6 16-17 X X X X X X X [FCW] - [adrsx]. [PC] - [adrsx+ 1] (nonsegmented) 
I 

20-23 X X X X X X X [FCWRES1 - [adrsx1. [FCW1 - [adrsx+ 11. [PCSEG1 - ladrsx+21 
[PCOFF]- [adrsx+3] (segmented) 

Load program status and jump as described in accompanying text. 

- P,;v;le .. d ;n.truc';on - c.n be e,ecuted only ;n .ys.em mode. I 
-- Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti1tion 

of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )-m. 
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Table 6-3. A Summary of the zaooo Instruction Set (Continued) 

" Clock Statu. 
Type. Mnemonic Operand(.) Op Code S Operation Performed >- Cycle. ID H D 0 P S Z C 

CALL @rid 1FdO 2. 10.15 (1) or (2). [PC] - [[ridll 
c CALL adrsx 5FiO pppp qqqq 4/6 12-21 (1) or (2). [PC] - [adrsx] a • CALR disp Dxxx 2 10.15 (1) or (2). [PC] - [PC] - disp-2 Program relative memory address. 
II: Call the addressed subroutine. saving information on the Stack as "a c follows: ., 
'i (1) [SP] - [SP] - 2. [(SPll - [PC] 16-bit PC (nonsegmented) 
CJ (2) [SP] - [SP] - 4. [[SPll - [PC] 32-bit PC (segmented) 
" c RET cc 9EOc 2 10.1317 If cc is "true" then [PC] - [{SPll.[SP] - [SP] + 2 (for nonsegmented) ',j:l 

~ or [SP] - [~P] + 4. (for segmented). 
.a If the condition code specified by cc is "true". return from subroutine . 
~ 

U) System subroutine call. See accompanying text for a description of this 
SC data8 7Fyy 2 33.39 instruction. 

ADD rwd.data16 010d yyyy 4 7 X X X X [rwd] - [rwd] + data 16 
ADDB rbd.data8 OOOd yyOO 4 7 ·X 0 X X X X [rbd] - [rbd] + data8 

ADDL rld.data32 160d yyyy zzzz 6 14 X X X X [rid] - [rid] + data32 
Add immediate data to the destination register. Use 32-bit 
data/register for ADDL. 16-bit data/register for ADD. 8-bit 
data/register for ADDB. 

AND rwd.data16 070d yyyy 4 7 X X [rwd] - [rwd] AND data 16 
ANDB rbd.data8 060d yyOO 4 7 X X X [rbd] - [rbd] AND data8 

! AND immediate data with destination register contents. Use 16-bit ! 
& data/register for AND. 8-bit data/register for ANDB. 
0 CP rwd.data16 OBOd yyyy 4 7 X X X X [rwd] - data 1 6 
S Compare 16-bit register contents with immediate 16-bit data. Do not 
all 
is modify register contents. but save Status flags. 
" E CPB rbd.dataS OAOd yyOO 4 7 X X X X [rbd] - dataS 
.5 Compare 8-bit register contents with immediate 8-bit data. Do not 

modify register contents. but save Status flags. 
CPL rld.data32 100d yyyy zzzz 6 14 X X X X [rid] - data32 

Compare 32-bit register contents with immediate 32-bit data. Do not 
modify register contents. but save Status flags. 

CP (See secondary memory reference for memory-immediate compare in-
structions.) 

DIV rld.data16 1 BOd yyyy 4 note 1 X X X X Divide } see accompanying text for a discussion of these 
DIVL rqd.data32 1AOd yyyy zzzz 6 note 1 X X X X Divide long instructions 

- Privileged instruction - can be executed only in system mode. 

-- Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1)-m. 

----- --- ----------- -



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

10 
Clock Status 

Type Mnemonic Operand(s) Op Code S Operation Performed > Cycles ID H 0 0 P S Z C 

MULT rld,data16 190d yyyy 4 note 2 0 X X X 'Multiply } see accompanying text for a discussion of these 
MULTL rqd,data32 180d yyyy zzzz 6 note 2 0 X X X Multiply long instructions 
OR rwd,data16 050d yyyy 4 7 X X [rwd) +- [rwd) OR data 16 

~ 
OR the contents of the specified 16-bit register with the immediate 

• data word . :::s 
[rbd) +- [rbd) OR data8 c ORB rbd,data8 040d yyOO 4 7 X X X .~ 

c OR the contents of the specified B-bit register with the immediate 0 
g data byte. 
S SUB rwd,data16 030d yyyy 4 7 X X X X [rwd) +- [rwd) - data 16 
t! SUBB . rbd,data8 020d yyOO 4 7 X 1 X X X X [rbd) +- [rbd) - data8 CD 
a. 

SUBL rld,data32 120d 6 14 X X X X [rid) +- [rid) - data32 0 yyyy zzzz 
S Subtract immediate data from the destination register. Use 32-bit 
«I 
=s data/register for SUBL, 
CD 

16-bit data/register for SUB, 8-bit 
data/register for SUBB. E 

.5 XOR rwd,data16 090d yyyy 4 7 X X [rwd) +- [rwd] XOR data 1 6 
XORB rbd,data8 080d yyOO 4 7 X X X [rbd) +- [rbd] XOR data8 

en Exclusive-OR the contents of the register with immediate data. Store 
U, the result in the register. Use 16-bit register and data for XOR. Use 8-
(X) 

bit register and data for XORB. 

DJNZ rw,disp Fr 1 ttttttt 2 11 [rw] +- [rw) - 1. [PC) +- [PC] + 2. If [rw] is not 0, then 
[PC) +- [PC] - [disp-2) 

DBJNZ rb,disp Fr Ottttttt 2 11 [rb] +- [rb] - 1. [PC] +- [PC) + 2. If [rb] is not 0, then 
c [PC) +- [PC] - [disp-2] 
.~ Decrement a 16-bit register (for DJNZ) or an 8-bit register (for DB-;; 
c JNZ). Increment the Program Counter as per normal operation. If the 0 
(J decremented register contents is not 0, then subtract twice the dis-
c 

placement, as an unsigned binary number, from the incremented Pro-0 
a. 

gram Counter, causing a branch back to a lower program memory ad-E 
:::s dress. If the decremented register contents is 0, continue execution ~ 
~ with the next instruction. u c 
t! 

ID 

- Privileged instruction - can be executed only in system mode. , 

-- Numba, of clock cvcles depend. on the numba, of ,e.e';';on. fo, n/m"; n =mlnlmum num"'" of clock CVcle. and m = numba, of clock cvcle. added fo, each addltl""al ",pell lion . 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l) om. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

" Clock Status 
Type Mnemonic Operand(s) Op Code ! Operation Performed > Cycles 

CD H D 0 P S Z C 

;; JP cC,@rid 1Edc 2 10,15/7 If cc is true, [PC) - [[rid]] 

6 ~ JP cC,adrsx 5Eic pppp qqqq 4/6 7-11 If cc is true, [PC) - [adrsx) 
a,":: Jump to the memory location specified by adrsx or [rid] if condition E c: 
~ 0 code cc is true. ::!y 

JR cC,disp Ecxx 2 6 If cc is true, [PC) - [PC) + (disp-2) .c c: 
u 0 

Jump program relative if condition code is true. PC is incremented to Ii :E 
~ 'a address the next sequential instruction before disp-2 is added as a CD c: 

0 
signed binary number. U 

EX rwd,rws AOsd 2 6 [rwd] - - [rws) 
CD EXB rbd,rbs ACsd 2 6 [rbd] - - [rbs] 
> Exchange registers' contents for 16-bit (EX) or 8-bit (EXB) registers. I 0 

i::E LO rwd,rws A1sd 2 3 [rwd) - [rws] " ~ ,- CD 
LOB rbd,rbs AOsd 2 3 [rbd) - [rbs] CII .. 

CD " 
II: "a. LOL rld,rls 94sd 2 5 [rid) - [rls) 

CD 
II: Move data between any two 16-bit registers (for LO), 8-bit registers 

Cf> 
(,J'I 

CD 

(for LOB) or 32-bit registers (for LOll. 

CPO rwd,@ris,rw,cc BBs8 Ordc 4 20 X U X U [rwd] - [[ris]]. If cc true, Z = 1. If cc false, Z = 0 
[ris]- [ris]- 2. [rw]- [rw)- 1. If [rwl = 0,0 = 1 otherwise 0 = O. 

CPOB rbd,@ris,rw,cc BAs8 Ordc 4 20 X U X U [rbd] - [[ris]]. If cc true, Z = 1. If cc false, Z = O. 
[ris]- Iris) - 1. [rw]- [rw]- 1. If [rwl = 0,0 = 1 otherwiseO = O. 

.c Search a string for a condition. Compare a word in rwd (for CPO) or a 
~ byte in rbd (for CPOB) with the next word (for CPD) or byte (for CPDB) II 
CD in a memory string, using implied memory addressing. Register and en 
'a memory contents are not modified, nor are Status flags changed, but c: 
II status conditions are compared with cc. If cc is true, Z is set to 1; ~ 

-! otherwise Z is reset to O. Decrement the implied memory address in 
c: ris by 2 for CPD, or by 1 for CPDB. Decrement 16-bit counter rw by 1. ! 
~ If rw is 0, set 0 to 1; otherwise reset 0 to O. 
~ 

CPDR rwd,@ris,rw,cc BBsC Ordc 4 20/9-- X U X U See CPD. S 
ii CPDRB rbd,@ris,rw,cc BAsC Ordc 4 20/9-- X U X U See CPOB. 

CPO and CPOB are identical to CPO and CPOB, respectively, except 
that instruction execution is repeated until either Z or 0 status is 1. In-
terrupts will be acknowledged between reexecutions. 

- Privileged instruction - can be executed only in system mode. 

-- Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )-m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

In Clock Status 
Mnemonic Operand(s) Op Code t Cycles 

Operation Performed 
CD H D 0 P S Z C 

CPI rwd,@ris,rw,cc BBsO Ordc 4 20 X U X U [rwdl - [[ris]]. If cc true, Z = 1. If cc false, Z = O. 

[risl- [risl + 2. [rwl- [rwl- 1. If [rwl = 0, 0 = 1; otherwise 0 = O. 
CPIB rbd,@ris,rw,cc BAsO Ordc 4 20 X U X U [rbdl - [[ris]]. If cc true, Z = 1. If cc false, Z = O. 

[risl - [risl + 1. [rwl - [rwl - 1. If [rwl = 0, 0 = 1; otherwise 0 = O. 
CPI and CPIB are identical to CPO and CPOB, respectively, except that 
the implied memory address in ris is incremented by 2 for CPI, or by 1 
for CPIB. 

CPIR rwd,@ris,rw,cc BBs4 Ordc 4 20/9·· X U X U See CPI. 
CPIRB rbd,@ris,rw,cc BAs4 Ordc 4 20/9·· X U X U See CPIB. 

CPIR and CPIRB are identical to CPO and CPDB, respectively, except 
that the implied memory address in ris is incremented by 2 for CPI, or 
by 1 for CPIB, and instruction execution is repeated until either Z or 0 
status is 1. Interrupts will be acknowleged between reexecutions. 

CPSO @rid,@ris,rw,cc BBsA Ordc 4 25 X U X U [[rid]] - [[ris]]. If cc true, Z = 1. If cc false, Z = O. 
[ridl- [ridl- 2. [risl- [risl- 2. [rwl- [rwl- 1. 

If [rwl = 0,0 = 1; otherwise 0 = o. 
CPSOB @rid,@ris,rw,cc BAsA Ordc 4 25 X U X U [[rid]] - [[risll. If cc true, Z = 1. If cc false, Z = O. 

[ridl - [ridl - 1. [risl - [risl - 1. [rwl - [rwl - 1. 
If [rwl = 0, 0 = 1; otherwise 0 = O . 
Compare two strings for a condition. Compare the next word (for 
CPSO) or byte (for CPSOB) in a source string with the next word (for 
CPSO) or byte (for CPSOB) in a destination string. Both strings are ad-
dressed using implied memory addressing. No memory contents are 
modified, nor are any Status flags changed, but status conditions are 
compared with cc. If cc is true, Z is set to 1. Otherwise Z is reset to O. 
Decrement the implied memory addresses in ris and rid by 2 for 
CPSD, or by 1 for CPSOB. Decrement 16-bit counter rw by 1. If rw is 
0, set 0 to 1. Otherwise reset 0 to O. 

CPSDR @rid,@ris,rw,cc BBsE Ordc 4 25/14·· X U X U See CPSD. 
CPSDRB @rid,@ris,rw,cc BAsE Ordc 4 25/14·· X U 'X U See CPSDB. 

CPSDR and CPSDRB are identical to CPSD and CPSDB, respectively, 
except that the instructions are reexecuted until either Z or 0 status is 
1. Interrupts are acknowleged between reexecutions. 

Privileged instruction - can be executed only in system mode . 
Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 ).m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

Status 
Type I Mnemonic Operand(s) Op Code t Clock 

Cycles 
Operation Performed 

i 
~ 

~ g 
~ 
.I: 
f ca 
GI 
en 
~ ca 
~ .; 
c 

~ 
.JJt g 
ii 

CPSI @rid,@ris,rw,cc;1 BBs2 Ordc 

CPSIB l@rid,@ris,rw,cc:1 BAs2 Ordc 

CPSIR I@rid,@ris,rw,ccl BBs6 Ordc 
CPSIRB @rid,@ris,rw,cc BAs6 Ordc 

LDD I @rid,@ris,rw I BBsS Ord8 

LDDB I @rid,@ris,rw 'BAs9 Ord8 

LDDR @rid,@ris,rw I BBs9 OrdO 

LDDRB @rid,@ris,rw I BAsS OrdO 

LDI @rid,@ris,rw I BBs 1 Ord8 

ID 

4 25 

4 I 25 

4 I 25/14** 
4 25/14** 

4 I 20 

4 I 20 

4 20/9** 

4 20/S** 

4 20 

H DIOIPISlzlC 

X 

X 

X 

X 

X 

X 

X 

U I X I U I [[ridll- [[risll. If cc is true Z = 1. If cc is false, Z = o. 
[rid] +- [rid] + 2. [ris] +- [ris] + 2. [rw] +- [rw] - 1. 

If [rw] = 0,0 = 1; otherwise 0 = O. 
U I X I U I [[ridll - Uris]]. If cc is true, Z = 1 . If cc is false, Z = O. 

[rid] - [rid] + 1. Iris] - Iris] + 1. [rw] - [rw] - 1. 
If trw] = 0,0 = 1; otherwise 0 = O. 
CPSI and CPSIB are identical to CPSD and CPS DB, respectively, ex­
cept that the implied memory addresses in rid and ris are incremented 
by 2 (for CPS!) or by 1 (for CPSIB). 

U I X I U I See CPSI. 
U . X· USee CPSIB. 

CPSIR and CPSIRB are identical to CPSD and CPSDB, respectively, 
except that the implied memory addresses in rid and ris are incre­
mented by 2 (for CPSIR) or by 1 (for CPSIRB) and the instructions are 
reexecuted until either Z or 0 status is 1. Interrupts are acknowleged 
between reexecutions. 

[(ridll - [(ris]]. [rid] - [rid] - 2. Iris] - [ris] - 2. 
[rw]- [rw]- 1. If [rw] = 0,0 = 1; otherwise 0 = O. 
[(ridll - [[risll. [rid] - [rid] - 1. [ris] - [ris] - 1. 
[rw]- [rw]- 1. If [rw] = 0,0 = 1; otherwise 0 = O . 

Transfer a word (for LDD) or a byte (for LDDB) from the memory loca­
tion addressed by register ris to the memory location addressed by 
rid. Decrement addresses in rid and ris by 2 (for LDD) or 1 (for LDDB). 
Decrement the counter rw by 1. If rw contains 0, set the Overflow 
status to 1. 

[[ridll - [[risll. [rid] - [rid] - 2. Iris] - Iris] - 2. 
[rw]- [rw]- 1. If [rw] :1=0, reexecute. 

If [rwl = 0, 0 = 1 and end execution. 
[(ridll - [[risll. [rid] - [rid] - 1. Iris] - [ris] - 1. 
[rwl- [rwl - 1. If [rw] :1=0, reexecute. 

If [rw] = 0,0 = 1 and end execution. 
LDDR and LDDRB are identical to LDD and LDDB, respectively, except 
that LDDR and LDDRB reexecute until rw has decremented to O. 

[[ridll - [(risll. [rid] - [rid] + 2. [ris] - [ris] + 2. 
[rw]- [rw]- 1. If [rw] = 0 then 0 = 1; otherwise 0 = O. 

* Privileged instruction - can be executed only in system mode. 
Number of clock cycles depends on the number of repetitions for n/m**; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )*m. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

10 Clock Status 
Type Mnemonic Operand(s) Op Code ! Operation Performed > Cycles CD H D 0 P S Z C 

LOIB @rid,@ris,rw BAs1 Ord8 4 20 X [[ridll - [[ris]). [rid] - [rid] + 1. [ris] - [ris] + 1. 
[rw] - [rwl - 1. If [rwl = 0, then 0 = 1; otherwise 0 = O. 

LOI and LOIB are identical to LOO and LOOB, respectively, except that 
the source and destination addresses ris and rid are incremented by 2 
(for LOn or 1 (for LOIB). 

LOIR @rid,@ris,rw BBs1 OrdO 4 20/9" 1 [[ridll- [[risll. [ridl- [ridl + 2. [risl- [risl + 2. 
[rwl - [rwl - 1. If [rwl #= 0 then reexecute. 

If [rwl = 0 then 0 = 1 and end execution. 
LOIRB @rid,@ris,rw BAs1 OrdO 4 20/9" 1 [[ridll- [[risll. [ridl- [ridl + 1. [risl- [risl + 1. 

[rwl- [rwl - 1. If [rwl #=0 then reexecute. 

;; If [rwl = 0 then 0 = 1 and end execution. 

• LDiR and LOIRB are identical to LOO and LOOB, respectively, except ~ 

·a that the source and destination addresses ris and rid are incremented; 
c 

also, LOIR and LOIRB are reexecuted until rw decrements to O. 0 
Y LDM rwd,@ris.n16 1 Cs1 OdOn 4 14/3" [rwdl - [[risll do n 16 times incrementing register and memory ad-
.c 

dresses 2 
en 
m 
i') 

IV LDM rwd,adrsx,n 16 5Ci1 OdOn 6/8 17-21/3" [rwd] - [adrsx] do n 1 6 times incrementing register and memory ad-• en 
dresses ~ pppp qqqq 

c 
Move a block of n 1 6 memory words from memory to 1 6-bit registers. II .. 
adrsx or @ris addresses the first, lowest addressed memory word. $. 

10 rwd addresses the first 16-bit register. n16 can have any value from c 
t! 1 to 16. (See accompanying text for more details.) t-
~ LOM @ris,rws,n16 1Cd9 OsOn 4 14/3" ([risll - [rwsl do n16 times incrementing register and memory ad-u 
0 dresses iii 

LDM adrsx,rws,n 1 6 5Ci9 OsOn 6/8 17-2113" [adrsxl - [rwsl do n16 times incrementing register and memory ad-
pppp qqqq dresses 

This instruction is identical to the one above, except that data moves 
from registers to memory. Register contents are not affected. 

TROB @rid,@ris,rw B8d8 OrsO 4 25 X U ([ridll- [[ris] + IIridlll. [rw]- [rwl- 1. [ridl- [ridl- 1. 
Translate a memory byte, as described in the accompanying text. 
Decrement the destination address in rid and the'byte counter in rw. If 
rw = 0, set 0 to 1. If rw #= 0, reset 0 to O. Byte register RH 1 contents 
is lost. 

I 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 ).m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

I) 
Clock Status 

Type Mnemonic Operand(s) Op Code S Operation Performed > Cycles CD H D 0 P S Z C 

TRDRB @rid,@ris,rw B8de OrsO 4 25/14·· 1 U ([rid]) - ([ris] + ([rid]]]. [rw] - [rw] - 1. [rid] - [rid] - 1. 
If [rw] = 0,0 = 1 and end execution. If [rw] #:0, reexecute. 
This instruction is identical to TRDB, except the instruction is reex-
ecuted until [rw] = O. 

TRIB @rid,@ris,rw B8dO OrsO 4 25 X U ([rid)) - [[ris] + [[rid]]]. [rw] - [rw] - 1. [rid] - [rid] + 1 
TRIB is identical to TRDB except that the destination address in rid is 
incremented. 

TRIRB @rid,@ris,rw B8d4 OrsO 4 25/14·· 1 U [[rid)) - [[ris] + [[rid]]]. [rw] - [rw] - 1. [rid] - [rid] + 1. 
If [rw] = 0, 0 = 1 and end execution. If [rw] #: 0, reexecute. 
TRIRB is identical to TRDB except that the destination address in rid 

-:a 
is incremented; also, TRIRB is reexecuted until [rw] = O. 

II TRTDB @rid,@ris,rw B8dA OrsO 4 25 X X [RH1)- [[ris] + [[rid]]]. [rw] - [rw]- 1. [rid] - [rid)- 1. 
:::s 

~ Load a table byte into 8-bit register RH 1 , as described in the accom-
e panying text. Reset Z status to 0 if [RH 1] #: O. Set Z status to 1 if 0 
Y [RH 1] = O. Decrement destination address rid and byte counter rw. If 
~ rw = 0, 0 = 1. If rw #: 0, 0 = o. e 
II TRTDRB @rid,@ris,rw B8dE OrsE 4 25/14·· X X [RH 1] - [[ris) + [[ridnJ. [rw] - [rw] - 1. [rid] - [rid] - 1 II 
en If [rw] = 0,0 = 1.lf [rw] #:0, 0 = O. If [RH1] = 0, Z = 1; otherwise 
'a e Z = O. TRTDRB is identical to TRTDB except that TRTDRB is re-II ... executed until 0 = 1 or Z = O . .! 
I) TRTIB @rid,@ris,rw B8d2 OrsO 4 25 X X [RH 1] - [[ris] + [[rid]]]. [rw] - [rw] - 1. [rid] - [rid] + 1 e 
! TRTIB is identical to TRTDB except that TRTIB increments the 
t-
.Jt. destination address in rid . 
S TRTIRB @rid,@ris,rw B8d6 OrsE 4 25/14·· X 'X [RH1] - [[ris] + [[rid]]]. [rw] - [rw) - 1. [rid] - [rid] + 1 
iii If [rw] = 0,0 = 1. If [rw] #:0, 0 = O. If [RH1] = 0, Z = 1; otherwise 

Z = O. TRTlRB is identical to TRTDB except that TRTIRB ~ncrements 
the destination address in rid and reexecutes until 0 = 1 or Z = O. 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 

of operation. The number of clock cycles for an instruction which repeats k times is n + (k-' ).m. 



Table 6-3. A Summary, of the Z8000 Instruction Set (Continued) 

(I) 
Clock Status 

Type Mnemonic Operand(s) OpCode ! Operation Performed >-
ID Cycles H D 0 P S Z C 

ADC rwd,rws B5sd 2 5 X X X X [rwd) - [rwd) + [rws) + C 
ADCB rbd,rbs B4sd 2 5 X 0 X X X X [rbd] - [rbd] + [rbs] + C 

Add the source register contents plus the initial Carry to the destina-
tion register. Use 16-bit registers for ADC. Use 8-bit registers for 
ADCB. 

ADD rwd,rws 81sd 2 4 X X X X [rwd) - [rwd) + [rws) 
ADDB rbd,rbs 80sd 2 4 X 0 X X X X [rbd) - [rbd) + [rbs) 
ADDL rld,rls 96sd 2 8 X X X X [rid) - [rid) + [rls) 

Add the Source register contents to the Destination register. Use 32-
bit registers for ADDL, 16-bit registers for ADD and 8-bit registers for 
ADDB. 

AND rwd,rws 87sd 2 4 X X [rwd)- [rwd) AND [rws) 
ANDB rbd,rbs 86sd 2 4 X X X [rbd) - [rbd) AND [rbs) 

! AND the Source register contents with the Destination register con-
I! tents. Use 16-bit registers for AND and 8-bit registers for ANDB. II 
a. CP rwd,rws 8Bsd 2 4 X X X X [rwd) - [rws) 0 

CJ) 

0, 
~ 

i Compare 16-bit register contents by subtracting the Source register 
(I) 

from the Destination register values. Do not modify any register con-"m 
II tents, but set Status flags. IE: 

i CPB rbd,rbs 8Asd 2 4 X X X X [rbdl - [rbsl 
(I) Compare 8-bit register contents by subtracting the Source register "m 

from the Destination register values. Do not modify any register con-II 
IE: 

tents, but set Status flags. 
CPL rld,rls 90sd 2 8 X X X X [rid) - [rlsl 

Compare 32-bit register contents by subtracting the Source register 
from the Destination register values. Do not modify any register con-
tents, but set Status flags. 

DIV rld,rws 9Bsd 2 note 1 X X X X Divide }see text for a discussion of these instructions 
OIVL rqd,rls 9Asd 2 note 1 X X X X Divide long 
MULT rld,rws 99sd 2 note 2 0 X X X MUltiPlY} f d' . f h' . see text or a Iscusslon 0 t ese instructions MULTL rqd,rls 98sd 2 note 2 0 X X X Multiply long 

- Privileged instruction - can be executed only in system mode. 

-- Number of clock cycles depends on the number of repetitions for n/m--; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )-m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

IfI Status 
Type.. Mnemonic Operand(s) Op Code ;. Clock 

Cycles 
Operation Performed 

~ 
Gl :s 
! c: 
o 
g 
S 
! 
Gl a. o 
! 
III 
'61 
~ 
~ 
S 
IfI 
'61 
II 
II: 

OR 
ORB 

RLDB 

RRDB 

SBC 
SBCB 

rwd,rws 
rbd,rbs 

rbd,rbs 

rbd,rbs 

rwd,rws 
rbd,rbs 

85sd 
84sd 

BEsd 

BCsd 

B7sd 
B6sd 

III 

2 
2 

2 

2 

2 
2 

4 
4 

9 

9 

5 
5 

HIDIOIPlslZIC 

XIX 
XIX X 

U I I X I X 

U XIX 

[rwd] - [rwd] OR [rws] 
[rbd] - [rbd] OR [rbs] 

OR the contents of the Source register with the Destination register 
contents. Use 1 6-bit registers for OR and 8-bit register for ORB. 

Left rotate BCD digits in two 8-bit registers specified by rbd and rbs. 
The same register cannot be specified for rbd and rbs. Digits are ro­
tated as follows: 

I , ----- ----76543210 76543210 

rbd I I I I I I I I I I I I I I I I I I rbs 

-..- - •. --~ 

+ 1+'--------1 
Right rotate BCD digits in two 8-bit registers specified by rbd and rbs. 

The same register cannot be specified for rbd and rbs. Digits are ro­
tated as follows: 

-L _L 
76543210 7 6 543 2 1 0 

rbdl I I I I I I I I I I I I I I I I ,rbs -- -..---..--
'----~+I + 

x 
X 11 1 X 

X I X I X I [rwd] - [rwd] - [rws] - C 
X X X [rbd] - [rbd] - [rbs] - C 

Subtract the Source register contents, plus the initial Carry, from the 
Destination register contents using twos complement arithmetic. Use 
16-bit registers for SBC. Use 8-bit registers for SBCB. 

• Privileged instruction - can be executed only in system mode. 
Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 ).m. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

'" Clock Status 
Type Mnemonic Operand Is) Op Code ! Operation Performed 

> Cycles III H 0 0 P S Z C 

SUB rwd,rws 83sd 2 4 X X X X [rwd] - [rwd] - [rws] 
! SUBB rbd,rbs 82sd 2 4 X 1 X X X X [rbd] - [rbd] - [rbs] 

i SUBl rld,rls 92sd 2 8 X X X X [rid] - [rid] - [rls] 
0_ Subtract the Source register contents from the Destination register. 

!1 Use 32-bit registers for SUBl, 16-bit registers for SUB, 8-bit 
'" c registers for SUBB. '61 ~ 
II C XOR rwd,rws 89sd 2 4 X X [rwd] - [rwd] XOR [rws] I:C 0 
.(,) 

XORB rbd,rbs 88sd 2 4 X X X [rbd] - [rbd] XOR [rbs] S-
'" Exclusive-OR the contents of Source and Destination registers. Store 
'61 

the result in the Destination register. Use 16-bit registers for XOR. II 
I:C 

Use 8-bit registers for XORB. 

ClR rwd 8Dd8 2 7 [rwd]-O 
Clear the Selected Word register. 

ClRB rbd 8Cd8 2 7 [rbd]-O 
Clear the Selected Byte register. 

m COM rwd 8DdO 2 7 [rwd] - [rWcI] 

en Complement the Selected Word register. 
m COMB rbd 8CdO 2 7 [rbd] - [rbd] 

Complement the Selected Byte register. 
DAB rbd BOdO 2 5 X X X Decimal adjust contents of 8-bit register rbd. 

! DEC rwd,n16 ABdn 2 4 X X X [rwd] - [rwd] - n 1 6 
f 
II DECB rbd,n16 AAdn 2 4 X X X [rbd] - [rbd] - n 1 6 
Q. 
0 Subtract the immediate value n 16 from a 16-bit register (for DEC) or .. 

an 8-bit register (for DECB). ! 
'" EXTS rid B1dA 2 11 Bits 16 to 31 of [rid] - bit 15 of [rid]. 'iii 
II The sign bit of the low-order word of the register pair is copied into I:C 

all bits of the high-order word of the register pair. 
EXTSB rwd BldO 2 11 Bits 8 to 1 5 of [rwd] - bit 7 of [rwd] 

The sign bit of the low-order byte of the register is copied into all bits 
of the high-order byte of the register. 

EXTSL rqd Bld7 2 11 Bits 32 to 63 of [rqd] - bit 31 of [rqd] 
The sign bit of the low-order register pair of the Quadruple register is 
copied into all bits of the high-order register pair. 

" Privileged instruction - can be executed only in system mode. 
"" Number of clock cycles depends on the number of repetitions for n/m""; n =minimum number of clock cycles and m = number of clock cycles added for each additional ~epetition 

of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )"m. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

III Clock Status I 
Type Mnemonic Operand(s) Op Code S Operation Performed > Cycles III H D 0 P S Z C 

INC rwd,n16 A9dn 2 4 X X X [rwd] - [rwd] + n 16 

INCB rbd,n16 A8dn 2 4 X X X [rbd] +- [rbd] + n 1 6 
Add the immediate value n 16 to a 16-bit register (for INC) or an 8-bit 

register (for INCB). 

NEG rwd 8Dd2 2 7 X X X X [rwd] +- - [fwd] 

NEGB rbd 8Cd2 2 7 X X X X [rbd] - - [rbd] 
Replace the contents of the 1 6-bit register (for NEG) or 8-bit register 
(for NEGB) with its twos complement. 

RL rwd,1 B3d8 2 6 X X X X Left rotate contents of word (for RU or byte (for RLB) register, n bits 

RL rwd,2 B3dA 2 7 X X X X (n = 1 or 2), as follows: 

RLB rbd,1 B2d8 2 6 X X X X 

~ 13J RLB rbd,2 B2dA 2 7 X X X X 

I I I I I I I I I I I I I I 
~ 
GI 
:::s 

0) 

m 
..,J 

c 

~ I~ 
:;::; 
c 

I I I 0 I I I g 
! 
t! See accompanying text for a discussion of the Overflow status for all 
GI a. Register Operate shift and rotate instructions. 
0 ... RLC rwd,1 B3dO 2 6 X X X X Left rotate through Calrry contents of word (for RLC) or byte (for 
S RLC rwd,2 B3d2 2 7 X X X X RLCB) register, n bits (n = 1 or 2), as follows: III .& 

RLCB rbd,1 B2dO 2 6 X X X X GI a: RLCB rbd,2 B2d2 2 7 X X X X Lm-i I;J I I I I I I I I I I I I I I 

~ I I I I I I I~ 

• P··I d . f an be executed only in system mode. 
nVI ege Instruc Ion - c . . f Imo,. n =minimum number of clock I 

•• Number of clock cycles depends on the number of. repetlt~ons ~~ n
h 

~ats k times is n + (k-1). eyc es and m = number of clock cycles added for each additional repeti tion 
of operation. The number of clock cycles for an instruction w IC re m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

Type I Mnemonic I Operand(s) Op Code 
1/1 

t Clock Status Operation Performed 

III Cycles H 0 0 P S Z C 

RR rwd,1 B3dC 2 6 X X X X Right rotate contents of word (for RR) or byte (for RRB) register, n bits 

RR rwd,2 B3dE 2 7 X X X X (n = 1 or 2), as follows: 
RRB rbd,1 B2dC 2 6 X X X X 

liJ RRB rbd,2 B2dE 2 7 X X X X rn-4 I I 

m-41 I I 1 I~ 
RRC rwd,1 B3d4 2 6 X X X X Right rotate through Carry contents of word (for RRC) or byte (for 

RRC rwd,2 B3d6 2 7 X X X X RRCB) register, n bits (n = 1 or 2), as follows: 

~ 
RRCB rbd,1 B2d4 2 6 X X X X 

[ffi:F liJ G) RRCB rbd,2 B2d6 2 7 X X X X = ~ c 
0 
~ 

I§:tl ! --1+1 I! I I I G) 
a. 
0 
"- .SOA rwd,rw B3dB OrOO 4 18/3" X X X X Shift arithmetic the contents of a byte (for SOAB) word (for SOA) or 
! 
1/1 SOAB rbd,rw B2dB OrOO 4 18/3" X X X X long word (for SOAL) register. [rwJ specifies the number of shift bit 
'61 
G) SOAL rld,rw B3dF OrOO 4 18/3" X X X X positions, and the direction (+ for left shift, - for right shift). 0 shift 

a:: 
is allowed; it causes no shift, but sets status. [rwJ value range is -8 
to +8 for SOAB. -16 to + 16 for SOA -32 to +32 for SOAL. Bits 0 
to 4 of [rwl are active, with bit 15 used for sign. Shifts occur as 
follows: fu R;ght Left 

~I I :J--f£] 0--lII:!: ]-r I ~O 
7 6 2 0 --SOAB- 7 6 2 0 

1514 2 1 0 --SOA- 1514 2 1 0 
31 30 2 1 0 --SOAL - 31 30 2 1 0 

Bit Numbers Bit Numbers 

• Privileged instruction - can be executed only in system mode. 
Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1 )·m. 
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Table 6-3, A Summary of the Z8000 Instruction Set (Continued) 

Type I Mnemonic I Operand(s) 

1 = 'S c o g 
! 
! 
& 
o ... 
! 
III 
'61 
~ 

SOL 
SOLB 
SOLL 

SLA 
SLAB 
SLAL 

SLL 
SLLB 
SLLL 

SRA 
SRAB 
SRAL 

SRL 
SRLB 
SRLL 

TSET 

TSETB 

TEST 
TESTB 
TESTL 

rwd,rw 
rbd,rw 
rld,rw 

rwd,data16 
rbd,data16 
rld,data16 

rwd,data16 
rbd,data16 
rld,data16 

rwd,data16 
rbd,data16 
rld,data16 

rwd,data16 
rbd,data16 
rld,data16 

rwd 
rbd 

rwd 
rbd 
rid 

Op Code 

B3d3 
B2d3 
B3d7 

B3d9 
B2d9 
B3dO 

B3d1 
" B2d1 

B3d5 

B3d9 
B2d9 
B3dO 

B3d1 
B2d1 
B3d5 

80d6 
8Cd6 

80d4 
8Cd4 
9CdO 

OrOO 
OrOO 
OrOO 

yyyy 
yyyy 
yyyy 

yyyy 
yyyy 
yyyy 

yyyy 

yyyy 
yyyy 

yyyy 
yyyy 
yyyy 

= Clock 
:- Cycles 

4 
4 
4 

4 
4 
4 

4 
4 
4 

4 
4 
4 

4 
4 
4 

2 
2 

2 
2 
2 

18/3·· 
18/3.0 

18/30
• 

16/3·· 
16/3·· 
16/3 0

• 

16/3·· 
16/3·· 
16/300 

16/300 

16/3·· 
16/3·· 

16/3·· 
16/3·· 
16/3·· 

7 
7 

7 
7 

13 

• Privileged instruction - can be executed only in system mode. 

Status 
Operation Performed 

HIDIOIPISIZIC 

u 
u 
u 

X 
X 
X 

u 
u 
u 

o 
o 
o 

u 
u 
u 

XIX X X 
X X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 

x 
X 
X 

X 
X 
X 

X 

X 
X 

X 
X 

X 

XIX XIX X 
X X 

X I SOL, SOLB and SOLL are equivalent to SOA, SOAB and SOAL, 
X respectively, but they perform logical right shifts, Left shifts are iden-
X tical. Shifts may be illustrated as follows: 

X 
X 
X 

X 
X 
X 

X 
X 
X 

X 
X 
X 

Right Left 

m~1 I I J.--E£] [§MIl~1 I~ 
7 6 

1514 
31 30 

2 0 
2 0 
2 0 

-SOLB --+ 

- SOL--+ 
- SOLL--+ 

7 6 
1514 
3130 

2 0 
2 0 
2 0 

SLA, SLAB and SLAL are identical to SOA, SOAB and SOAL, respec­
tively, when these instructions are performing left shifts, except that 
SLA, SLAB and SLAL specify the shift bit count immediately. 

SLL, SLLB and SLLL are identical to SOL, SOLB and SOLL, respec­
tively, when these instructions are performing left shifts, except that 
SLL, SLLB and SLLL specify the shift bit count immediately. 

SRA, SRAB and SRAL are identical to SOA, SOAB and SDAL, respec­
tively, when these instructions are performing right shifts, except that 
SRA, SRAB, and SRAL specify the shift bit count immediately. 

SRL, SRLB, and SRLL are identical to SOL, SOLB, and SOLL, respec­
tively, when these instructions are performing right shifts, except that 
SRL, SRLB and SRLL specify the shift bit count immediately. 

[s]- [rwd)(MSB),[rwd]- FFFF 
[s]- [rbd](MSB), [rbd] - FF 

Move the most significant bit of the 16-bit register (for TSET) or 8-bit 
register (TSETB) to the Sign status. Then fill the register with 1 bits. 

X I [rwd] OR 0 
X [rbd] OR 0 
X [rid] OR 0 

OR the specified register contents with O. Set Status flags based on 
the result. Test a 32-bit register for TESTL, a 16-bit register for TEST 
and an 8-bit register for TESTB. 

.. Number of clock cycles depends on the number of repetitions for n/m··; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti'tion 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1).m, 



Table 6-3. A Summary of the zaooo Instruction Set (Continued) 

II) Clock Status 
Type Mnemonic Operand(s) Op Code S Operation Performed 

>- Cycles 
ID H D 0 P S Z C 

LOCTL' NSPSEG,rws 70sE 2 7 [NSPSEG] - [rws] 
LOCTL' rwd,NSPSEG 70d6 2 7 [rwd] - [NSPSEG] 

Transfer data between a 16-bit register and tahe Z8001 normal 
Stack Pointer Segment Address register (R 14N). 

LOCTL' NSPOFF,rws 70sF 2 7 [NSPOFF] - [rws] 
LOCTL' rwd,NSPOFF 70d7 2 7 [rwd] - [NSPOFF] 

Transfer data between a 16-bit register and the normal Stack Pointer 
Address register (R15N). 

POP rwdl@ris 97sd 2 8 [rwd] - [[ris]], Iris] - Iris] + 2 
POP @rid,@ris 17sd 2 12 [[rid]] - [[ris]!. Iris] - Iris] + 2 
POP adrsx,@ris 57si pppp qqqq 4/6 15-19 [adrsx] - [[ris]!. Iris] - Iris] + 2 

Pop the memory word addressed by ris, the designated Stack Pointer. 
Any register with the exception of RO (for non segmented) or RRO (for 
segmented) can be designated as the Stack Pointer. The popped word 
is loaded into a 16-bit register, or the memory location addressed by 
adrsx or [rid]. 

0) 

.!.J o 

POPL rld,@ris 95id 2 12 [rid] - [[ris]], Iris] - Iris] + 4 
~ 
u POPL @rid,@ris 15id 2 19 [[rid]] - [[ris]], Iris] - [risl + 4 
S 
(I) POPL adrsx,@ris 55si pppp qqqq 4/6 22-26 [adrsxl - [[ris]], Iris] - Iris] + 4 

POPL is identical to POP, except that a 32-bit long word is popped. 
PUSH @rid,rws 93is 2 9 [ridl- [rid]- 2.[[rid]]- [rws] 
PUSH @rid,@ris 13is 2 13 [rid] - [rid] - 2. [[rid]] - [[ris]] 
PUSH @rid,adrsx 53di pppp qqqq 4/6 13-17 [rid]- [rid] - 2. [[rid]]- [adrsx] 
PUSH @rid,data 1 6 OOd9 yyyy 4 12 [rid] - [rid] - 2. [[rid]] - data16 

Push a 16-bit word onto a memory stack addressed by rid, the desig-
nated Stack Pointer. Any register with the exception of RO (for non-
segmented) or RRO (for segmented) can be designated as the Stack 
Pointer. The pushed word can come from a register, the memory 
word addressed by adrsx or Iris!. or it may be immediate data. 

PUSHL @rid,rls 91is 2 12 [rid] - [rid] - 4. [[rid]] - [rls] 
PUSHL @rid,@ris 11 is 2 20 [rid] - [rid] - 4. [[rid]] - [[ris]] 
PUSHL @rid,adrsx 51di pppp qqqq 4/6 20-24 [rid] - [rid] - 4. [[rid]] - [adrsx] 

PUSHL is identical to PUSH except that a 32-bit long word is pushed, 
also there is no immediate version of PUSHL. 

• Privileged instruction - can be executed only in system mode. 
•• Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repeti tion 

of operation. The number of clock cycles for an instruction which repeats k times is n + (k-1).m. 



Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

III Clock Status 
Type Mnemonic Operand(s) Op Code " Operation Performed .. 

Cycles >-m H D 0 P S Z C 

BIT rwd,b16 A7db 2 4 X Z - NOT bit b16 of [rwdl 
BIT @rid,b16 27ib 2 8 X Z - NOT bit b16 of [[rid]] 
BIT adrsx,b16 67ib pppp qqqq 4/6 10-14 X Z - NOT bit b 1 6 of [adrsxl 
BIT rwd,rws 270s OdOO 4 10 X Z - NOT bit [rwsl of [rwdl 

Set the Z status to the complement of the specified bit, which may be 
in a 16-bit register or memory word. The bit may be specified im-
mediately, or for a register it may be specified by the low-order four 
bits of a 16-bit register. 

BITB rbd,b8 A6db 2 4 X Z - NOT bit b8 of [rbdl 
BITB @rid,b8 26ib 2 8 X Z - NOT bit b8 of [[rid]] 
BITB adrsx,b8 66ib pppp qqqq 4/6 10-14 X Z - NOT bit b8 of [adrsxl 
BITB rbd,rws 260s OdOO 4 10 X Z - NOT bit [rwsl of [rbdl 

Set the Z status to the complement of the specified bit, which may be 
in an 8-bit register or memory byte. The bit may be specified im-

fII mediately, or for a register it may be specified by the low-order three 

0) 

.!.J 

c bits of one of the registers RO - R7. 0 
'+l 

RES rwd,b16 A3db 2 4 Bit b16 of [rwdl - 0 ! 
" RES @rid,b16 23ib 2 11 Bit b16 of [[rid]]- 0 a. 
0 RES adrsx,b16 63ib pppp qqqq 4/6 13-17 Bit b 16 of [adrsxl - 0 .. 
iD RES rwd,rws 230s OdOO 4 10 Bit [rwsl of [rwdl +- 0 

Clear the specified bit, which may be in a 16-bit register or memory 
word. The bit may be specified immediately, or for a register it may 
be specified by the low-order four bits of a 16-bit register. 

RESB rbd,b8 A2db 2 4 Bit b8 of [rbdl +- 0 
RESB @rid,b8 22ib 2 11 Bit b8 of [[rid]] - 0 
RESB adrsx,b8 62ib pppp qqqq 4/6 13-17 Bit b8 of [adrsxl - 0 
RESB rbd,rws 220s OdOO 4 10 Bit [rwsl of [rbdl - 0 

Clear the specified bit, which may be in an 8-bit register or memory 
byte. The bit may be specified immediately, or for a register it may be 
specified by the low-order three bits of one of the registers AO - A7. 

. Privileged instruction - cali be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n ~ (k-11.m. 
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

1/1 Clock Status 
Type Mnemonic Operand(s) Op Code ; Cycles 

Operation Performed 
III H D 0 P S Z C 

~ SET rwd,b16 A5db 2 4 Bit b16 of [rwd)- 1 
G> SET @rid,b16 25ib 2 11 Bit b16 of [[rid]) - 1 :s 
~ SET adrsx,b16 65ib pppp qqqq 4/6 13-17 Bit b 16 of [adrsx] - 1 
c 
0 SET rwd,rws 250s OdOO 4 10 Bit [rws) of [rwd) - 1 g 

SETB rbd,b8 A4db 2 4 Bit b8 of [rbd] 
1/1 c SETB @rid,b8 24ib 2 11 Bit b8 of [[rid]] 
~ 
t! SETB adrsx,b8 64ib pppp qqqq 4/6 13-17 Bit b8 of [adrsx] 
G> SETB rbd,rws 240s OdOO 4 10 Bit [rws] of [rbd] a. 
0 SET and SETB instructions are equivalent to RES and RESB instruc-.. 
iii tions, respectively, except that the selected bit is set. 

01' int 7C OOOOOOvv 2 6 Oisable the indicated interrupt(s). Either or both of VI and NVI may be 
indicated. 

EI' int 7C 00000lvv 2 6 Enable the indicated interrupt(s). Either or both of VI and NVI may be 
indicated. 

IRET' 7BOO 2 13,16 X X X X X X X [SP)- [SP] + 2. [FCW]- [[SP]]: [SP]- [SP) + 2. [PC]- [[SP]] 
[SP) - [SP] + 2. (Nonsegmented) 
[SP] - [SP] + 2. [FCW] - [[SP]]. [SP] - [SP) + 2. [PC] - [[SP]] 
[SP] - [SP] + 4. (Segmented) 

Return from interrupt. Pop and discard identifier word. Pop flag and 
control word. Pop Program Counter. 

LOCTL' PSAPSEG,rws 70sC 2 7 [PSAPSEG] - [rws] .. 
LOCTL' rwd,PSAPSEG 70d4 2 7 [rwd] - [PSAPSEG] a. 

E These two instructions transfer data between the 28001 Program 
! .s Status Area Pointer Segment register, and a 16-bit general purpose 

register. 
LOCTL' PSAPOFF,rws 70s0 2 7 [PSAPOFF] - [rws] 
LOCTL' rwd,PSAPOFF 70d5 2 7 [rwd] - [PSAPOFF] 

These two instructions transfer data between the Program Status 
Area Pointer and a 16-bit general purpose register. 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-l )'m. 

--
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

I/) 
Clock Status 

Type Mnemonic Operand(s) Op Code t Cycles 
Operation Performed 

CD H D 0 P S Z C 

COMFLG flag 80f5 2 7 X X X X X Complement each status named in the operand. Any or all of C, Z, S, 
P, or 0 may be named in any order. 

LOCTL' FCW,rws 70sA 2 7 X X X X X X X [FCW) - [rws) 
Load register contents into FCW. Unassigned bits of FCW are not 
affected. 

LOCTL' rwd,FeW 70d2 2 7 [rwd] - [FeW] 
Load Few contents into selected register. Unassigned bits of FeW 
are reset to 0 in rwd. 

LOeTLB FLAGS,rbs 8es9 2 7 X X X X X X X [FLAGS] - [rbs] 
Load byte register contents into low-order byte of FeW. Bits 0 and 1, 
which are unassigned, are not affected. 

LOeTLB rbd,FLAGS 8ed1 2 7 [rbd] - [FLAGS] 
Load the low-order byte of FCW into byte register rbd. Bits 0 and 1 of 
rbd are reset to O. 

RESFLG flag 80f3 2 7 X X X X X Reset to 0 each status named in the operand. 
I/) SETFLG flag 80f1 2 7 X X X X X Set to 1 each status named in the operand. 
~ TCC cC,rwd AFdc 2 5 If cc is "true" then set bit 0 of Register rwd. Otherwise reset bit 0 of 
S 
(I) Register rwd. 

TeeB cC,rbd AEdc 2 5 If cc is "true" then set bit 0 of Register rbd. Otherwise reset bit 0 of 
Register rbd. 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-11·m. 

--- - -
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Table 6-3. A Summary of the Z8000 Instruction Set (Continued) 

CII 
Clock Status 

Type Mnemonic Operand(s) Op Code t Cycles 
Operation Performed 

III H D 0 P S Z C 

HALT 7AOO 2 8/3"" Halt CPU until reset or interrupt 
LDCTL" REFRESH,rws 7DsB 2 7 [REFRESH I - [rwsl 

Transfer the contents of the specified 16-bit register into the 
Dynamic Memory Refresh Control register. 

LDCTL" rwd,REFRESH 7Dd3 2 7 [rwdl-[REFRESHI 
Transfer the contents of the Dynamic Memory Refresh Control. 
register to the specified 16-bit register. 

MBIT" 7BOA 2 7 X [SI-Mi - _I 
Set Sign status to 1 if MI is input low (1). Reset Sign status to 0 if MI 
is input high (01. 

MREQ" rwd 7BdD 2 12/7"" X X [ZI- O. If Mi = 1 then [SI- 0 and [MOI- O. 
If Mi = 0 then [MOI- 1. Decrement [rwdl to O. 

g If Mi is still 0 then [SI - O. [MOl - O. 
If Mi is now 1 then [SI - 1. 

c [ZI-1. 0 
0 

Execute a multi-micro bus request, as described in accompanying CII 
~ text. III 

" MRES" 7B09 2 5 [MOI-O c 
III Output MO high. 
j 
Go MSET" 7B08 2 5 [MOI-1 
~ Output MO low. e 
fi NOP 8007 2 7 No operation. 
0 

" Privileged instruction - can be executed only in system mode. 

"" Number of clock cycles depends on the number of repetitions for n/m""; n =minimum number of clock cycles and m = number of clock cycles added for each additional repetition 
of operation. The number of clock cycles for an instruction which repeats k times is n + (k-11"m. 



Table 6-4. Z8000 Instruction Set Object Codes 

Clock 
Mnemonic Object Code Bytes Cycles Mnemonic Object Code Bytes 

Clock 
Cycles 

AOC rwd,rws B5sd 2 5 CALR disp Oxxx 2 10/15 
AOCB rbd,rbs B4sd 2 5 CLR adrsx 40i8 4/6 11-15 
ADD rwd,adrsx 41id 4/6 9-13 pppp 

pppp qqqq 
qqqq rwd 80d8 2 7 

rwd,data16 010d 4 7 @rid OOdB 2 8 
yyyy CLRB adrsx 4Ci8 4/6 11-15 

rwd,rws B1sd 2 4 pppp 
rwd,@ris 01id 2 7 qqqq 

AOOB rbd,adrsx 40id 4/6 9-13 rbd BCdB 2 7 
pppp @rid OCdB 2 B 
qqqq COM adrsx 40iO 4/6 15-19 

rbd,dataB OOOd 4 7 pppp 
yyOO qqqq 

rbd,rbs BOsd 2 4 rwd BOdO 2 7 
rbd,@ris OOid 2 7 @rid OOdO 2 12 

AOOL rld,adrsx 56id 4/6 15-19 COMB adrsx 4CiO 4/6 15-19 
pppp pppp 
qqqq qqqq 

rld,data32 160d 6 14 rbd BCdO 2 7 
yyyy @rid OCdO 2 12 
zzzz COMFLG flag BOf5 2 7 

rld,rls 96sd 2 8 CP adrsx,data 1 6 4Di1 6/B 14-18 
rld,@ris 16id 2 14 yyyy 

AND rwd,adrsx 47id 4/6 9-13 pppp 
pppp qqqq 
qqqq rwd,adrsx 4Bid 4/6 9-13 

rwd,data16 070d 4 7 pppp 
yyyy qqqq 

rwd,rws B7sd 2 4 rwd,data16 OBOd 4 7 
rwd,@ris 07id 2 7 yyyy 

ANOB rbd,adrsx 46id 4/6 9-13 rwd,rws BBsd 2 4 
pppp rwd,@ris OBid 2 7 
qqqq @rid,data16 00d1 4 11 

rbd,dataB 060d 4 7 yyyy 
yyOO CPB adrSX,data8 4Ci1 6/B 14-18 

rbd,rbs B6sd 2 4 yyOO 
rbd,@ris 06id 2 7 pppp 

BIT adrsx,b16 67ib 4/6 10-14 qqqq 
pppp rbd,adrsx 4Aid 4/6 9-13 
qqqq pppp 

rwd,b16 A7db 2 4 qqqq 
@rid,b16 27ib 2 8 rbd,dataB OAOd 4 7 
rwd,rws 270s 4 10 yyOO 

OdOO rbd,rbs BAsd 2 4 
BITB adrsx,bB 66ib 4/6 10-14 rbd,@ris OAid 2 7 

pppp @rid,dataB OCd1 4 11 
qqqq yyOO 

rbd,b8 A6db 2 4 CPL rld,adrsx 50id 4/6 15-19 
@rid,bB 26ib 2 B pppp 
rbd,rws 260s 4 10 qqqq 

OdOO rld,data32 100d 6 14 
CALL adrsx 5FiO 4/6 12-21 yyyy 

pppp zzzz 
qqqq rld,rls 90sd 2 B 

@rid 1FdO 2 10/15 rld,@ris 10id 2 14 
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Table 6-4. zaooo Instruction Set Object Codes (Continued) 

Mnemonic Object Code Bytes 
Clock 
Cycles Mnemonic Object Code Bytes 

Clock 
Cycles 

CPO rwd,@ris,rw,cc BBsS 4 20 DIVL rqd,adrsx 5Aid 4/6 note 1 
Ordc pppp 

CPOB rbd,@ris,rw,cc BAsS 4 20 qqqq 
Ordc rqd,data32 1AOd 6 note 1 

CPOR rwd,@ris,rw,cc BBsC 4 20/9" yyyy 
Ordc zzzz 

CPORB rbd,@ris,rw,cc BAsC 4 20/9" rqd,rls 9Asd 2 note 1 
Ordc rqd,@ris 1Aid 2 note 1 

CPI rwd,@ris,rw,cc BBsO 4 20 DJNZ rw,disp Fr Ottttttt 2 11 
Ordc DBJNZ rb,disp Fr 1 ttttttt 2 11 

CPIB rbd,@ris,rw,cc BAsO 4 20 'EI int 7C 00OOO1vv 2 6 
Ordc EX rwd,adrsx 6Did 4/6 15-19 

CPIR rwd,@ris,rw,cc BBs4 4 20/S" pppp 

Ordc qqqq 
CPIRB rbd,@ris,rw,cc BAs4 4 20/9" rwd,rws ADsd 2 6 

Ordc rwd,@ris 2Dsd 2 12 
CPSD @rid,@riS,rw,cc BBsA 4 25 EXB rbd,adrsx 6Cid 4/6 15-19 

Ordc pppp 

CPSDB @rid,@ris,rw,cc BAsA 4 25 qqqq 

Ordc rbd,rbs ACsd 2 6 
CPSDR @rid,@ris,rw,cc BBsE 4 25/14" rbd,@ris 2Csd 2 12 

Ordc EXTS rid B1dA 2 11 
CPSDRB @rid,@ris,rw,cc BAsE 4 25/14" EXTSB rwd 81dO 2 11 

Ordc EXTSL rqd B1d7 2 11 
CPSI @rid,@ris,rw,cc BBs2 4 25 'HALT 7AOO 2 S/3" 

Ordc 'IN rwd,ioaddr 3Bd4 4 12 
CPSIB @rid,@ris,rw,cc BAs2 4 25 pppp 

Ordc rwd,@rw 3Dsd 2 10 
CPSIR @rid,@riS,rw,cc BBs6 4 25/14" 'INB rbd,ioaddr 3Ad4 4 12 

Ordc pppp 

CPSIRB @rid,@ris,rw,cc BAs6 4 25/14" rbd,@rw 3Csd 2 10 
Ordc INC adrsx,n16 69in 4/6 13-17 

DAB rbd BOdO 2 5 pppp 
DEC adrsx,n16 6Bin 4/6 13-17 qqqq 

pppp rwd,n16 A9dn 2 4 
qqqq @rid,n16 29dn 2 11 

rwd,n16 ABdn 2 4 INCB adrsx,n16 6Sin 4/6 13-17 
@rid,n16 2Bdn 2 11 pppp 

DECB adrsx,n16 6Ain 4/6 13-17 qqqq 
pppp rbd,n16 A8dn 2 4 
qqqq @rid,n16 2Sdn 2 11 

rbd,n16 AAdn 2 4 'INO @rid,@ris,rw 3Bs8 4 21 
@rid,n16 2Adn 2 11 Ord8 

'01 int 7C OOOOOOvv 2 6 'INDB @rid,@ris,rw 3As8 4 21 
DIV rld,adrsx 5Bid 4/6 note 1 Ord8 

pppp 'INOR @rid,@ris,rw 3BsS 4 21110" 
qqqq OrdO 

rld,data16 1 BOd 4 note 1 'INORB @rid,@riS,rw 3As8 4 21110" 
yyyy OrdO 

rld,rws SBsd 2 note 1 'INI @rid,@ris,rw 3BsO 4 21 
rld,@ris 1Bid 2 note 1 Ord8 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m"; n = minimum number of clock cycles and 
m = number of clock cycles added for each 'additional repetition of operation. 
The number of clock cycles for an instruction which repeats k times is n + (k- H ·m. 
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Table 6-4. Z8000 Instruction Set Object Codes (Continued) 

Mnemonic Object Code Bytes 
Clock 

Mnemonic Object Code Bytes 
Clock 

Cycles Cycles 

·INIB @rid,@ris,rw 3AsO 4 21 LOB rbd,ris(rw) 70id 4 14 
Ord8 (Cont.) OrOO 

·INIR @rid,@ris,rw 3BsO 4 21/10·· rbd,@ris 20id 2 7 
OrdO rid(disp),rbs 32is 4 14 

·INIRB @rid,@ris,rw 3AsO 4 21/10·· xxxx 
OrdO rid(rw),rbs 72is 4 14 

·IRET 7BOO 2 13,16 OrOO 
JP cC,adrsx 5Eic 4/6 7-11 @rid,data8 OCd5 4 11 

pppp yyOO 
qqqq @rid,rbs 2Eds 2 8 

cC,@rid 1Edc 2 10,15/7 LOL adrsx,rls 50is 4/6 14-18 
JR cC,disp Ecxx 2 6 pppp 
LO adrsx,data 16 40i5 6/8 14-18 qqqq 

yyyy rld,adrsx 54id 4/6 12-16 
pppp pppp 
qqqq qqqq 

adrsx,rws 6Fis 4/6 11-15 rld,data32 140d 6 11 
pppp yyyy 
qqqq zzzz 

rwd,adrsx 61id 4/6 9-13 rld,rls 94sd 2 5 
pppp rld,ris(disp) 35id 4 17 
qqqq xxx x 

rwd,data16 210d 4 7 rld,ris(rw) 75id 4 17 
yyyy OrOO 

rwd,rws A1sd 2 3 rld,@ris 14id 2 11 
rwd,ris (disp) 31id 4 14 rid(disp),rls 37is 4 17 

xxx x xxxx 
rwd.ris(rw) 71id 4 14 rid(rwl,rls 77is 4 17 

OrOO OrOO 
rwd,@ris 21id 2 7 @rid.rls 10ds 2 11 
rid (displ.rws 33is 4 14 LOA rld,adrsx 76id 4/6 13-16 

xxx x pppp 
rid (rwl.rws 73is 4 14 qqqq 

OrOO rld,ris(disp) 34id 4 15 
@rid,data 16 OOd5 4 11 xxxx 

yyyy rld.ris(rw) 74id 4 15 
@rid.rws 2Fds 2 8 OrOO 

LOB adrsx,data8 4Ci5 6/8 14-18 rwd.adrsx 76id 4 12-13 
yyOO pppp 
pppp rwd.ris(disp) 34id 4 15 
qqqq xxxx 

adrsx,rbs 6Eis 4/6 11-15 rwd.ris(rw) 74id 4 15 
pppp OrOO 
qqqq LOAR rld,disp 340d 4 15 

rbd,adrsx 60id 4/6 9-13 xxxx 
pppp rwd.disp 340d 4 15 
qqqq xxxx 

rbd,data8 Cdyy 2 5 
rbd,rbs AOsd 2 3 
rbd,ris(disp) 30id 4 14 

xxxx 

. Privileged instruction - can be executed only in system mode . .. Number of clock cycles depends on the number of repetitions for n/m··; n = minimum number of clock cycles and 
m = number of clock cycles added for each additional repetition of operation. The number of clock cycles for an instruction 
which repeats k times is n + (k-1 ).m. 
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Table 6-4. Z8000 Instruction Set Object Codes (Continued) 

Mnemonic Object Code Bytes 
Clock 
Cycles 

Mnemonic Object Code Bytes 
Clock 
Cycles 

'LDcn FCW,rws 70sA 2 7 LORB disp,rbs 320d 4 14 
NSPOFF,rws 70sF 2 7 xxxx 
NSPSEG,rws 70sE 2 7 rbd,disp 300d 4 14 
PSAPOFF,rws 70s0 2 7 xxxx 
PSAPSEG,rws 70sC 2 7 LORL disp,rls 370s 4 17 
REFRESH,rws 70sB 2 7 xxxx 
rwd,FCW 70d2 2 7 rld,disp 350d 4 17 
rwd,NSPOFF 70d7 2 7 xxxx 
rwd,NSPSEG 70d6 2 7 'MBIT 7BOA 2 7 
rwd,PSAPOFF 70d5 2 7 'MREQ rwd 7BdO 2 12/7" 
rwd,PSAPSEG 70d4 2 7 'MRES 7B09 2 5 
rwd,REFRESH 70d3 2 7 'MSET 7B08 2 5 

LOClLB FLAGS,rbs 8Cs9 2 7 MULT rld,adrsx 59id 4/6 note 2 
rbs,FLAGS 8Cd1 2 7 pppp 

LOO @rid,@ris,rw BBs9 4 20 qqqq 
Ord8 rld,data16 190d 4 note 2 

L008 @rid,@ris,rw BAs9 4 20 yyyy 
Ord8 rld,rws 99sd 2 note 2 

LOOR @rid,@ris,rw BBs9 4 20/9" rld,@ris 19id 2 note 2 
OrdO MULTL rqd,adrsx 58id 4/6 note 2 

LOORB @rid,@ris,rw BAs9 4 20/9" pppp 
OrdO qqqq 

LOI @rid,@ris,rw BBs1 4 20 rqd,data32 180d 6 note 2 
Ord8 yyyy 

LOIB @rid,@ris,rw BAs 1 4 20 zzzz 
Ord8 rqd,rls 98sd 2 note 2 

LOIR @rid,@ris,rw BBs1 4 20/9" rqd,@ris 18id 2 note 2 
OrdO NEG adrsx 40i2 4/6 15-19 

LOIRB @rid,@ris,rw BAs1 4 20/9" pppp 
OrdO qqqq 

LOK rwd,b16 BOdb 2 5 rwd 80d2 2 7 
LOM adrsx,rws,n 1 6 5Ci9 6/8 17-21/3*· @rid 00d2 2 12 

OsOn NEGB adrsx 4Ci2 4/6 15-19 
pppp pppp 
qqqq qqqq 

rwd,adrsx,n 1 6 5Ci1 6/8 ~7-21/3*' rbd 8Cd2 2 7 
OdOn @rid OCd2 2 12 
pppp NOP 8007 2 7 
qqqq OR rwd,adrsx 45id 4/6 9-13 

rwd,@ris,n 16 1Cs1 4 14/3" pppp 
OdOn qqqq 

@rid,rws,n16 1Cd9 4 14/3" rwd,data16 050d 4 7 

OsOn yyyy 
'LOPS adrsx 79iO 4/6 16-23 rwd,rws 85sd 2 4 

pppp rwd,@ris 05id 2 7 
qqqq 

@ris 39s0 2 12,16 
LOR disp,rws 330s 4 14 

xxxx 
rwd,disp 310d 4 14 

xxxx 

, Privileged instruction - can be executed only in system mode. 
" Number of clock cycles depends on the number of repetitions for n/m"; n = minimum number of clock cycles and 

m = number of clock cycles added for each additional repetition of operation. The number of clock cycles for an instruction 
which repeats k times is n + (k-1 I,m. 
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Table 6-4. Z8000 Instruction Set Object Codes (Continued) 

Mnemonic Object Code Bytes 
Clock 

Mnemonic Object Code Bytes 
Clock 

Cycles Cycles 

ORB rbd,adrsx 44id 4/6 9-13 RES adrsx,b16 63ib 4/6 13-17 
pppp pppp 
qqqq qqqq 

rbd,data8 040d 4 7 rwd,b16 A3db 2 4 
yyOO rwd,rws 230s 4 10 

rbd,rbs 84sd 2 4 OdOO 
rbd,@ris 04id 2 7 @rid,b16 23ib 2 11 

'OTOR @rid,@ris,rw 3BsA 4 21/10" RESB adrsx,b8 62ib 4/6 13-17 
OrdO pppp 

'OTORB @rid,@ris,rw 3AsA 4 21/10" qqqq 
OrdO rbd,b8 A2db 2 4 

'OTIR @rid,@ris,rw 3Bs2 4 21/10" rbd,rws 220s 4 10 
OrdO OdOO 

'OTIRB @rid,@ris,rw 3As2 4 21/10" @rid,b8 22ib 2 11 
OrdO RESFLG flag 80f3 2 7 

'OUT ioaddr,rws 3Bs6 4 12 RET cc 9EOc 2 10,13/7 
pppp RL rwd,1 B3d8 2 6 

@rw,rws 3Fds 2 10 rwd,2 B3dA 2 7 
'OUTB ioaddr,rbs 3As6 4 12 RLB rbd,1 B2d8 2 6 

pppp rbd,2 B2dA 2 7 
@rw,rbs 3Eds 2 10 RLC rwd,1 B3dO 2 6 

'OUTO @rid,@ris,rw 3BsA 4 21 rwd,2 B3d2 2 7 
Ord8 RLCB rbd,1 B2dO 2 6 

'OUTOB @rid,@ris,rw 3AsA 4 21 rbd,2 B2d2 2 7 
Ord8 RLOB rbd,rbs BEsd 2 9 

'OUTI @rid,@ris,rw 3Bs2 4 21 RR rwd,1 B3dC 2 6 
Ord8 rwd,2 B3dE 2 7 

'OUTIB @rid,@ris,rw 3As2 4 21 RRB rbd,1 B2dC 2 6 
Ord8 rbd,2 B2dE 2 7 

POP adrsx,@ris 57si 4/6 15-19 RRC rwd,1 B3d4 2 6 
pppp rwd,2 B3d6 2 7 
qqqq RRCB rbd,1 B2d4 2 6 

rwd,@ris 97sd 2 8 rbd,2 B2d6 2 7 
@rid,@ris 17sd 2 12 RROB rbd,rbs BCsd 2 9 

POPL adrsx,@ris 55si 4/6 22-26 SBC rwd,rws B7sd 2 5 
pppp SBCB rbd,rbs B6sd 2 5 
qqqq SC data8 7Fyy 2 33,39 

rld,@ris 95id 2 12 SOA rwd,rw B3dB 4 18/3" 
@rid,@ris 15id 2 19 OrOO 

PUSH @rid,adrsx 53di 4/6 13-7 SOAB rbd,rw B2dB 4 18/3" 
pppp OrOO 
qqqq SOAL rld,rw B3dF 4 18/3" 

@rid,data1 6 OOd9 4 12 OrOO 
yyyy SOL rwd,rw B3d3 4 18/3" 

@rid,rws 93is 2 9 orOo 
@rid,@ris 13is 2 13 SOLB rbd,rw B2d3 4 18/3" 

PUSHL @rid,adrsx 51di 4/6 20-24 OrOO 
pppp SOLL rld,rw B3d7 4 18/3" 
qqqq Oroa 

@rid,rls 91is 2 12 
@rid,@ris 11 is 2 20 

. Privileged instruction - can be executed only in system mode . 
,. Number of clock cycles depends on the number of repetitions for n/m"; n = minimum number of clock cycles and 

m = number of clock cycles added for each additional repetition of operation. The number of clock cycles for an instruction 
which repeats k times is n + (k-11.m. 
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Table 6-4. Z8000 Instruction Set Object Codes (Continued) 

Clock 
Mnemonic Object Code Bytes 

Clock 
Mnemonic Object Code Bytes Cycles Cycles 

SET adrsx,b16 65ib 4/6 13-17 'SOTIA @rid,@ris,rw 3Bs3 4 21/10" 
pppp OrdO 
qqqq 'SOTIAB @rid,@ris,rw 3As3 4 21/10" 

rwd,b16 A5db 2 4 OrdO 
rwd,rws 2505 4 10 'SOUT ioaddr,rws 3Bs7 4 12 

OdOO pppp 
@rid,b16 25ib 2 11 'SOUTB ioaddr,rbs 3As7 4 12 

SETB adrsx,b8 64ib 4/6 13-17 pppp 
pppp 'SOUTO @rid,@ris,rw 3BsB 4 21 
qqqq OrdB 

rbd,b8 A4db 2 4 'SOUTDB @rid,@ris,rw 3AsB 4 21 
rbd,rws 240s 4 10 OrdB 

OdOO 'SOUTI @rid,@ris,rw 3Bs3 4 21 
@rid,b8 24ib 2 11 OrdB 

SETFLG flag 8Df1 2 7 'SOUTIB @rid,@ris,rw 3As3 4 21 
'SIN rwd,ioaddr 3Bd5 4 12 OrdB 

pppp SAA rwd,data16 B3d9 4 16/3" 
'SINB rbd,ioaddr 3Ad5 4 12 yyyy 

pppp SAAB rbd,data16 B2d9 4 16/3" 
'SIND @rid,@ris.rw 3Bs9 4 21 yyyy 

Ord8 SAAL rld,data16 B3dD 4 16/3" 
'SINDB @rid,@ris,rw 3As9 4 21 yyyy 

Ord8 SAL rwd,data16 B3d1 4 16/3" 
'SINDA @rid,@ris,rw 3Bs9 4 21/10" yyyy 

OrdO SALB rbd,data16 B2d1 4 16/3" 
'SINDAB @rid,@ris,rw 3As9 4 21/10" yyyy 

OrdO SALL rld.data16 B3d5 4 16/3" 
'SINI @rid,@riS,rw 3Bs1 4 21 yyyy 

Ord8 SUB rwd,adrsx 43id 4/6 9-13 
'SINIB @rid,@ris,rw 3As1 4 21 pppp 

Ord8 qqqq 
'SINIA @rid,@ris.rw 3Bs1 4 21/10" rwd,data16 030d 4 7 

OrdO yyyy 
'SINIAB @rid.@riS,rw 3As1 4 21/10" rwd,rws 83sd 2 4 

OrdO rwd.@ris 03id 2 7 
SLA rwd,data16 B3d9 4 16/3" SUBB rbd,adrsx 42id 4/6 9-13 

yyyy pppp 
SLAB rbd,data16 B2d9 4 16/3" qqqq 

yyyy rbd,data8 020d 4 7 
SLAL rld,data16 B3dC 4 16/3" yyOO 

yyyy rbd,rbs 82sd 2 4 
SLL rwd.data16 B3d1 4 16/3" rbd,@ris 02id 2 7 

yyyy SUBL rld,adrsx 52id 4/6 15-19 
SLLB rbd,data16 B2d1 4 16/3" pppp 

yyyy qqqq 
SLLL rld.data16 B3d5 4 16/3" rld,data32 120d 6 14 

yyyy yyyy 
'SOTDA @rid,@riS,rw 3BsB 4 21/10" zzzz 

OrdO rld,rls 92sd 2 8 
'SOTDAB @rid,@ris.rw 3AsB 4 21/10" rld,@ris 12id 2 14 

OrdO TCC cC,rwd AFdc 2 5 

, Privileged instruction - can be executed only in system mode. 
" Number of clock cycles depends on the number of repetitions for n/m"; n = minimum number of clock cycles and 

m = number of clock cycles added for each additional repetition of operation. The number of clock cycles for an instruction 
which repeats k times is n + (k-1 I,m. 
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Table 6-4. Z8000 Instruction Set Object Codes (Continued) 

Mnemonic Object Code Bytes 
Clock 

Mnemonic Object Code Bytes 
Clock 

Cycles Cycles 

TCCB cC,rbd AEdc 2 5 TRTIB @rid,@ris,rw B8d2 4 25 
TEST adrsx 4Di4 4/6 11-15 OrsO 

pppp TRTIRB @rid,@ris,rw B8d6 4 25/14*-
qqqq OrsE 

rwd 8Dd4 2 7 TSET adrsx 4Di6 4/6 14-18 
@rid ODd4 2 8 pppp 

TESTB adrsx 4Ci4 4/6 11-15 qqqq 
pppp rwd 8Dd6 2 7 
qqqq @rid ODd6 2 11 

rbd 8Cd4 2 7 TSETB adrsx 4Ci6 4/6 14-18 
@rid OCd4 2 8 pppp 

TESTL adrsx 5CiO 4/6 16-20 qqqq 
pppp rbd 8Cd6 2 7 
qqqq @rid OCd6 2 11 

rid 9CdO 2 13 XOR rwd,adrsx 49id 4/6 9-13 
@rid 1CdO 2 13 pppp 

TRDB @rid,@ris,rw B8d8 4 25 qqqq 
OrsO rwd,data16 090d 4 7 

TRDRB @rid,@ris,rw B8dC 4 25/14-- yyyy 
OrsO rwd,rws 89sd 2 4 

TRIB @rid,@ris,rw B8dO 4 25 rwd,@ris 09id 2 7 
OrsO XORB rbd,adrsx 48id 4/6 9-13 

TRIRB @rid,@ris,rw B8d4 4 25/14** pppp 
OrsO qqqq 

TRTDB @rid,@ris,rw B8dA 4 25 rbd,data8 080d 4 7 
OrsO yyOO 

TRTDRB @rid,@ris,rw B8dE 4 25/14-* rbd,rbs 88sd 2 4 
OrsE rbd,@ris 08id 2 7 

* Privileged instruction - can be executed only in system mode. 
*" Number of clock cycles depends on the number of repetitions for n/m**; n = minimum number of clock cycles and 

m = number of clock cycles added for each additional repetition of operation. The number of clock cycles for an instruction 
which repeats k times is n + {k-1 )·m. 

Note 1 

DIV DIVL 

Divisor Not Divisor is Dividend Not Divisor Dividend 
Aborted Zero Too Large Aborted is Zero Too Large 

adrsx 96-100 14-18 26-29 724-728 31-35 52-56 

All Others 95 13 25 723 30 51 

Note 2 

MULl MULTL 

Multiplier Multiplier Multiplier Normal 
is Zero 

Normal 
is Zero 

adrsx 71-75 19-22 283 + 7-m - 287 + 7*m 31-35 

All Others 70 18 282 + 7*m 30 
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Table 6-5. zaooo Object Codes 

Object Code Instruction Object Code Instruction 

OOOd yyOO ADDB rbd.data8 1Aid DIVL rqd,@ris 
OOid ADDB rbd.@ris 1 BOd yyyy DIV rld.data16 
010d yyyy ADD rwd.data16 1Bid DIV rld.@ris 
01id ADD rwd.@ris 1CdO TESTL @rid 

020d yyOO SUBB rbd.data8 1Cs10dOn LDM rwd,@ris.n 16 
02id SUBB rbd.@ris 1Cd90s0n LDM @rid.rws,n1 6 
030d yyyy SUB rwd.data16 1Dds LDL @rid,rls 

03id SUB rwd.@ris 1Edc JP cc.@rid 
040d yyOO ORB rbd.data8 1FdO CALL @rid 
04id ORB rbd.@ris 20id LOB rbd,@ris 
050d yyyy OR rwd.data16 210d yyyy LD rwd,data16 
05id OR rwd.@ris 21id LD rwd,@ris 
060d yyOO ANDB rbd.data8 220s OdOO RESB rbd,rws 
06id ANDB rbd.@ris 22ib RESB @rid,b8 
070d yyyy AND rwd.data16 230s OdOO RES rwd,rws 
07id AND rwd.@ris 23ib RES @rid.b16 
080d yyOO XORB rbd,data8 240s OdOO SETB rbd,rws 
08id XORB rbd,@ris 24ib SETB @rid,b8 
090d yyyy XOR rwd,data16 250s OdOO SET rwd,rws 
09id XOR rwd,@ris 25ib SET @rid,b16 
OAOd yyOO CPB rbd,data8 260s OdOO BITB rbd.rws 
OAid CPB rbd,@ris 26ib BITB @rid,b8 
OBOd yyyy CP rwd,data16 270s OdOO BIT rwd.rws 
OBid CP rwd.@ris 27ib BIT @rid,b16 
OCdO COMB @rid 28dn INCB @rid,n16 
OCd1 yyOO CPB @rid.data8 29dn INC @rid,n16 
OCd2 NEGB @rid 2Adn DECB @rid,n16 
OCd4 TESTB @rid 2Bdn DEC @rid,n16 
OCd5 yyOO LOB @rid.data8 2Csd EXB rbd.@ris 
OCd6 TSETB @rid 2Dsd EX rwd,@ris 
OCd8 CLRB @rid 2Eds LOB @rid,rbs 
ODdO COM @rid 2Fds LD @rid,rws 
ODd1 yyyy CP @rid.data 1 6 300d xxxx LDRB rbd,disp 
ODd2 NEG @rid 30id xxxx LOB rbd.ris(disp) 
ODd4 TEST @rid 310d xxx x LOR rwd,disp 
ODd5 yyyy LD @rid.data 1 6 31 id xxxx LD rwd,ris (disp) 
ODd6 TSET @rid 320s xxxx LDRB disp,rbs 
ODd8 CLR @rid 32is xxxx LOB ridldisp),rbs 
ODd9 yyyy PUSH @rid,data1 6 330s xxxx LOR disp.rws 
100d yyyy zzzz CPL rld,data32 33is xxxx LD ridldisp).rws 
toid CPL rld,@ris 340d xxxx LDAR rld,disp 
11 is PUSHL @rid.@ris rwd,disp 
120d yyyy zzzz SUBL rld,data32 34id xxxx LOA rld.risldisp) 
12id SUBL rld.@ris rwd.ris(disp) 
13is PUSH @rid,@ris 350d xxxx LDRL rld,disp 
140d yyyy zzzz LDL rld.data32 35id xxx x LDL rld,ris Idisp) 
14id LDL rld.@ris 370s xxxx LDRL disp,rls 
15id POPL @rid,@ris 37is xxxx LDL ridldisp).rls 
160d yyyy zzzz ADDL rld.data32 39s0 LOPS @ris 

16id ADDL rld,@ris 3AsO OrdO INIRB @rid,@ris.rw 
17sd POP @rid,@ris 3AsO Ord8 INIB @rid.@ris,rw 
180d yyyy zzzz MULTL rqd.data32 3As1 OrdO SINIRB @rid.@ris,rw 
18id MULTL rqd,@ris 3As1 Ord8 SINIB @rid,@ris.rw 
190d yyyy MULT rld,data16 3As20rdO OTIRB @rid,@ris.rw 
19id MULT rld.@ris 3As20rd8 OUTIB @rid.@ris.rw 
1 AOd yyyy zzzz DIVL rqd.data32 3As30rdO SOTIRB @rid.@ris,rw 
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Table 6-5. Z8000 Object Codes (Continued) 

Object Code Instruction Object Code Instruction 

3As30rdS SOUTIB @rid.@ris.rw 4Ci6 pppp qqqq TSETB adrsx 
3Ad4 PPPP INB rbd.ioaddr 4CiS pppp qqqq CLRB adrsx 
3Ad5 pppp SINB rbd.ioaddr 40iO pppp qqqq COM adrsx 
3As6 PPPP OUTB ioaddr.rbs 40i1 yyyy CP adrsx.data 16 
3As7 pppp SOUTB ioaddr.rbs pppp qqqq 
3AsS OrdO INORB @rid.@ris.rw 40i2 pppp qqqq NEG adrsx 
3AsS OrdS INOB @rid.@ris.rw 40i4 pppp qqqq TEST adrsx 
3AsS OrdO SINORB @rid.@ris.rw 40i5 yyyy LO adrsx.data 1 6 
3AsS OrdS SINOB @rid.@ris.rw pppp qqqq 
3AsA OrdO OTORB @rid.@ris.rw 40i6 pppp qqqq TSET adrsx 
3AsA OrdS OUTOB @rid.@ris.rw 40iS pppp qqqq CLR adrsx 
3AsB OrdO SOT ORB @rid.@ris.rw 50id pppp qqqq CPL rld.adrsx 
3AsB OrdS SOUTOB @rid.@ris.rw 51 di pppp qqqq PUSHL @rid.adrsx 
3BsO OrdO INIR @rid.@ris.rw 52id pppp qqqq SUBL rld.adrsx 
3BsO OrdS INI @rid.@ris.rw 53di pppp qqqq PUSH @rid.adrsx 
3Bs1 OrdO SINIR @rid.@ris.rw 54id pppp qqqq LOL rld.adrsx 
3Bs1 OrdS SINI @rid.@ris.rw 55si pppp qqqq POPL adrsx.@ris 
3Bs20rdO OTIR @rid.@ris.rw 56id pppp qqqq AOOL rld.adrsx 
3Bs20rdS OUTI @rid.@ris.rw 57si pppp qqqq POP adrsx.@ris 
3Bs30rdO SOTIR @rid.@ris.rw 5Sid pppp qqqq MULTL rqd.adrsx 
3Bs30rdS SOUTI @rid.@ris.rw 5Sid pppp qqqq MULT rld.adrsx 
3Bd4 pppp IN rwd.ioaddr 5Aid pppp qqqq OIVL rqd.adrsx 
3Bd5 pppp SIN rwd.iqaddr 5Bid pppp qqqq OIV rld.adrsx 
3Bs6 pppp OUT ioaddr.rws 5CiO pppp qqqq TESTL adrsx 
3Bs7 pppp SOUT ioaddr.rws 5Ci1 OdOn LOM rwd.adrsx.n 16 
3BsS OrdO INOR @rid.@ris.rw pppp qqqq 
3BsS OrdS INO @rid.@ris.rw 5CiS OsOn LOM adrsx.rws.n 16 
3BsS OrdO SINOR @rid.@ris.rw pppp qqqq 
3BsS OrdS SIND @rid.@ris.rw 50is pppp qqqq LOL adrsx.rls 
3BsA OrdO OTOR @rid.@ris.rw 5Eic pppp qqqq JP cc.adrsx 
3BsA OrdS OUTO @rid.@ris.rw 5FiO pppp qqqq CALL adrsx 
3BsB OrdO SOTOR @rid.@ris.rw 60id pppp qqqq LOB rbd.adrsx 
3BsB OrdS SOUTO @rid.@ris.rw 61 id pppp qqqq LO rwd.adrsx 
3Csd INB rbd.@rw 62ib pppp qqqq RESB adrsx.bS 
30sd IN rwd.@rw 63ib pppp qqqq RES adrsx.b16 
3Eds OUTB @rw.rbs 64ib pppp qqqq SETB adrsx.b8 
3Fds OUT @rw.rws 65ib pppp qqqq SET adrsx.b16 
40id pppp qqqq AOOB rbd.adrsx 66ib pppp qqqq BITB adrsx.bS 
41 id pppp qqqq ADD rwd.adrsx 67ib pppp qqqq BIT adrsx.b16 
42id pppp qqqq SUBB rbd.adrsx 6Sin pppp qqqq INCB adrsx.n16 
43id pppp qqqq SUB rwd.adrsx 6Sin pppp qqqq INC adrsx.n16 
44id pppp qqqq ORB rbd.adrsx 6Ain pppp qqqq OECB adrsx.n16 
45id pppp qqqq OR rwd.adrsx 6Bin pppp qqqq DEC adrsx.n16 
46id pppp qqqq ANOB rbd.adrsx 6Cid pppp qqqq EXB rbd.adrsx 
47id pppp qqqq AND rwd.adrsx 60id pppp qqqq EX rwd.adrsx 
4Sid pppp qqqq XORB rbd.adrsx 6Eis pppp qqqq LOB adrsx.rbs 
4Sid pppp qqqq XOR rwd.adrsx 6Fis pppp qqqq LO adrsx.rws 
4Aid pppp qqqq CPB rbd.adrsx 70id ora a LOB rbd.ris(rw) 
4Bid pppp qqqq CP rwd.adrsx 71id OrOO LO rwd.ris(rw) 
4CiO pppp qqqq COMB adrsx 72is OrOO LOB rid(rw).rbs 
4Ci1 yyOO CPB adrsx.dataS 73is OrOO LO rid(rwl.rws 

pppp qqqq 74id OrOO LOA rld.ris(rw) 
4Ci2 pppp qqqq NEGB adrsx rwd.ris(rw) 
4Ci4 pppp qqqq TESTB adrsx 75id OrOO LOL rld.ris(rw) 
4Ci5 yyOO LOB adrsx.dataS 76id pppp qqqq LOA rld.adrsx 

pppp qqqq rwd.adrsx 
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Table 6-5. zaooo Object Codes (Continued) 

Object Code Instruction Object Code Instruction 

77is OrOO LOL rid(rw),rls 96sd AODL rld,rls 

79iO PPPP qqqq LOPS adrsx 97sd POP rwd,@ris 

7AOO HALT 98sd MULTL rqd,rls 

7BOO IRET 99sd MULT rld,rws 

7B08 MSET 9Asd OIVL rqd,rls 

7B09 MRES 9Bsd OIV rld,rws 

7BOA MBIT 9CdO TESTL rid 

7BdO MREQ rwd 9EOc RET cc 

7C OOOOOOvv 01 int AOsd LOB rbd,rbs 

7C 000001vv EI int Alsd LO rwd,rws 

7Dd2 LOCTL rwd,FCW A2db RESB rbd,b8 

70d3 LOCTL rwd,REFRESH A3db RES rwd,b16 

7Dd4 LOCTL rwd,PSAPSEG A4db SETB rwd,b8 

70d5 LOCTL rwd,PSAPOFF A5db SET rwd,b16 

70d6 LOCTL rwd,NSPSEG A6db BITB rbd,b8 

70d7 LOCTL rwd,NSPOFF A7db BIT rwd,b16 

70sA LOCTL FCW,rws ASdn INCB rbd,n16 

70sB LOCTL REFRESH,rws A9dn INC rwd,n16 

70sC LOCTL PSAPSEG,rws AAdn OECB rbd,016 

70s0 LOCTL PSAPOFF,rws ABdn DEC rwd,n16 

70sE LOCTL NSPSEG,rws ACsd EXB rbd,rbs 

70sF LOCTL NSPOFF,rws AOsd EX rwd,rws 

7Fyy SC data8 AEdc TCCB cC,rbd 

SOsd AOOB rbd,rbs AFdc TCC CC,rwd 

Slsd ADD rwd,rws BOdO DAB rbd 

S2sd SUBB rbd,rbs BldO EXTSB rwd 

S3sd SUB rwd,rws Bld7 EXTSL rqd 

S4sd ORB rbd,rbs BldA EXTS rid 

S5sd OR rwd,rws B2dO RLCB rbd,l 

S6sd ANOB rbd,rbs B2dl yyyy SLLB rbd,data16 

S7sd AND rwd,rws B2dl yyyy SRLB rbd,data16 

S8sd XORB rbd,rbs B2d2 RLCB rbd,2 

S9sd XOR rwd,rws B2d30rOO SOLB rbd,rw 

SAsd CPB rbd,rbs B2d4 RRCB rbd,l 

SBsd CP rwd,rws B2d6 RRCB rbd,2 

SCdO COMB rbd B2d8 RLB rbd,l 

SCdl LDCTLB rbd,FLAGS B2d9 yyyy SLAB rbd,data16 

SCd2 NEGB rbd B2d9 yyyy SRAB rbd,data16 

SCd4 TESTB rbd B2dA RLB rbd,2 

SCd6 TSETB rbd B2dB OrOO SDAB rbd,rw 

SCdS CLRB rbd B2dC RRB rbd,l 

SCs9 LDCTLB FLAGS,rbs B2dE RRB rbd,2 

8007 NOP B3dO RLC rwd,l 

SOdO COM rwd B3dl yyyy SLL rwd,data16 

SOfl SETFLG flag B3dl yyyy SRL rwd~data16 

SOd2 NEG rwd B3d2 RLC rwd,2 

SOf3 RESFLG flag B3d30rOO SOL rwd,rw 

SOd4 TEST rwd B3d4 RRC rwd,l 

80f5 COMFLG flag B3d5 yyyy SLLL rld,data16 

80d6 TSET rwd B3d5 yyyy SRLL rld,data16 

SOd8 CLR rwd B3d6 RRC rwd,2 

90sd CPL rld,rls B3d70rOO SOLL rld,rw 

91is PUSHL @rid,rls B3d8 RL rwd,l 

92sd SUBL rld,rls B3d9 yyyy SLA rwd,data16 

93is PUSH @rid,rws B3d9 yyyy SRA rwd,data16 

94sd LDL rld,rls B3dA RL rwd,2 

95id POPL rld,@ris B3dB OrOO SOA rwd,rw 
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Table 6-5. Z8000 Object Codes (Continued) 

Object Code Instruction Object Code Instruction 

B3dC RR rwd,1 BAs90rd8 LOOB @rid,@ris,rw 
B3dO yyyy SLAL rld,data16 BAsA Ordc CPSOB @rid,@ris,rw,cc 
B3dO yyyy SRAL rld,data16 BAsC Ordc CPORB rbd,@ris,rw,Cc 
B3dE RR rwd,2 BAsE Ordc CPSORB @rid,@ris,rw,cc 
B3dF OrOO SOAL rld,rw BBsO Ordc CPI rwd,@ris,rw,cc 
B4sd AOCa rbd,rbs BBs1 OrdO LOIR @rid,@ris,rw 
BSsd AOC rwd,rws BBs1 Ord8 LOI @rid,@ris,rw 
B6sd SBCB rbd,rbs BBs20rdc CPSI @rid,@ris,rw,Cc 
B7sd SBC rwd,rws BBs40rdc CPIR rwd,@ris,rw,cc 
B8dO OrsO TRIB @rd,@ris,rw BBs60rdc CPSIR @rid,@ris,rw,cc 
B8d20rsO TRTIB @rid,@ris,rw BBs80rdc CPO rwd,@ris,rw,cc 
B8d40rsO TRIRB @rid,@ris,rw BBs90rdO LOOR @rid,@ris,rw 
B8d60rsE TRTIRB @rid,@ris,rw BBs90rd8 LOO @rid,@ris,rw 
B8d80rsO TROB @rid,@ris,rw BBsA Ordc CPSO @rid,@ris,rw,cc 
B8dA OrsO TRTOB @rid,@ris,rw BBsC Ordc CPOR rwd,@ris,rw,cc 
B8dC OrsO TRORB @rid,@ris,rw BBsE Ordc CPSOR @rid,@ris,rw,cc 
B8dE OrsE TRTORB @rid,@ris,rw BCsd RROB rbd,rbs 
BAsO Ordc CPIB rbd,@ris,rw,cc BOdb LOK rwd,b16 
BAs1 OrdO LOIRB @rid,@ris,rw BEsd RLOB rbd,rbs 
BAs1 Ord8 LOIB @rid,@ris,rw Cdyy LOB rbd,data8 
BAs20rdc CPSIB @rid,@ris,rw,cc Oxxx CAlR disp 
BAs40rdc CPIRB rbd,@ris,rw,cc Ecxx JR cC,disp 
BAs60rdc CPSIRB @rid,@ris,rw,cc Fr Ottttttt OBJNZ rb,disp 
BAs80rdc CPOB rbd,@ris,rw,cc Fr 1 ttttttt DJNZ rw,disp 
BAs90rdO LOORB @rid,@ris,rw 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• za001 CPU 
• Za002 CPU 
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Z8001,Z8002 
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Data sheets on pages 21-02 through 21-04 are reprinted by permission of Zilog, Incorporated. 
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zaOO1,Z8002 

AC Number Symbol Parameter MiD Max Unit 
Electrical 1 TcC Clock Cycle Time 250 2000 ns 
Characteristics 2 TwCh Clock Width (High) 105 2000 ns 

3 TwCl Clock Width (Low) 105 2000 ns 
4 TfC Clock Fall Time 20 ns 

-5--TrC Clock Rise Time 20--ns-
6 TdC(SNv) Clock t to Segment Number Valid (50 pF load) 130 ns 
7 TdC(SNn) Clock t to Segment Number Not Valid 20 ns 
8 TdC(Bz) Clock t to Bus Float 65 ns 
9 TdC(A) Clock t to Address Valid 100 ns 

-lO--TdC(Az)-- Clock t to Address Float 65--ns-
11 TdA(DI) Address Valid to Data In Required Valid 400 ns 
12 TsDI(C) Data In to Clock I Setup, Time 70 ns 
13 TdDS(A) DS t to Address Active 80 ns 
14 TdC(DO) Clock t to Data Out Valid 100 ns 

-15--ThDI(DS)-- Data In to DS t Hold Time 0 ns-
16 TdDO(DS) Data Out Valid to DS t Delay 230 ns 
17 TdA(MR) Address Valid to MREQ I Delay 55 ns 
18 TdC(MR) Clock I to MREQ I Delay 80 ns 
19 TwMRh MREQ Width (High) 190 ns 

- 20 --T dMR(A) --MREQ I to Address Not Active 70 ns-
21 TdDO(DSW) Data Out Valid to DS I (Write) Delay 55 ns 
22 TdMR(DI) MREQ I to Data In Required Valid 330 ns 
23 TdC(MR) Clock I to MREQ t Delay 80 ns 
24 TdC(ASf) Clock t to AS I Delay 80 ns 

- 25 --T dA(AS) --Address Valid to AS t Delay 55 ns-
26 TdC(ASr) Clock I to AS t Delay 90 ns 
27 TdAS(DI) AS ! to Data In Required Valid 290 ns 
28 TdDS(AS) DS t to AS I Delay 70 ns 
29 TwAS AS Width (Low) 80 ns 

- 30--T dAS(A) --AS t to Address Not Active Delay 60 ns-
31 TdAz(DSR) Address Float to DS (Read) I Delay 0 ns 
32 TdAS(DSR) AS! to DS (Read) I Delay 70 ns 
33 TdDSR(DI) DS (Read) I to Data In Required Valid 155 ns 
34 TdC(DSr) Clock I to DS t Delay 70 ns 

- 35 --T dDS(DO) -- DS t to Data Out and STATUS Not Valid 80 ns-
36 TdA(DSR) Address Valid to DS (Read) I Delay 120 ns 
37 TdC(DSR) Clock t to DS (Read) I Delay 120 ns 
38 TwDSR DS (Read) Width (Low) 275 ns 
39 TdC(DSW) Clock I to DS (Write) I Delay 95 ns 

-40--TwDSW--DS (Write) Width (Low) 160 ns-
41 TdDSI(DI) DS (Input) I to Data In Required Valid 315 ns 
42 TdC(DSf) Clock I to DS (I/O) I Delay 120 ns 
43 TwDS DS (I/O) Width (Low) 400 ns 
44 TdAS(DSA) AS t to DS (Acknowledge) I Delay 960 ns 

-45--TdC(DSA)-- Clock t to DS (Acknowledge) I Delay 120--ns-
46 TdDSA(DI) DS (Ack.) I to Data In Required Delay 420 ns 
47 TdC(S) Clock I to Status Valid Delay 110 ns 
48 TdS(AS) Status Valid to AS t Delay 40 ns 
49 TsR(C) RESET to Clock t Setup Time 180 ns 

-50--ThR(C)--- RESET to Clock t Hold Time 0 ns-
51 TwNMI NMI Width (Low) 100 ns 
52 TsNMI(C) NMI to Clock t Setup Time 140 ns 
53 TsVI(C) VI, NVI to Clock t Setup Time 110 ns 
54 ThV!(C) VI, NVI to Clock t Hold Time 0 ns 

-55--TsSGT(C)--SEGT to Clock t Setup Time 70 ns-
56 ThSGT(C) SEGT to Clock t Hold Time 0 ns 
57 TsMI(C) Mi to Clock t Setup Time 180 ns 
58 ThMI(C) Mi to Clock t Hold Time 0 ns 
59 TdC(Mo) Clock t to Mo Delay 120 ns 

-60--TsSTP(C)--STOP to Clock I Setup Time 140 ns-
61 ThSTP(C) STOP to Clock I Hold Time 0 ns 
62 TsWT(C) WAIT to Clock I Setup Time 70 ns 
63 ThWT(C) WAIT to Clock I Hold Time 0 ns 
64 TsBRQ(C) BUSRQ to Clock t Setup Time 90 ns 

-65--ThBRQ(C)--BUSRQ to Clock t Hold Time 0 ns-
66 TdC(BAKr) Clock t to BUSAK t Delay 100 ns 
67 TdC(BAKf) Clock t to BUSAK I Delay 100 ns 
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Z8001,Z8002 

Absolute 
Maximum 
Ratings 

Standard 
Test 
Conditions 

DC 
Character-
istics 

Ordering 
Information 

Voltages on all inputs and outputs 
with respect to GND .......... -0.3 V to + 7.0 V 

Operating Ambient 
Tempera ture .................. a °e to + 70°C 

Storage Temperature ........ -65°C to + 150 °e 

The characteristics below apply for the 
following standard test conditions, unless 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the refer­
enced pin. Standard conditions are as follows: 

L +4.75 V ::5 Vcc ::5 +5.25 V 

[j GND = a V 

l.j ooe ::5 TA ::5 +70oe 

Symbol Parameter Min Max 

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device. 
This is a stress rating only; operation of the device at any 
condition above those indicated in the operational sections 
of these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

FROM OUTPUT 
UNDER TEST =rr!

V"'.,K 

100',! ~ ~~ _ 
All de pardmeters assume a load capacitance of 100 pF max, ex­

cept for parameter 6 (50 pF max). Timing references between two 
output signals assume a load difference of 50 pF max. 

Unit Condition 

VCH Clock Input High Voltage VCC-O.4 VCC+0.3 V Driven by External Clock Generator 

VCL Clock Input Low Voltage -0.3 0.45 V Driven by External Clock Generator 

VlH Input High Voltage 2.0 VCC+0.3 V 

VlL Input Low Voltage -0.3 0.8 V 

VOH Output High Voltage 2.4 V IOH = -250 p.A 

VOL Output Low Voltage 0.4 V IOL = +2.0 rnA 

IlL Input Leakage ±10 p.A 0.4 :s VIN :s +2.4 V 

IOL Output Leakage ±10 p.A 0.4 :s VOUT :s +2.4 V 

ICC V CC Supply Current 300 rnA 

Part Number 
Temperature Number Package Description Range of Pins 

28001 CPU ooe to + 70°C 48 CeramiC Segmented 16-Bit Microprocessor 

Z8002 CPU ooe to +70°C 40 CeramiC Non-Segmented 16-Bit Microprocessor 
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Chapter 7 
THE MOTOROLA MC68000 

The MC68000 microprocessor is Motorola's first 16-bit microprocessor. It is the third of the new generation of these 
devices, having been preceded by Intel's 8086 and Zilog's Z8000. 

The MC68000 is not program compatible with Motorola's family of 8-bit microprocessors. Motorola has opted for 
designing an instruction set which provides maximum power and simplicity rather than compatibility. 

The following is a discussion of interesting MC68000 features as compared to similar capabilities of the Z8000 and 
8086: 

.1) The MC68000 overlaps the fetching of each instruction's object code with the decoding and execution at 
the two prior instructions to obtain a pipeline effect. The Z8000 uses this approach, but only under certain 
circumstances. On the other hand, the 8086 performs extensive pipelining using a 6-byte object code 
pipeline. 

2) Both the 8086 and the Z8000 family of microprocessors provide methods of operating the devices in a "sim­
ple" system configuration or "complex" system configuration. The 8086 accomplishes this within a Single 
device by having a number of dual-function pins which serve one function in simple systems and another 
function in complex systems. The Z8000, on the other hand, is supplied in two versions: the Z8001 for com­
plex configurations and the Z8002 for simple configurations. The MC68000 is contained in a 64-pin 
package and therefore need not attempt to accommodate different complexities of system configurations; it 
is always capable of operating in what is, effectively, a "maximum" or "complex" system configuration 
mode. 

3) The MC68000 has built-in logic to handle bus access arbitration in multi-CPU configurations. The 8086 and 
the Z8000 have equivalent logic. 

4) The MC68000 can directly access up to 16 millio!) (16M) bytes of memory with its 24-bit Address Bus. This 
memory space may be expanded to 64M bytes by using the Function Code lines. In comparison, the 8086 
can directly address only 64K bytes of memory but can address up to one million bytes using segment 
registers. The Z8000 is also limited to 64K bytes of directly addressable memory; however, the Z8001 ver­
sion can address as many as 48M bytes of memory using internal segment registers and external segmenta­
tion in a memory management device. 

5) The MC68000 can be operated in either a "Supervisor" or a "User" mode. Certain privileged instructions can 
be executed in Supervisor mode only. Supervisor and User modes also have separate stack pointers. Thus, in 
program-intensive applications, systems software (executed in Supervisor mode) can be separated from 
applications programs (executed in User mode). The Z8000 series microprocessors provide similar 
capabilities. The Supervisor mode of the MC68000 is equivalent to the System mode of the Z8000, while the 
User mode of the MC68000 is equivalent to the Normal mode of the Z8000. The 8086 offers no similar operat-
ing modes. . 

6) The MC68000 has seventeen 32-bit registers. Eight of the registers are designated as Data registers and can 
be accessed as either 8, 16, or 32-bit registers. The remaining nine registers are designated as Address 
registers, with two of these being reserved for use as the stack pointers (Supervisor and User). The Address 
registers can be accessed as 16 or 32-bit registers. All of the registers can also function as Index registers. In 
contrast. all of the Z8000 registers are 16-bit registers, although they can be paired to operate as 32-bit 
registers. The 8086 has only four 16-bit registers plus three separate 16-bit Index registers. 

7) The MC68000 provides separate pins for every data line and address output line. This is possible since the 
MC68000 is contained in a 64-pin package and as a result there is no shortage of pin connections. The 
Z8000 microprocessors and the 8086 are housed in smaller packages and therefore their data and address 
lines must share some pins. Thus the Z8000 and 8086 devices multiplex some of the data and address sig­
nals on the same pins, and you must provide external logic to demultiplex these signals. 
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The primary source for the MC68000 is: 

MOTOROLA SEMICONDUCTOR, INC. 
3501 Ed Bluestein Blvd. 

Austin, Texas 78721 

The MC68000 is manufactured using N-channel HMOS process technology. The device is contained in a dual inline 64-
pin package. A single +5V power supply is required and all signals are TTL-level compatible. 

The MC68000 requires an external clock which can be run at a maximum frequency of 8 MHz. The minimum instruc­
tion execution time is four clock periods. The maximum number of clock periods for instruction execution is 158 for 
signed division and multiplication. 

THE MC68000 PROGRAMMABLE REGISTERS 
Figure 7-1 illustrates the registers provided by the MC68000. There are seventeen 32-bit Data and Address 
registers, a 32-bit Program Counter (of which only 24 bits are used) and a 16-bit Status register. The most signifi­
cant difference between the registers provided by the MC68000 and those of other 16-bit microprocessors is that the 
Data and Address registers are all 32 bits wide. By comparison, the 8086 and Z8000 microprocessors use 16-bit wide 
registers. 

The Data registers can be used to handle 8-bit bytes, 16-bit words, or 32-bit long words. 
The following illustration shows how the various sized operands are positioned within the 
Data registers. 

Word Operands -----....... 

..... ------------- Long Word Operands -------------+1 

MC68000 
DATA 
REGISTERS 

Data Register 
(00-07) 

8-bit byte operands occupy bits 0 through 7 of a Data register, while a word operand occupies bits 0 through 15 of a 
Data register. A long word operand uses all 32 bits of a Data register. When a Data register is used as a source or 
destination operand, only the appropriate low order portion of the register will be altered by the specified operation; the 
more significant bits will be unaffected. For example, if you have specified an arithmetic shift left (ASL) instruction with 
an operand size of eight bits, then only the least significant eight bits (bits 0-7) of the data register will be shifted: bits 8 
through 31 will be unchanged by the instruction execution: 

31 8 7 6 5 4 3 2 1 0 .....-Sit No. 

I. 
I I I I I I I II I I I I II I.. "0" 

... - .-----------Unchanged ------------41. , 
To Carry Flag 

In addition to being used as the source or destination for instructions the Data registers can also be used as index 
registers or data counters. 
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3130292827262524232221201918171615141312111098765432 1 O~BitNo.(forall 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I DO registers) 

101 

~============~======~====~ 102 

~============~======~====~ 103 

==============~~====~~====~ 104 

~============~======~====~ I D5 

~============~~====~~====~ '06 

================~====~~====~ ~ __________________________________ ~ ________________ ~ ________________ ~ID7 
31 16 15 o 

lAO 

~============~============~ IA1 
~============~~============~ 'A2 
~============~~============~ 'A3 
~============~~============~ 'A4 
~============~~============~ IA5 
~====================~~====================~'A6 
-----------------u;;-Sta;p~Tn;;.----.---·.---------- A7} 
________________ .!u£!'!!i~~.!:!~.!.o~~ ____________ , ___ _ 

2423 

Data 
Registers 

Address 
Registers 

Stack Pointers 

I I Program Counter 
~--------------~------------------15----------------8-7----------------0~ 

1 .. _____ Sy_s_te_m_B,;"yt_e _____ IL... _____ U_se_r_B..;,y_te ____ ..... 1 Status Register 

Figure 7-1. MC68000 Programmable Registers 

There are seven general purpose Address registers (AO-A6). These registers can handle 
either 16-bit word or 32-bit long word operands. When you use one of these address registers 
to provide a source operand. either the low order 16 bits will be used (if a word operand has been 
specified) or the entire 32 bits will be used (if a long word operand has been specified). If the 

MC68000 
ADDRESS 
REGISTERS 

Address register is used as the source for a word operand. then the more significant 16 bits (bits 16-31) will not be 
affected. If an Address register is used as the destination operand. however. the contents of the entire register will be 
affected. regardless of whether a word or long word operand is specified. If you specify a word destination operand for 
an Address register. that word will be automatically sign-extended to 32 bits before it is loaded into the Address 
register. 

3130292827262524232221201918171615141312111098765432 1 04--BitNo. 

!. 
I I I I I I I I I I I I I I I .. I I I I I I I I I I I I I I r~:~~::)gister 

. - Word Operands :-

..... --------------Long Word Operands---------------t-
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As we have already pointed out. all of the MC6S000 Data and Address registers are 32 bits wide versus the 16-bit wide 
registers of the lSOOO and SOS6. Another significant difference between the MC6S000 registers and those of the SOS6 
is the general purpose nature of the MC6S000 registers. This is similar to the approach taken in the lSOOO and provides 
the programmer with increased flexibility. Although there are minor differences between the way the Data and Address 
(AO-A6) registers handle various data widths. each register type may be used in similar ways. The only dedicated 
registers are the Stack Pointer registers (A7. Supervisor and User). the Program Counter and the Status register. Let us 
now examine these dedicated registers. 

The MC68000 can be operated in a Supervisor (or system) mode, or in a User (or normal) 
mode. The state of the S-bit in the Status register determines the mode of operation for the 
MC6S000. Supervisor mode will normally be used by operating system software; User mode will 
typically be used by application programs. A number of instructions are designated as privileged 

MC68000 
STACK 
POINTERS 

and can only be executed when the processor is in Supervisor mode. The Supervisor and User modes also have sep­
arate stack pointers as mentioned earlier. As you can see in Figure 7-1, both stack pointers are addressed as 
Address register A7. When the MC68000 is operating in the Supervisor state. the User Stack Pointer cannot be 
referenced. Conversely. when the MC6S000 is in the User state. the Supervisor Stack Pointer cannot be referenced. 

Both the User and Supervisor Stack Pointers operate in the same way: the system stacks are filled from high 
memory to low memory. On subroutine calls the Program Counter contents are pushed onto the appropriate system 
stack (Supervisor or User). The Program Counter contents will be pulled from the Stack and restored to the Program 
Counter on return from subroutines. Since the Program Counter is a 32-bit register, four bytes (two words) of 
memory will be required to save the contents of the Program Counter on the Stack. The organization of the Pro­
gram Counter contents on the System Stack after a subroutine call is illustrated as follows: 

Memorv-----, 
Address , 

n 

n-2 
n - 4 

1514131211109 817 6 5 4 3 2 1 0 04--Bit No. 

PC low-order word LSB 

MSB PC high-order word 

-Even Byte I Odd Byte-

Data that is pushed onto the Stack is always written to a word boundary in memory; that is. to a memory location with 
an even address. Therefore. when bytes of data must be pushed onto the stack they are written into the high-order half 
of the memory word. and the low-order half of that word (corresponding to an odd memory address) will be unchanged. 

The MC68000 addresses memory as either 8-bit bytes or as a 16-bit word comprised of two bytes. All words 
must be referenced at even address locations. Otherwise. misalignment could occur when the microprocessor 
attempts to perform a word operation at an odd-memory address. This same problem exists with any of the 16-bit 
microprocessors. but the MC6S000 is the only microprocessor which automatically checks to ensure that all word 
references are done at even memory addresses. If a word reference is made to an odd memory address. the MC6S000 
begins an exception processing sequence. which will be described later. 

The following illustration shows how bytes are organized in memory: 

15 14 13 12 11 10 9 8 7 6 5· 4 3 2 1 0 4--Bit No. 

Byte FFFFFE Byte FFFFFF High Memory 
Byte FFFFFC Byte FFFFFD 

Byte FFFFFA Byte FFFFFB 

Byte FFFFF8 Byte FFFFF9 

Byte FFFfF6 Byte FFFFF7 

Byte FFFFF4 Byte FFFFF5 

Byte 000006 Byte 000007 

Byte 000004 Byte 000005 

Byte 000002 Byte 000003 

Byte 000000 Byte 000001 Low Memory 
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You will note that the first byte in memory (address 000000) occupies the most significant byte half of a memory word. 
When words are stored in memory. they are only addressable at even memory addresses. as we have discussed. This 
can be illustrated as follows: 

15141312 11 10 9 8 7 6 5 4 3 2 1 0 4----Bit No. 

Word FFFFFE High Memory 
Word FFFFFC 

Word FFFFFA 

Word FFFFF8 

Word FFFFF6 

Word FFFFF4 

Word 000006 

Word 000004 

Word 000002 

Word 000000 Low Memory 

When 32-bit long words (such as 32-bit addresses) are stored in memory. they occupy two adjacent 16-bit memory 
locations or four bytes. The high-order word of the long words is stored at the higher memory location. as illustrated 
below: 

15 14 13 1 2 11 10 9 8 7 6 5 4 3 2 1 0""--Bit No. 

~~ ______ !'!2.h..!~!...________ High Memory 
Low-order LSB 

~--------------------

~---~-----------------

~~-------~~~~--------~ Low-order LSB 

~~---- Long word or address 0------.. 
LSB Low Memory 

~------------------------------~ 
The MC68000 provides a 16-bit Status register which is divided into two 8-bit bytes: the 
System byte and the User byte. Figure 7-2 shows the bit assignments for the Status 
register. The Carry, Overflow, Zero, and Negative bits are the standard ones provided by 
most microprocessors. 

MC68000 
STATUS 
REGISTER 

The Carry (C) bit is set if there is a carry out of the most significant bit following an addition operation, or if a 
borrow is required from the most significant bit during a subtraction. This status bit is also modified by certain shift 
and rotate instructions. 

The Overflow (V) bit is the exclusive-OR of the carries out of the most significant and next higher-order bits of 
the operand following arithmetic operations. The setting of the overflow bit signifies a magnitude overflow since the 
result cannot be represented in the specified operand size. 

The Zero (Z) bit is set whenever the result otan operation is zero; it is reset otherwise. 

The Negative (N) bit is the equivalent of the Sign status bit provided in most microprocessors. The Negative bit is 
equal to the value of the most significant result bit following arithmetic operations. If a signed binary arithmetic 
operation is being performed. a Negative status of 0 specifies a positive or zero result. whereas a Negative status of 1 
specifies a negative result. 

The Extend (X) bit is used in multiprecision arithmetic operations. When it is affected by an instruction, it is set 
to the same state as the Carry bit. 

The three most significant bits (bits 5, 6, and 7) of the User byte of the Status register are not currently 
assigned and will always be zero. 
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System Byte 

~~--.... --~~~------~, 
15 14 13 12 11 10 9 8 

I T I I S I I 112111 110 I 
" - - ./ 

I~ ~ 
I~ 

User Byte 

~--.. --.. ~~~--------" '1 6 5 4 3 2 0 ______ Bit No. 

I I IxlNlzlvlCI 
I j I ~ ~ ~ t 

Carry 

Overflow 

Zero 

Negative 

Extend 

Interrupt Mask 

Supervisor/User Mode Select 

Trace Mode 

Figure 7-2. MC68000 Status Register Bit Assignments 

The System byte of the Status register contains status information that is system-related. The User byte, on 
the other hand, contains the Condition Code status bits (X, N, Z, V, and C) that are instruction or program 
related. Bits in the System byte of the Status register can only be altered when the MC68000 is in the Super­
visor mode. 

The three least significant bits (bits 8, 9, and 10) of the Status register's System byte form the interrupt mask. 
The MC68000 provides seven levels of interrupts. The level of any given interrupt is decoded from the signal's three 
interrupt pins, which we will describe later. The interrupt priorities are numbered from 1 to 7, with level 7 having 
the highest priority, as shown in the following illustration: 

Interrupt Interrupt Mask 

Level 
12 11 

Level 7 1 , 
Level 6 1 , 
Level 5 1 0 
Level 4 1 0 
Level 3 0 , 
Level 2 0 , 
Level' 0 0 
Level 0 0 0 

10 , 
0 , 
0 , 
0 , 
0 

--

----

Highest priority 
(Non-maskable) 

Lowest Priority 
No Interrupt Request 

The level 7 interrupt is nonmaskable and thus cannot be disabled. Level 0 represents a "no interrupt request" condition. 
Levels 1 through 6 are the mask-enabled levels. For example, if you set the mask to 100 then only levels 5, 6, and 7 will 
be enabled; interrupt levels 1 through 4 are disabled and interrupt requests of those levels will be ignored. 

Bit 13 of the Status register is the S-bit which specifies whether the MC68000 is in the Supervisor or User 
mode of operation. When this bit is 1, the MC68000 is in the Supervisor mode, and when it is 0 the microprocessor is 
in the User mode. Recall that the Supervisor and User modes have their own separate stack pointers; also, certain pri­
vileged instructions can only be executed in the Supervisor mode. 

The most significant bit of the Status register is the Trace mode (T) flag. If this bit is 0 then the MC68000 operates 
normally. If this bit is 1, however, the microprocessor is in the trace mode of operation. The trace mode is the 
approximate software equivalent of a hardware implemented single-step mode. After each instruction is executed 
in the trace mode, a trap is forced so that a debugging program can monitor the results of that instruction's execution. 
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Table 7-1. MC68000 Addressing Mode Summary 

Mode Address Formation 

Register Direct Addressing 
Data Register Direct EA = DREGn 
Address Register Direct EA = AREGn 

Register Indirect Addressing 
Register Indirect EA = (AREGn) 
Postincrement Register Indirect EA = (AREGn); Increment (AREGn) 
Predecrement Register Indirect Decrement (AREGn); EA = (AREGn) 
Register Indirect with Offset EA = (AREGn) + data 1 6 
Indexed Register In':lirect with Offset EA = (AREGn) + (XREGn) + data8 

Implied Register Addressing EA = SR. SP. PC 

Absolute Addressing 
Absolute Short EA = (Next word) 
Absolute Long EA = (Next 2 words) 

Program Counter Relative Addressing 
Relative with Offset EA = (PC) + data16 
Relative with Index and Offset EA = (PC) + (XREG) + data8 

Immediate Data Addressing 
Immediate Data = Next word or words 
Quick Immediate Data inherent in instruction word 

EA = Effective Address data8 = 8-bit offset (displacement) 
DREGn = Any Data Register data 16 = 1 6-bit offset (displacement) 
AREGn = Any Address Register SR = Status Register 
XREGn = Any Data or Address Register SP = Stack Pointer (User or Supervisor) 

used as an Index Register PC = Program Counter 
( ) = Contents of 

MC68000 ADDRESSING MODE SUMMARY 
The MC68000 provides six basic types of addressing modes. Variations within these types allow a total of four­
teen different modes. as summarized in Table 7-1. At this point. we will look only briefly at the addressing 
modes and how they utilize the registers of the MC68000. We will discuss each of the addressing modes in detail 
later. just prior to our description of the instruction set. 

Most of the addressing modes use the 32-bit Address registers either directly or indirectly to generate the effective 
address. The Data registers can be used as sources for addresses in the direct addressing mode. and they can also be 
used as Index registers in some of the indirect addressing modes. The indirect addressing modes include post-incre­
menting or pre-decrementing of an Address register; this capability makes it easy to implement stacks and queues in 
memory. 

A number of MC68000 instructions use the implied addressing mode; that is. they make implicit reference to either the 
Program Counter (PCl. Stack Pointer (SP) or Status Register (SR). For example. Branch. Jump. and Return instructions 
will all reference the Program Counter and Stack Pointer during their execution. 

Absolute addressing modes do not utilize the Data or Address registers. but instead form the effective address using 
data that follows the instruction word in the program. Program Counter relative addressing can use either a displace­
ment or a displacement plus the contents of an Index register to form the effective address. The Index register can be 
any of the Data or Address registers. 

Most instructions can utilize any of the addressing modes. and address formation is always the same regardless of the 
instruction operation itself. These factors do much to enhance the flexibility and power of the instruction set without 
making the instruction set difficu It to understand. 
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Pin Name 

00-015 
A1-A23 
AS 
R/W 
UDS. lOS 
OTACK 

04 
03 
02 
01 
DO 
AS 

UDS 
LOS 
R/W 

OTACK 
BG 

BGACK 
BR 

Vee 
ClK 

GNO 
HALT 

RESET 
VMA 

E 
VPA 

BERR 
IPl2 
IPL1 
IPlO 
FC2 
FC1 
FCO 

A1 
A2 
A3 
A4 

-=--: 
::: -
-:: 
:: -
-::: -

-.:: 
--

-
:: 
:: -
-

- 1 :.. 2 - 3 - 4 - 5 -
6 
7 
8 
9 .. 10 

11 - 12 - 13 
14 - 15 
16 MC68000 - 17 - 18 
19 
20 
21 .. 22 : - 23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Description 

Data Bus 
Address Bus 
Address Strobe 
Read/Write Control 
Upper. lower Data Strobes 
Data Transfer Acknowledge 

FCO. FC1. FC2 Function Code (status) Outputs 
IPLO. IPl1. IPl2 Interrupt Requests 
BERR Bus Error 
HALT Halt Processor Operation 

64 -- --
63 -=- -=. - -
62 -- :. 61 -60 --=- ;, 
59 -
58 .. -- -57 ~ 56 

.:~ 55 - .. 54 -53 
52 --
51 --50 --=.. -
49 
48 --
47 ---
46 .. 
45 .-=. 
44 
43 : 42 -
41 --
40 --
39 --
38 . 
37 .. 
36 .... 
35 --:. 34 
33 .. 

RESET Reset Processor or Reset External Devices 
elK System Clock 
BR Bus Request 
BG Bus Grant 
B'GACi< Bus Grant Acknowledge 
E Enable (Clock) Output 
VMA Valid Memory Address 
VPA Valid Peripheral Address 
Vee. GNO Power (+5 V) and Ground 

05 
06 
07 
08 
09 
010 
011 
012 
013 
014 
015 
GND 
A23 
A22 
A21 
Vee 
A20 
A19 
A18 
A17 
A16 
A15 
A14 
A13 
A12 
A11 
A10 
A9 
A8 
A7 
A6 
A5 

Type 

Bidirectional. Tristate 
OutPllt. Tristate 
Output. Tristate 
Output. Tristate 
Output. Tristate 
Input 
Output. Tristate 
Input 
Input 
!nput/Output 
Input/Output 
Input 
Input 
Output 
Input 
Output 
Output. Tristate 
Input 

Figure 7-3. MC68000 Pins and Signal Assignments 
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MC68000 PINS AND SIGNALS 
Figure 7-3 illustrates the signals and pin assignments for the MC68000. At this point. we will briefly discuss each 
of these signals to provide an overview of how the MC68000 operates. We will defer a detailed discussion of signal and 
timing interactions until later in this chapter. 

00-015 is the bidirectional 16-bit Data Bus. A 1-A23 is the output 24-bit address bus. Because the MC68000 is 
contained in a 64-pin package. the data and address lines need not be multiplexed onto the same pins. as is the case 
with the 8086 and Z8000 microprocessors. Note that AO, the least significant bit of the Address Bus, is not output; 
this bit is used internal to the MC68000. in conjunction with the data size specification of each instruction. to generate 
the UOS and iJ5S signals. 

The UOS (Upper Data Strobe) and LOS (Lower Data Strobe) signals determine whether data is being transferred 
on either the upper (most significant) byte, the low!!..!!.east significant) byte..J!!' both bytes of the 16-bit data 
bus. Table 7-2 defines the significance of the UDS, LOS, and Read/Write (R/W) signals in relation to the data 
bus. When ODs is low. data from memory with an even address is accessed and the byte of data is transferred on 08-
015. When CDs is low. a byte of data located at an odd address is accessed and the transfer occurs on 00-07. When 
the MC68000 is transferring a word of data (for example. when fetching an instruction) then both ODS and LOS will be 
low and all 16 of the data lines (DO-015) will be used for the transfer. 

Table 7-2. MC68000 Oata Bus Control Signal Summary 

UDs LOS R/W 08-015 00-07 Operation 

High High - . '.·;r:{" ••.• 'Ji:~'}i""x;"} 
," ""';::,';:'.; .;;~L··; :,~:;'.:;. c.' .' .:.''':: •• ,:,;:.:~{·:Jt"';"C.: k.;L:";;;:<:;:;'..:·::'~::i.:,·Z;I~ ".;:;:::,t:.; .• &;.< 

Low Low High Data bits 8-1 5 Data bits 0-7 Word Read 

High Low High ··········;·:.e:·i./·:; .: •... :.:;:::'" •... ::;.:::.q 
·:.:i:· '< /.::'::;::;., Data bits 0-7 Byte Read 

Low High High Data bits 8-1 5 t;;/··.·!·:.; .. ·.·;:i"~;:;·!!.j~:::· .•... :;;2·;A Byte Read 

Low Low Low Data bits 8-1 5 Data bits 0-7 Word Write 

High Low Low Data bits 0-7 Data bits 0-7 Byte Write 

Low High Low Data bits 8- 1 5 Data bits 8- 1 5 Byte Write 

[Z] No valid data output or input 
'. 

Table 7-3. MC68000 Function Code Summary 

FC2 FC1 FCO Machine Cycle Type 

o o o 

o o User data memory access 

o o User program memory access 

o 
o o 

o Supervisor data memory access 

1 o Supervisor program memory access 

Interrupt acknowledge 

1>,>,1 Reserved. currently undefined 
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Byte Memory with 
Even Addresses 

A1-A23 08-015 

AS ----4 
UOS ----f 
LOS ----f 

Byte Memory with 
Odd Addresses 

A 1-A23 00-07 

A1-A23~ __________ ~~ ______________________________ T-~ __ ~ 

00-07 

08-015 

Figure 7-4. MC6S000 Interface to Memory 

The memory interface implied by the UDS and LOS signals is illustrated in Figure 7-4. Byte­
oriented memory with even addresses will be selected by UOS. and that memory s data lines are 
connected to OS-015. LOS references byte memory with odd addresses. and its data will be 
applied to 00-07 of the Oata Bus. The AS line. shown in Figure 7-4. is the Address Strobe which is 
pulsed low to indicate that a valid data address is being output on the Address Bus (A 1-A23). 

MC68000 
MEMORY 
INTERFACE 

DTACK is the Data Transfer Acknowledge input signal. This signal must be asserted by external logic during 
every read or write cycle. When the MC6S000 is performing a read or write cycle. it will automatically insert wait 
states in the cycle until the OTACK signal is received. This approach is thus the inverse of the logic used by most other 
microprocessors: for example. both the Z8000 and SOS6 have a "wait" input which external logic can use to extend a 
read or write cycle - if the wait input is not asserted. the read/write cycle will finish normally. The MC6S000 approach 
provides for completely asynchronous bus operations that can interface to any type of device regardless of that 
device's speed. This approach specifies. however. that all devices in the system must include sufficient logic to 
generate the i5TACK signal. 

FCO, FC1, and FC2 are the Function Code or processor cycle status outputs. These outputs identify the type of 
bus activity currently being performed by the MC68000, as summarized in Table 7-3. The Function Code outputs 
are valid whenever AS is true. Five different types of cycles are currently defined: access to either supervisor data 
memory, supervisor program memory, user data memory, or user program memory, and interrupt acknowledge 
cycles. Whenever the MC6S000 is involved in fetching instructions. it is considered as accessing program memory. All 
other memory accesses are identified as data memory accesses. The Function Code outputs could be used to separate 
memory into the four different categories - user versus supervisor and program versus data. Thus. by using the FC 
outputs an MC68000 system could directly address up to 64 megabytes of memory. with 16 megabytes devoted to 
each of the four defined memory categories. 

i'PLQ, iPL1, and IPL2 are the interrupt request inputs. These three inputs are decoded internally by the 
MC68000 to determine the priority level of the interrupt request. You will recall from our earlier discussion of the 
Status register that there is a 3-bit interrupt mask which determines what level of interrupt request will be permitted. 
When all three interrupt inputs are low. a non-maskable interrupt (level 7. which is the highest priority) is present. This 
level is always recognized by the MC6S000. When all three of the interrupt inputs are high. it indicates that no interrupt 
is being requested. 

BERR is the Bus Error input. When this signal is low the MC68000 performs a sequence (exception processing 
sequence) similar to that which it executes in response to an interrupt request. The purpose of the ftliI!i signal 
is to inform the MC68000 when an external device has not responded (using the DTACK input) within an 
expected amount of time during a read or write operation. Since the data transfer handshaking approach used by 
the MC6S000 requires all external devices to actively respond to every data transfer. the system should include a 
mechanism to ensure that the processor is not hung up indefinitely by a device that fails to respond. Thus external logic 
should be provided to monitor bus activity and which would utilize the BERR signal to inform the MC6S000 of a "failure 
to respond" condition. This logic would separate the preceding cause of a bus error from other causes. such as might 
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be generated with a Memory Management Unit (MMU). The MMU would generate BERR if an attempt was made to 
access protected memory. 

As we have already mentioned. the reaction of the MC68000 to the Bus Error input is similar to the interrupt request 
response. We will describe this response. termed "exception processing." in detail later in this chapter. Essentially. 
exception processing causes processor status information to be saved. and then allows the processor to execute a pro­
gram to analyze the cause of the error. The MC68000 also provides a hardware-oriented response to a bus error: if the 
HALT signal is asserted in conjunction with the BERR signal. the MC68000 will automatically retry the bus 
cycle that produced the error. 

The HAi:T signal performs several functions. As we mentioned in the preceding paragraph. it can be used in con· 
junction with the BERR signal to initiate rerunning of bus cycles that produced bus errors. When used alone. it 
places the MC68000 in a Halt state where the processor is essentially inactive until the HALT signal is negated. This is 
the familiar Halt function provided by most microprocessors. 

The HALT signal is also used in conjunction with the R'E'SEi" signal to intialize the MC68000. One unusual aspect 
of the RESET signal is the fact that it is also an ouput signal; the MC68000 provides a RESET instruction which, 
when·executed. causes a low-going pulse to be output on the REffi pin. Thus. you can execute a RESET instruc­
tion and use it to initialize other devices in the system without resetting the processor. 

HALT. like iiE'S'ET. is an output signal. If the processor ceases executing instructions - for example. if a double 
bus fault condition occurs - the MC68000 will output iiAi:i" low. External logic can be then used to detect this 
potentially catastrophic condition. 

ClK is the single TTL-level compatible clock from which all MC68000 internal timing is derived. 

iiR (Bus Request). BG (Bus Grand, and BGACK (Bus Grant Acknowledge) ar,e all bus arbitration signals. These 
signals are used in systems where other devices. such as DMA controllers on other processors. require control of the 
System Busses. External devices request access to the System Bus by asserting the BR input. The MC68000 will 
then always relinquish the bus after it has completed the current bus cycle. It will also output Bus Grant (BG) low to 
let the requesting device know that the bus will become available at the end of the current cycle: However. as 
we will see v:..hen we discuss the bus arbitration timing in detail. external devices or logic must monitor more than just 
the Bus Grant signal to determine when the bus will actually be available. The Bus Grant Acknowledge (BGACK) sig­
nal must be input to the MC68000 by the device requesting the bus once that device takes control of the bus. 
BGACK must be held low until the device has completed its bus access operations. Thus BGACK is essentially a "bus 
busy" signal that lets the MC68000 (and other devices in the system) know that the bus is unavailable. 

The next three signals - E. VPA. and VMA - are provided so that the MC68000 can be easily interfaced to the 
standard and widely available 6800 family devices. 6800-based systems use a synchronous method of effecting 
transfers of data throughout the system. To accomplish this a system clock Enable (E) signal must be distributed to all 
6800 devices in the system so that all relevant data transfers may be synchronized to this clock signal. Thus the Ena­
ble (E) signal provided by the MC68000 is the equivalent of the 6800 E signal. The frequency of E is equal to one­
tenth that of the ClK input to the MC68000: the period for E is equal to 10 ClK periods - E is low for six ClK cycles 
and is high for four ClK cycles. 

The Valid Peripheral Address (VPA) signal is used by 6800-type devices in the system to inform the MC68000 
that a 6800-type data transfer is required. You must provide address decoding logic in the system that determines 
when a 6800-type device is being accessed and that generates the WA signal. When the MC68000 receives the 
VPA signal, it alters the data transfer timing so that it is synchronous with the Enable (E) signal. The MC68000 
will then output the Valid Memory Address (VMA) signal at the appropriate time. VMA is another 6800-type sig­
nal and will only be output if the VPA input signal has been asserted at the beginning of a data transfer operation. We 
will defer a detailed discussion of these three signals until later when we describe interfacing between the MC68000 
and the 6800-family devices. 

MC68000 TIMING AND BUS OPERATION 

The basic timing for the MC68000 is quite straightforward: instruction execution consists of a combination of 
internal cycles and bus access cycles. The total number of clock cycles required for each instruction is defined 
in the instruction set summary tables later in this chapter. The number of clock cycles required to perform opera­
tions internal to the MC68000 are of little interest to other devices in the system since these operations are transparent 
to external logic. It is only when the MC68000 requires access to the system bus for such operations as instruction 
fetching. operand fetching. and operand storing that external devices become involved with MC68000 timing. 

The MC68000 uses memory mapped I/O. Therefore, bus accesses for data transfers between the MC68000 and 
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Figure 7-5. MC68000 Read Word Timing 

memory are the same as for those between the MC68000 and I/O devices. Data transfers are defined as either 
read or write operations, with the transfer of data into the MC68000 defined as a "read" and the transfer of data from 
the MC68000 to external logic defined as a "write." 

Figure 7-5 illustrates the timing for a read word operation. For purposes of the following timing 
discussions. each clock period is sub-divided into two states. 

During state 0 (SO) of the read word cycle. the address and data busses are in the high impedence 
state - the MC68000 is not using the System Bus at this point. Address information for the 

MC68000 
READ 
TIMING 

memory or I/O location is output at the beginning of state 1 (51) on the Address Bus (A 1-A23L Processor cycle status 
information is also output at this point on the FCO-FC2 pins. The Address Strobe (AS) signal is asserted at the beginning 
of state 2 and can be used by external logic to latch the information on the Address Bus. Simultaneously. the Upper 
Data Strobe (05'$') and Lower Data Strobe (Ci5$) signals are asserted to enable selection of both the most significant 
byte and least significant byte of a 16-bit word. You will note that these signals are not actually data "strobes" since 
there is no data ready to be input or output at this point; it is more accurate to think of them as memory select signals 
selecting the upper and/or lower byte of a 16-bit memory word. R/W is normally asserted. so this output does not 
change during a read cycle. 

The MC68000 now waits for the addressed memory or I/O device to present its data on the Data Bus. When the data is 
ready. the external device must assert Data Acknowledge (DT ACK) to the MC68000. The MC68000 expects DT ACK and 
the requested data to be present by state 5 (S5). If DTACK is not present by 55. Wait states (SW) will be automatically 
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inserted into the read timin~y~as illu~ted in Figure 7-6. Once DTACK is true. the read cycle continues with S5. At 
the end of state 6 (S6). the AS. UDS. and lOS signals are negated. At this point the incoming data on DO~Q15 is lat<;:hed 
into an internal MC68000 register. External devices can use the negative-to-positive transition ot" AS. 'ODS. or CDS as 
the indication that they can remove data from the Data Bus. TheMC68000 maintains the address information and func­
tion code information through the end of state 7 (S7) to allow for signal skew within the system. Note that when the 
external device senses that the MC68000 has captured the data from the Data Bus (by sensing the high-going transi­
tion of AS. DDS. or lOS) that device must return DT ACK high immediately so that it does not interfere with the begin­
ning of the next bus cycle. 

If you refer to the Wait state insertion that can occur during read operations. as illustrated in 
Figure 7-6. you will see that the Wait states occur between state 4 and state 5. The 
MC68000 will maintain valid address output on the address Bus and will hold AS: ODs. and IDS 
low during any Wait states for as long as necessary until 5TACK is asserted. You should note that 
there will always be an even number of Wait states inserted; all MC68000 operations are based on a complete elK 
cycle and there are two "states" per ClK cycle. 

I 50 I 51 I 52 I 53 I 54 5W I 5W I 5W I 5W S5 I S6 I 57 I SO 

elK 

A1-A23 

R/W 

00-015 

Figure 7-6. MC68000 Wait States During Read Operations 
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Figure 7-7. MC68000 Read Byte Timing 

Timing for a read byte operation is illustrated in Figure 7-7. This figure shows first an even data byte and then an 
odd data byte being read by the MC68000. As you can see, the only difference between this timing and that illustrated 
for a read word operation in Figure 7-5 is that only 0i5S or rns is asserted and only eight lines of the data bus are 
utilized when you are reading a byte: UOS is asserted and data is on lines 08-015 when reading a byte located at an 
even address and IDS is asserted and data is on lines 00-07 when reading a byte located at an odd address. You 
should not be misled by Figure 7-7 into thinking that the MC68000 always reads two consecutive bytes - an even 
byte and an odd byte. We have simply shown these two read operations consecutively to illustrate timing for both. 
Again, if the MC68000 requires a word of data, it will utilize the entire 16-bit Oata Bus and read the full word in one 
operation. 
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Timing for a write word operation is illustrated in Figure 7-S. As was the case with read opera­
tions. the address for the memory location or I/O device is output at the beginning of 51 along 
with the appropriate function code indicating the current type of processor bus cycle. If the Data 
Bus was utilized by the MC6S000 in the preceding cycle. the processor returns all of t.h.e data out­

MC6S000 
WRITE 
TIMING 

puts to the high impedence state during 51 and then asserts the Address Strobe (AS) signal and outputs the Read/ 
Write (R/W) Signal low. Once again. AS can be used to latch the address externally. and the R/W Signal indicates to 
memory or I/O devices that the MC6S000 will be placing data onto the Data Bus. No further Signal activity occurs until 
the MC6S000 outputs the data on 00-015 at the beginning of state 3 (53), The Upper and Lower Data Strobe signals 
(UDS. LOS) are asserted at the beginning of state 4 (54). During write operations. these two signals can be used as 
"strobe" signals since they indicate that the data on the Data Bus is valid. If the write operatio~roceed unim­
peded. external logic must respond to the data strobe signals by asserting the Data Acknowledge (DT ACK) Signal by the 
beginning of state 7 (57). If DTACK is not true by the beginning of 57, Walt states are automatically inserted by 
the MC6S000, as illustrated in Figure 7-9. This "slow write" operation is the same as was illustrated for read 
operations except that the Wait states are inserted at a different point in the cycle. 
The MC6S000 outputs the data on 00-015 through the entire write operation. The Address Strobe (AS) and data 
strobes (UDS. LOS) are negated at the beginning of state 9 (59) and the Read/Write (R/W) signal is returned high at the 
end of S9. At that point. the Address Bus. Data Bus. and Function Code outputs are all returned to their high impedance 
state to free the System Bus for other uses. The external memory or I/O device that was accessed by the write operation 
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Figure 7-S. MC6S000 Write Word Timing 
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Figure 7-9. MC68000 Wait States During Write Operations 

must release the Data Acknowledge (DT ACK) signal after it has detected the positive-to-negative transition of the 
address or data strobe signals. This ensures that a subsequent bus cycle will not be impeded. 

Timing for write byte operation is illustrated in Figure 7-10. As you can see, the only difference between this opera­
tion and the write word timing illustrated in Figure 7-8 is the fact that only ODs or L5S is output while a byte is being 
written. 
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MC68000 READ-MODIFY-WRITE TIMING 
The read-modify-write cycle provided by the MC68000 is unusual among microprocessors, although it is fre­
quently provided by minicomputers. The MC68000 uses the read-modify-write cycle only during the execution 
of the Test and Set (TAS) instruction. This instruction reads a byte of data. sets condition codes according to the 
contents of that byte. sets bit 7 of the byte. and then writes it back into memory. The T AS instruction is intended to be 
used as a means of providing "safe" communication between microprocessors in a multi-processor system. Safe com­
munication is ensured with the T AS instruction since the read-modify-write cycle is non-interruptable. 

ClK 

A1-A23--( ... _______ ~H'-_______ ~}-
As~ ... ____ ~1 \ .... _------1 

R/W 

08-015 ----04 

00-07----------------------------~ 

FCO-FC2--{ ... _______ ~H .... _______ ...J}-

Figure 7-10.. MC68000 Write Byte Timing 
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Figure 7-11 illustrates the timing for a read-modify-write cycle. As you can see, it simply consists of the read­
byte cycle followed by a standard write-byte cycle. There is one intervening clock period (58, 59) between the 
read and write cycles and it is during this interval that .the byte of data is modified internally for the subsequent 
write. Just as was the case with standard read and write. external logic must reply with OT ACK at the proper time or 
else Wait states will automatically be inserted to lengthen the read or write operations. 

Note that in Figure 7-11 we have shown that either UOS or LOS will be asserted during the read-modify-write opera­
tion. Th is is because the T AS instruction always operates on a byte of data. never on a word of data. 

CLK 

A1-A23 

UOS or 
lOS 

R/W 

Read Modify Write 

00-07or ____________ 1X~~ 
08-015 ~~~ __ .....I 

FCO-FC2 LJ }-
~--------------------------------

Figure 7-11. MC68000 Read-Modify-Write Timing 
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The MC68000 RESET OPERATION 
The MC68000 has an asynchronous reset input. You reset the microprocessor by holding the RESET and HALT signals 
low for at least 100 milliseconds. After the RESET and HALT signals are returned high, the MC68000 executes the 
following 'operations: 

1) The MC68000 reads the first four words from memory (bytes 000000 through 000007) and uses the con­
tents of these locations to load the System Stack Pointer (SSP) and Program Counter (PC). The contents of 
these eight bytes from the beginning of memory are used as follows: 

31 o 
SSP~I __________ ~ ____ 2 ____ ~ ____ 3 ____ ~~ ____ 4 ____ ~ 

31 o peL 5 6 7 8 

2 

3 

4 

5 

6 

7 

8 

-.......-----

Memory 

000000 

000001 

000002 

000003 

000004 

000005 

000006 

000007 

000008 

2) The interrupt mask in the Status register is set to all ones so that only level 7 interrupts will be enabled. No 
other registers are affected by the reset operation: therefore, when a reset is performed after applying power 
to the MC68000, all registers except SSP, PC, and the Status register will contain indeterminate values. 

3) Program execution begins, with the first instruction being fetched from the location indicated by the value 
loaded into the Program Counter. 

The sequence we just described is the typical externally-initiated reset operation similar to that provided by 
most microprocessors. You will recall, however, that the RESET pin is bidirectional; when the MC68000 
executes a Reset instruction, a low-going pulse is sent out on the RESET pin. This software RESET pulse is low for 
124 ClK cycles. This instruction has no effect on the internal state of the MC68000, therefore none of its internal 
registers are affected. In this case, the RESET signal is being used to reset all other devices within the system under the 
control of the MC68000. 

THE MC68000 HALT STATE 
The MC68000 can be forced into a Halt state, at which time its Address Bus, Data Bus, and Function Code out­
puts (FCO-FC2) are placed in the high-impedance state. This state is similar to the Hold state of the 8086 and the 
Stop state of the Z8000. The Halt state can be used to disable the MC68000 and thus free the System Busses for such 
activities as direct memory access or mUlti-processor operations. However, since the MC68000 includes an efficient 
bus arbitration system, it is more likely that the Halt state will be used to implement a hardware single-step mode. 

Figure 7-12 illustrates the timing for the Halt operation. If the MC68000 is in the middle of a bus cycle when the 
HALT signal is input low, the bus cycle continues to its normal completion. At the end of the cycle the Address Bus, 
Data Bus, and FCO-FC2 signals are all placed in the high impedance state and the MC68000 halts. While it is in this 
halted condition, the processor does nothing - it merely waits for the .HAlT signal to return high. Note that the 
MC68000 provides no halt acknowledge indication to external logic. 

However, while the MC68000 is in the Halt state, its bus arbitration circuitry still operates. Since the MC68000 
wiU not be using the bus while it is halted, any bus request made to the MC68000 will be granted immediately. We will 
defer a detailed discussion of the bus arbitration circuitry until later. 

When the HALT signal is returned high, the MC68000 exits the Halt state within two clock cycles and can then begin 
another bus cycle. 

The execution of most MC68000 instructions requires multiple bus cycles to fetch the instruction and operands and, 
possibly, to store results of the instruction. Since the MC68000 will respond to the HALT input upon completion of 
any bus cycle, the halt sequence can occur between two instructions or in the middle of a single instruction. 
Therefore, if you are using the HID input to implement a single-step mode of operation, you will be single­
stepping by bus cycles rather than single-stepping by instructions. If you want to single-step by instructions, you 

7-19 



CLK 

A1-A23 

R/W 

00-015 

FCO-FC3 

Completion of Halt State. Address Bus. Data Initiate next 
current bus cycle ---i+--Bus and FCO-FC3 put into-"'~--bus cycle 

high impedance state 

Figure 7-12. MC68000 Halt State Timing 

must use the Trace function of the MC68000. This function is implemented by setting the T-bit in the Supervisor byte 
of the Status register. We will describe the Trace operation in detail later. 

The HALT signal is bidirectional and will be asserted by the MC68000 if it initiates a Halt state rather than hav­
ing external logic cause the Halt. The MC68000 will automatically enter the Halt state if there is a double-bus fault 
(we will discuss bus errors and double-bus faults in detail later). If the MC68000 has automatically entered the Halt 
state, the processor will output HALT low and remain in this halted condition until an externally initiated reset opera­
tion is performed using RESET. Thus, when HALT is output low by the MC68000, it indicates a catastrophic failure. 

THE MC68000 STOP STATE 
Following execution of the STOP instruction, the MC68000 microprocessor will enter a Stop state. The STOP 
instruction is permitted only when the MC68000 is operating in the Supervisor mode as indicated by the S-bit in the 
Status register. The Stop state is similar to the HALT state which we just discussed, since the microprocessor essen­
tially does nothing while in this state. When the STOP instruction is executed, the Status register is loaded with a new 
value contained in the instruction. Next. the Program Counter is advanced to point to the next instruction and the 
MC68000 stops. 

No special signal or status is output by the MC68000 to identify that it is in the Stop state. The Stop state is ended by 
one of the exception conditions such as an interrupt request or a RESET. When an exception condition is detected by 
the MC68000, it leaves the Stop state and will process the exception condition. 
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THE MC68000 BUS CYCLE RERUN TIMING 
As we mentioned earlier, the MC68000 can respond in two ways to a System Bus error, indicated by the asser­
tion of iEiiR. It can perform exception processing (which we will describe later), or it can attempt to rerun the 
bus cycle which caused the bus error indication. If BERR is asserted by itself, then the exception proces~~.~Jor soft­
ware) method of handling the bus error is taken. However, if the BERR signal is accompanied by the HALT signal 
then the MC68000 recognizes this as a request to rerun the bus cycle. 

Figure 7-13 illustrates the timing for the bus cycle rerun operation. In this figure, we have shown a write cycle in 
progress, with the MC68000 waiting for the external device to respond with DT ACK so that the cycle can be completed. 
Instead of the expected acknowledge signal. external logic forces both the BERR and HALT signals low to indicate that 
the cycle was not successfully completed and that the MC68000 should rerun the cycle. 

The MC68000 proceeds to complete the cycle that was in progress and then enters the HALT state. The Address Bus, 
Data Bus, and Function Code outputs are all placed in the high impedance state and the microprocessor remains halted 
until both BERR and HALT are negated. Note that ~ should be negated before HALT is negated to prevent the 
MC68000 from interpreting the isolated BERR signal as another bus error - one that is expected to be handled in soft­
ware. After HALT returns high, the MC68000 will proceed to repeat the cycle that was in progress when the rerun 
request was received; i.e., the same address, data, and function code information that was used in the previous bus 
cycle will be repeated. 

Write Cycle N Halt Rerun Write Cycle N 

I~I~I~I~I~I~I~I~I~ 
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Figure 7-13. MC68000 Rerun Bus Cycle Timing 
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Figure 7-13 shows the successful completion of the rerun cycle with i5TACR being received in the expected 
interval. Of course, this will not always be the case - the attempt to rerun the bus cycle might also result in a bus 
error. External logic can continue to request that the cycle be rerun an unlimited number of times, using the com­
bination of BERR and HALT. You should note, however,· that if you are using the software exception processing 
method of handling the bus error (BERR asserted alone without HAL Tl. then two successive bus errors are treated as a 
catastrophic error and the MC68000 will automatically enter the Halt state and remain there until reset. 

If the MC68000 is performing a read-modify-write cycle and a bus error is encountered, it will not rerun the 
cycle. This is done because the read-modify-write is only used during the Test and Set (TAS) instruction. The nature of 
this instruction demands complete execution cycle integrity, which might be violated if any of the bus cycles were 
repeated. If external logic requests a rerun of the read-modify-write cycle, the MC68000 will instead perform the bus 
error exception processing routine, which we will describe later. 

MC68000 BUS ARBITRATION LOGIC 
The bus arbitration logic provided by the MC68000 is straightforward. The MC68000 does not prioritize 
requests for bus accesses by external devices. The processor assumes that it is the lowest priority device in the 
system since it always grants bus access to any requesting device so long as the processor is not currently 
using the bus itself. Thus the MC68000 allows other devices to utilize the bus between instructions and between bus 
cycles of a single instruction. Since there is no built-in arbitration there should be some external bus arbitration logic in 
a system of any complexity to prioritize requests for the System Bus so that a high priority device is not superseded by 
low priority devices. 

There are three signals associated with the bus arbitration logic: Bus Request (BR), Bus Grant (aG)' and Bus 
Grant Acknowledge (BGAcK). When the MC68000 is using the System Bus without competition, the input signals -
BR and BGACK - will be inactive and the BG output will be negated. 

Figure 7-14 illustrates the timing for the bus arbitration performed by the MC68000. Bus arbitration com­
mences when an external device pulls the BR input low. When the MC68000 receives a bus request it will respond 
by asserting BG one ClK period later. The only exception to this immediate response is when the MC68000 is in the 
initial stages of a bus cycle but has not yet asserted AS. In this case the MC68000 waits until one elK period after AS 
has been asserted before it asserts BG; the response time in this case will be a maximum of three ClK periods. 

Obviously, the Bus Grant signal does not indicate that the bus is available for use by the requesting device at 
that point - the MC68000 may still be using the bus to complete its current bus cycle. Therefore the device 
requesting the bus must monitor several other signals to determine when the bus is actually available for its 
use. First. the external device must wait until AS is negated, indicating that the MC68000 has completed the current 
bus cycle. The device requesting the bus must also wait until the DTACK signal is negated, since this indicates that the 
device involved in the current MC68000 cycle is no longer using the bus. However, in some systems it may not be 
necessary to monitor the DT ACK signal. This is the case when system timing is such that you are always assured that 
all external devices will be off the bus when AS is negated. Lastly, the requesting device must check the state of the 
BGACK signal. If this signal is true, it indicates that some other device in the system has already been granted use of the 
System Bus and has not yet finished with it. Conversely, if BGACK is false, then the System Bus will be available for use 
at the end of the current cycle. 

After all of the signal conditions we have described are met, the device requesting the bus must assert BGACK. 
This informs the MC68000 that the requesting device has ~aken control of the bus. You will note in Figure 7-14 
that the MC68000 does not wait for the BGACK signal before it relinquishes control of the bus: the Address and 
Data Busses, the Function Code outputs, AS, UDS, lDS, and R/W are all placed in the high impedance state as soon as 
the MC68000 has completed the bus cycle that was in progress when the bus request was received. The device that is 
using the bus must hold BGACK low for as long as it requires the bus. While an external device has control of the bus, 
external logic should prevent bus conflicts by monitoring BGACK; at this point the behavior of BR and BC is unimpor­
tant. However, the device using the bus should negate its BR before negating BGACK to avoid an incorrect bus request. 

The MC68000 will maintain its output lines in the high impedance state until BGACK is negated, indicating that the 
external device is through with the bus. At that point the MC68000 is free to initiate another bus cycle. Note that if 
another bus request is pending at that point the MC68000 will acquiesce to that bus request immediately without per­
forming any bus cycles itself. 
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MC68000 EXCEPTION PROCESSING LOGIC 

All of Motorola's literature on the MC68000 refers to "exception processing" when discussing what we 
usually describe as the interrupt system in other microprocessors. They have chosen to use this nomenclature 
since the events that can cause "interrupts" in the MC68000 cover a much broader range than those usually 
associated with an interrupt request in a typical microprocessor. We will also use the "exception processing" 
nomenclature. 
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Figure 7-14. MC68000 Bus Arbitration Timing 
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The MC68000 provides extensive exception processing logic. This logic is similar to that provided by the 8086 
and Z8000 in that a jump vector table is used to transfer program control to the appropriate handler program 
whenever an exception occurs. The biggest difference between the MC68000's logic and that of the Z8000 
and 8086 is that the number of events that can generate an exception in the MC68000 is greater than the num­
ber of events that cause interrupts in Z8000. In addition, the MC68000 provides a 7-level priority structure for 
external interrupt requests. 

Before proceeding to describe the exception processing system, let us discuss the operat­
ing modes of the MC68000, since these affect exception processing. As 'We mentioned pre­
viously. the MC68000 can operate in either a Supervisor mode or a User mode. When the 
MC68000 is reset using the RESET input. it starts operating in the Supervisor mode. The pro­

MC68000 
OPERATING 
MODES 

cessor remains in Supervisor mode until one of the following instructions is executed: Return from Exception 
(RTEL Move to Status Register (MOVE word to SR), AND Immediate to Status Register (ANDI word to SRL and 
Exclusive OR Immediate to Status Register (EORI word to SR). None of these instructions automatically causes the tran­
sition to User mode of operation - rather. they are capable of changing the state of the S-bit in the Status register. If 
one of these instructions resets the S-bit. the MC68000 will begin operating in the User mode. 

Once the MC68000 is operating in the User mode, the only thing that can cause a transition back to the Super­
visor mode is an exception. All exception processing is performed in Supervisor mode regardless of the current set­
ting of the S-bit of the Status register. When the exception processing has been completed. the Return from Exception 
(RTE) instruction allows return to the User mode. 

A number of instructions. designated as "privileged." are reserved for the Supervisor mode. An attempt to execute one 
of these instructions in the User mode results in a "privilege violation" which is one type of exception. We will discuss 
these instructions and the privilege violation response later in this chapter. 

MC68000 EXCEPTION TYPES 
Exceptions originate in a variety of ways which can be divided into two general categories: 

1) Internally generated exceptions that result from the execution of certain instructions. or from internally 
detected errors. 

2) Externally generated exceptions which include bus errors. reset. and interrupt requests. 

The response of the MC68000 to the various types of exceptions is similar. Before we describe this response. let us look 
at the sources of exceptions since they go well beyond those provided by other microprocessors. 

The internally generated exceptions to which the MC68000 responds can be further sub­
divided into three categories: internally detected errors, instruction traps, and the Trace 
function. 

The following are the internally detected errors which will cause the MC68000 to initiate 
exception processing: 

MC68000 
INTERNALLY 
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1) Addressing errors. Whenever the MC68000 attempts to access word data. long word data. or an instruc­
tion at an odd address. this is an address error since all such accesses must be on even address boundaries. 

2) Privilege violations. Again. some instructions are reserved for use only in the Supervisor mode. Exception 
processing will be initiated if you attempt to execute any of the following instructions when in the User 
mode: STOP. RESET. RTE. MOVE to SR. AND (word) Immediate to SR. EOR (word) Immediate to SR. OR 
(word) Immediate to SR. MOVE USP. 

3) Illegal and unimplemented opcodes. If an instruction is fetched whose bit pattern is not one of the defined 
instruction bit patterns for the MC68000. exception processing will be initiated. Two bit patterns are 
defined as unimplemented rather than illegal: if bits 15-12 are 1010 or 1111. these are treated as unimple­
mented instruction opcodes. If these opcodes are fetched. special exception processing is initiated which 
can allow you to use these unimplemented instructions in your own software. 

Instruction traps are exceptions which are caused by the execution of instructions in your program. There is a 
standard TRAP instruction which is similar the Z8000 System Call instruction. There are four other instructions -
TRAPV, CHK, DIVS, and DIVU - which will cause exception processing to be initiated if certain conditions. such 
as arithmetic overflows or divide by zero. are detected. 

The third type of internally generated exception occurs when the MC68000 is operating with the Trace func­
tion. If the T-bit in the supervisor portion of the Status register is set. exception processing will be performed after each 
instruction. The Trace function is used for program debugging since you can analyze. by stepping through the program. 
the results of each instruction's execution. 
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There are three different types of externally generated exceptions: 

1) Bus errors. When the BERR signal is pulled low by external logic (while HALT is high) 
exception processing is initiated. 

2) Reset. When the RESET signal is asserted by external logic, exception processing is 
initiated. 

MC68000 
EXTERNALLY 
GENERATED 
EXCEPTIONS 

3) Interrupt request. This is the most familiar form of exception processing and is initiated by external logic 
via the three interrupt request lines (iPLO, IPL 1, and IPL2). 

The different types of exceptions have different priorities, and processing of an exception 
depends on its priority. The following table lists the types of exceptions according to their 
relative priorities, and also defines when processing of each type begins. 

Priority Exception Source Exception Processing Response 

RESET Abort current cycle, then 
Highest BERR (Bus Error) process exception 

Address Error 

Trace Complete current instruction, then 
Interrupt Request process exception 
Illegal/Unimplemented Opcode 
Privilege Violation 

TRAP, TRAPV Instruction execution initiates 
Lowest CHK exception processing 

Divide-by-zero 

MC68000 
EXCEPTION 
PRIORITIES 

The highest priority types of exceptions are Reset. Bus Error, and Address Error. Any of these exceptions will cause 
immediate termination of the current instruction, even within a bus cycle. The next group of exceptions - trace, inter­
rupt requests, illegal/unimplemented instructions, and privilege violations - allow completion of the current instruc­
tion before initiating exception processing. Note that interrupt requests include an additional prioritization which we 
discussed earlier. The lowest priority of exceptions are those that are caused by trap-type instructions. These instruc­
tions can initiate exception processing as part of their normal execution. All of the instruction trap exceptions have 
equal priority since it is impossible for two of them to generate exceptions simultaneously. 
Central to the MC68000 exception processing sequence is a vector table that occupies 
1024 bytes (512 sixteen-bit words) of memory. This table occupies memory addresses 
00000016 through 0003FF16. Figure 7-15 illustrates the exception vector table. The table is 
organized as 256 four-byte vectors. Each vector is a 32-bit address which will be loaded into the 
Program Counter as part of the exception processing sequence. 

MC68000 
EXCEPTION 
VEC:rOR 
TABLE 

As you can see, a number of the vector table entries serve the defined types of exceptions which we have dis­
cussed. The remaining entries of the vector table are reserved for use by Motorola and should not be used by your pro­
gram if compatibility with Motorola software is desired. The first 64 exception vectors have predefined uses; this leaves 
192 vectors available to external interrupt requests - this should be more than enough for most applications. 
However, the first 64 vector locations are not protected by the MC68000; thus they can be used by external interrupts 
if a system requires it. 

MC68000 EXCEPTION PROCESSING SEQUENCES 
The general sequence of events performed by the MC68000 in response to an exception is the same regardless 
of the source of the exception. There are, however, some differences. Let us begin by examining the response 
to internally generated exceptions. 

If exception processing is initiated as a result of either the Trace function, a TRAP instruc­
tion, an illegal or unimplemented opcode, or a privilege violation, the following steps occur: 

1) The Status Register contents are copied into an internal register. 

2) The S-bit in the Status Register is set. thus placing the MC68000 in the Supervisor 
mode of operation. 
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Memory 
Addresses 1---16 Bits­

(Hex) 

000000 SSP (High) 

000002 SSP (Low) 
I' Reset _ Initial SSP 
II 

Reset - Initial PC 

Vector 2 - Bus Error 

Vector 3 - Address Error 

Vector 4 - Illegal Instruction 

Vector 5 - Divide by 0 

Vector 6 - CHK Instruction 

Vector 7 - TRAPV Instruction 

Vector B - Privilege Violation 

Vector 9 - Trace 

Vector 10,0 - Opcode 1010 Emulation 

Vector 11, 0 - Opcode 1111 Emulation 

I Reserved by 

> Vector 
12

10 I 
I Motorola 

} Vector 23,0 

} Vector 24, 0 - Spurious Interrupt 

~~~~I) 
I Vector 25,0 - Levell Interrupt !j 

Vector 26,0 - Level 2 Interrupt 

Vector 2710 - Level 3 Interrupt 

Auto-Vectors 
Vector 2810 - Level 4 Interrupt > if VPA low 

Vector 29,0 - Level 5 Interrupt I 
I-;..;,o;, __ ~-H 

Vector 3010- Level 6 Interrupt J 
Vector31,0- Level 7 Interrupt) 

TRAP 
Vector 32,0 I 

I Instruction 
I Vectors 

OOOOBC ..... -P-C-4-7 ... (H .. i ... 9h .. ) -1 t Vector 
47

10 
OOOOBE PC47 (Low) 

OOOOCO PC48 (High) Vector 48
10 
1 

0000C2 PC48 (Low) 

I Reserved by 
• Motorola 

OOOOFC PC63 (High) t Vector 63 
OOOOFE ...... P ... C ... 6_3 ... (L_O_W .. ).., 

000100 PC64 (HIgh) Vector 64 1 
000102 PC64 (Low) I 

I I ) User Vectors l J 
0003FC PC255 (HIgh) J} Vector 255 
0003FE [ PC255 (Low) J 

Figure 7-15. MC68000 Exception Vector Table 
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3) The T-bit in the Status Register is reset to disable tracing to allow for continuous execution when debug­
ging using TRACE. 

4) The Program Counter contents are pushed onto the Supervisor Stack. The contents of SSP will be decre­
mented by four since four bytes are required to store the 32-bit contents of Pc. 

5) Status register contents are pushed onto the Supervisor stack; SSP contents are decremented by two, since 
the Status register is a 16-bit register. 

6) The new Program Counter contents are taken from the appropriate location in the interrupt vector table. 

7) Instruction execution then begins at the location indicated by the new content of the Program Counter; this 
will be the first instruction of the exception processing program you have provided for that particular type 
exception. 

The way in which the MC68000 responds to an exception caused by a bus error or address 
error includes several steps in addition to those described in the preceding paragraphs. First, 
recall that either of these errors causes immediate termination of the bus cycle in progress. 
The next steps are the following: 

1) The contents of the Status register are copied into an internal register. 

2) The S-bit in the Status register is set. placing the MC68000 in the Supervisor mode. 

3) The T -bit in the Status register is reset to disable trace operations. 

MC68000 BUS 
AND ADDRESS 
ERROR 
EXCEPTION 
PROCESSING 

4) The contents of the Program Counter are pushed onto the Supervisor stack and the System Stack Pointer 
(SSP) is decremented by four. 

5) The contents of the Status register are pushed onto the Supervisor stack and the contents of SSP are decre­
mented by two. 

6) The contents of the MC68000's instruction register, which constitute the first word of the instruction that 
was in progress when the bus error occurred, are pushed onto the Supervisor stack and SSP is decremented 
by two. 

7) The 32-bit address that was being used for the bus cycle which was terminated is also pushed onto the 
Supervisor stack and SSP is decremented by four. 

8) A word which provides information as to the type of cycle that was in progress at the time of the error is 
pushed onto the Supervisor stack and SSP is decremented by two. 

9) The Program Counter contents are taken from the appropriate interrupt vector - either the bus error vector 
or address error vector of the exception vector table. 

10) Instruction execution resumes at the location indicated by the new contents of the Program Counter. 

Figure 7-16 shows the order in which information is pushed onto the Supervisor stack as part of the exception 
processing for bus and address errors. The value saved for the Program Counter is advanced two to ten bytes beyond 
the address of the first word of the instruction where the error occurred according to the length of that instruction and 
its addressing information, if any. 

As you can see in Figure 7-16, the five least significant bits of the last word pushed onto the Stack provide infor­
mation as to the type of access that was in progress when the bus error or address error occurred. The three least 
Significant bits are a copy of the Function Code outputs during the aborted bus cycle. Bit 3 indicates the type of pro­
ceSSing that was in progress when the error occurred. This bit is set for Group 0 or 1 exception processing and reset for 
Group 2 exception and normal instruction processing. Bit 4 indicates whether a read (bit 4 set) or write (bit 4 reset) 
cycle was in progress when the error occurred. If an error occurs during the exception processing of a preceding bus 
error, address error, or reset operation, the MC68000 will enter the Halt state and remain there. 

All of the information that is pushed onto the Supervisor stack as part of the bus and address error exception 
processing sequence is intended to aid you in analyzing possible sources of the error. Either of these errors implies 
a serious system failure and it is not likely that you will be able to return to normal program execution. 

An external reset causes a special type of exception processing. After the RESET input has 
been pulsed low the following steps occur: 

1) The S-bit in the Status register is set. placing the MC68000 in the Supervisor mode. 

2) The T-bit in the Status register is reset to disable the trace function. 

,.....----"'" 
MC68000 
RESET 
EXCEPTION 
PROCESSING 

3) All three interrupt mask bits in the Status register are set. thus specifying the interrupt priority mask at level 
seven. 

4) The Supervisor Stack Pointer (SSP) is loaded with the contents of the first four bytes of memory (addresses 
000000-000003) . 
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r---------j 0 = Write cycle aborted 
l 1 = Read cycle aborted 

{ 
0 = Instruction in progress 

~ 1 = Exception processing 

" + .1 Fun,tion Code IFC2. FC 1. FCOI 

SSP after 
- ----... ~r ____________ ..!4~3~2~!.1 ...20~""-Bit No. 

exception 
Lower Access Type'" I 1 1 I I 

Address t-----C-u-rr-en-t-C-y-C-le;.;.A-d-d-r-e-ss-(h-ig-hL-o-r-ld-e-'r)L.-L--I--I 

Current Cycle Address !low-order) 

Instruction Register 

Status Register 

PC (high-order word) 

SSP bef?re ----. Higher PC !low-order word) 
exception Address ... -----------------..... 

-------16-Bit Words-------

Figure 7-16. MC68000 System Stack After Bus Error or Address Error 

5) The Program Counter (PC) is loaded from the next four bytes of memory (addresses 000004-000007). 

6) Instruction execution commences at the address indicated by the new contents of the Program Counter. 
which should reference your power-up/reset initialization program. 

The last type of exception processing we will discuss is the sequence initiated by the stan­
dard interrupt request. An external device requests an interrupt by encoding an interrupt 
request level on the IPLO-lpL2 inputs. The MC68000 compares these inputs to the interrupt 
mask bits in the Status register. If the encoded priority level is less than or equal to the one 

MC68000 
INTERRUPT 
REQUEST 
EXCEPTION 
PROCESSING 

specified by the three-bit mask. the interrupt request will not be recognized by the MC68000.lf the encoded interrupt 
level is a higher priority than the level established by the interrupt mask (or if a level seven interrupt request is 
input) then the interrupt will be processed. The MC68000 responds to the allowed interrupt request as soon as it 
completes the instruction execution currently in progress. Upon completion of the current instruction, the following 
steps occur: 

1) The contents of the Status register are saved internally. 

2) The S-bit in the Status register is set. placing the MC68000 in the Supervisor mode. 

3) The T-bit in the Status register is reset to disable the Trace function. 

4) The interrupt mask bits in the Status register are updated to the level of the interrupt request that is 
encoded on the IPLO-IPL2 inputs. This allows the current interrupt to be processed without being inter­
rupted by lower priority events. 

5) The MC68000 then performs an interrupt acknowledge bus cycle. This cycle serves two functions; first. the 
processor lets the requesting device know that its interrupt request is being serviced. and second. the pro­
cessor fetches an exception vector byte from the requesting device. Figure 7-17 shows the timing for this 
interrupt acknowledge/vector fetch cycle. This cycle is esentially a read cycle with a few minor 
differences. First. address lines A 1 through A3 will reflect the states of the IPLO-IPL2 inputs so that external 
logic can determine which interrupt request is being processed. All of the other address outputs are set dur­
ing the interrupt acknowledge cycle. The requesting device responds to the MC68000 by lJlacing a byte of 
exception vector data on the lower half of the data bus. The Data Transfer Acknowledge (DTACK) signal is 
used to effect this transfer of data just as with a normal read cycle. Throughout the interrupt acknowledge 
cycle. the Function Code outputs (FCO-FC2) will be set high since this represents the interrupt acknowledge 
function code. After the vector byte has been read from the interrupting device. the MC68000 proceeds 
with the following exception processing steps. 

6) The contents of the Program Counter are pushed onto the Supervisor stack and SSP is decremented by four. 
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ClK 

A4-A23 

A1-A3 

R/W 

08-015 

00-07 

FCO-FC2 

Complete Current ----.+---Interrupt Acknowledge Bus Cycle 
Instruction 

Interrupt Request 

~---- No Request (lPLO = IPl1 = IPL2 = 1) 

Figure 7-17. MC68000 Interrupt AcknowledgeiVector Fetch Cycle 
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7) The contents of the Status register are pushed onto the Supervisor stack and SSP is decremented by two. 

8) The Program Counter is loaded with four bytes of data from the appropriate location in the exception vector 
table. The address for this location is derived as shown in the following illustration: 

Vector No. from 
interrupting device--"'1...;'~~L.,..J....l.,~,.l.,..J 

Address Outputs 

~-------Address range = 000000-0003FC----------t 

The eig ht bits of data that were read from the requesting device as part of the interrupt acknowledge cycle 
are used to form address bits A2 through A9. The two least significant bits and bits A 10 through A23 will all 
be set to zero. Thus, addresses 00000016 through 0003FC16 can be generated. If you refer to Figure 7-15, 
you will see that these are the upper and lower boundaries of the exception vector table. Under normal cir­
cumstances a requesting device should limit itself to producing vectors corresponding to the address range 
0000FC16 through 0003FC16 since the lower addresses in the vector table have preassigned uses. 

After the Program Counter has been loaded with the new value from the exception vector table, instruction execution 
commences at the location indicated by the new contents of the Program Counter; this will be the first instruction of 
your interrupt processing routine for the particular device requesting the interrupt. 

There are two variations to the interrupt request processing sequence we have just de­
scribed. First, if during the interrupt acknowledge bus cycle the requesting device responds 
by asserting BERR instead of DTACK, the MC68000 treats this as an indication that the cur­
rent interrupt request is a spurious one, and it will use vector 24 in the exception vector table to 
load the Program Counter. 
The second variation on interrupt request processing is the autovector response. If you refer 
to Figure 7-15, you will see that seven vector locations are provided in the exception vector 
table for autovectors, corresponding to the seven interrupt priority levels. These vectors 
will be used if the device requesting an interrupt r~nds to the interrupt acknowledge bus 

MC68000 
SPURIOUS 
INTERRUPT 

MC68000 
AUTOVECTOR 
INTERRUPT 
RESPONSE 

cycle by asserting the Valid Peripheral Address (VPA) signal instead of supplying a byte of vector data. If this 
occurs, the MC68000 will respond by asserting the Valid Memory Address (VMA) signal. The processor will then use 
the appropriate autovector from the exception vector table to obtain a new Program Counter value. This autovector 
response was provided specifically to emulate the interrupt timing sequence expected by 6800-family peripheral 
devices. The VPA/VMA sequence is the standard 6800 microprocessor interrupt sequence. Of course a non-6800-
family device in the system could also exploit this autovector capability should it be advantageous. 

MC68000 ADDRESSING MODES 
The MC68000 utilizes 14 different addressing modes which can be grouped into six basic types. These are: 

1) Direct Register Addressing 
a) Data Register Direct 
b) Address Register Direct 

2) Direct Memory Addressing 
a) Absolute Short 
b) Absolute Long 

3) Indirect Memory Addressing 
a) Register Indirect 
b) Post-increment Register Indirect 
c) Pre-decrement Register Indirect 
d) Register Indirect with Displacement 
e) Register Indirect with Index and Displacement 

4) Implied Register Addressing 
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5) Program Counter Relative Addressing 
a) PC-relative with Displacement 
b) PC-relative with Index and Displacement 

6) Immediate Data Addressing 
a) Immediate 
b) Quick Immediate 

These addressing modes help create a powerful and efficient instruction set. In particular. two useful features of 
the MC68000 addressing are that any address register may be used for direct or indirect addressing. and any register 
may be used as an index register. 

The general format of a single effective address instruction operation word is shown below. Thetwo least signifi­
cant 3-bit fields determine the effective address. These fields are the mode field (bits 3-5) and the register field (bits 0-
21. 

1 5 14 13 12 11 10 9 8 7 6 5 4 3 2 0 ",--Bit No. 

IXlxlxlxlxlxlxlxlxlxlmlmlmlrlrlrl 

TT .. -----Re9ister Field 

- Mode Field 

In some cases. the information contained in these two fields may be appended to fully specify the operand. In this 
case. one or two additional words are appended onto the instruction. This additional information is called the effec­
tive address extension. and its format is: 

111-

"E E o ::J 

~ .~ 
c: 10 
. 2 E 
~ 5 
S 0 
xu.. w-

~ 

r---

~ 

Operation Word 

Immediate Operand -(if any. one or two words) 

Source effective address extension . -(if any. one or two words) 

Destination effective address extension -(if any. one or two words) 

--------16 Bits--------

We will now discuss the addressing modes in detail. The following abbreviations are used within this section. 

An Address register n (0 < n < 7) 
CCR Condition code half of the Status register 
dddd displacement value 
On Data register n (0 ~ n :; 7) 

EA effective address 
N operand size in bytes (1.2.or 4) 
PC Program Counter 
pppp 
qqqq 
xxxx 
yyyy 
zzzz 

any four hex digits 

Rn any address or data register n (0 < n ~ 7) 
the 3-bit value of n -rrr 

SP 
SR 
SSP 
ssss 
USP 

the active Stack Pointer 
Status register 
Supervisor Stack Pointer 
sign extension digits 
User Stack Pointer 
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Register Direct Addressing 

This addressing mode requires that the operand involved be contained in one of the eight Data 
registers or one of the eight address registers (Mode = 0012). 

Memory 

............................. } Operation word 
xl xl111111010To 

C
{ :: } Extension word 

• I 

ssxxyy ~I I Operand (1, 2, or 4 bytes) 

ssxxyy + 1 

ssxxyy + 2 

ssxxyy + 3 

~ 

Byte 

EA = Sign extended value of the extension word 
Mode = 111 2 
Register = 0002 

Figure 7-18. MC68000 Absolute Short Direct Memory Addressing 

Memory 

xlxl11111101011 

ppqqxxyy + 2 

ppqqxxyy + 3 

EA = Concatenation of extension words 
Mode = 1112 
Register = 001 2 

pp 

qq 

xx 

yy 

I, 

> Operation word 

1< 

> First extension word 

> Second extension word 

I' 

Operand (1, 2, or 4 bytes) 

Figure 7-19. MC68000 Absolute Long Direct Memory Addressing 
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Data Register Direct 

EA = Dn 
Mode = 0002 

Absolute Data Addressing 

Address Register Direct 

EA = An 
Mode = 001 2 

There are two forms of this addressing mode. The short form is called absolute short addressing, 
while the longer format is called absolute long. 

Absolute short. One extension word is necessary for this addressing mode. The address of the 
operand is the sign extended value of the extension word. Figure 7-18 illustrates the absolute 
short addressing mode. 

MC68000 
ABSOLUTE 
DATA 
ADDRESSING 

Absolute long. Two words of extension are required for this addressing mode. The address of the operand is the con­
catenation of the two extension words; the first is the high-order portion, the second is the low-order portion. Figure 7-
19 illustrates the absolute long addressing mode. 

Register Indirect Addressing 

The five variations of this addressing mode each reference an operand in memory. 

Address register indirect. In this mode, the address of the operand is the contents of the 
specified Address register. Figure 7-20 illustrates the address register indirect mode. 

Address register indirect with postincrement. In this mode, the address of the operand is the 

MC68000 
REGISTER 
INDIRECT 
ADDRESSING 

contents of the specified Address register. After the instruction using this mode is executed, the contents of this 
register are incremented by one, two, or four depending on the size of the operand. If the Address register is A7 (SP) 
then the address is incremented by two regardless of the operand size, because the Stack Pointer must be kept on a 
word boundary. Figure 7-21 illustrates the Address register indirect with postincrement mode. 

Address register indirect with predecrement. This addressing mode is similar to the previous one vvith the exception 
that the contents of the specified Address register are decremented before they are used to reference the operand. 

Address Registers 

AO 
~----------------~ A1 
~--------------~ A2 
~--------------~ A3 
~--------------~~ A4 xxxxyyyy 

A5 
~----------------~ A6 
~----------------~ A7 
~--------------~ 

(In this example rrr = 100) 

EA = [An] 
Mode = 0102 
Register = n 

Memory 

l'--T"T""II"'"'T""T""'Ii""'T"-I} Operation word 

• • 
xxyyyy~1 I 

xxyyyy + 1 

xxyyyy + 2 

xxyyyy + 3 

Operand (1, 2, or 4 bytes) 

~ 

Byte 

Figure 7-20. MC68000 Address Register Indirect Memory Addressing 
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Address Registers 

AO 
~---------------I A1 
~-----------------I A2 

A3 ~---------------I 
~-----------------I A4 
~-----------------L~ A5 xxxxyyyy 

A6 

A7 ~---------------I 
~--------------.. 
(In this example rrrr = 101) 

EA = [An) 
[An) = [An) + N 
Mode = 011 2 
Register = n 

xxyyyy + 2 

xxyyyy + 3 

Memory 

I I 
~ 0 .. """ 11. 2. 0.4 bytesl 

~ 

Byte 

Figure 7-21. MC68000 Address Register Indirect with Postincrement Addressing 

Address Registers Memory 

AO 
A1 t-----~x:x:xX~y:y:y~y---:::~~---------------------Jt1~~nr.r.T;1 

A2 ~ ______________ -a .. 

A3 
~-----------------I A4 
~-----------------I 

A5~ ______________ ~ 

A6~ ______________ ~ 

A7 
~--------------.. 
(In this example rrrr = 001) 

[An) = [An) - N 
EA = [An) 
Mode = 1002 
Register = n 

I I 
I I 

xxyyyy - N ~ Operand (1, 2, or 4 bytes) 

xxyyyy - N + 1 

xxyyyy - N + 2 

xxyyyy - N + 3 

~ 

Byte 

Figure 7-22. MC68000 Address Register Indirect with Predecrement Addressing 

Again. if A7 is specified then the address is always decremented by two. Figure 7-22 illustrates the address register 
indirect with predecrement mode. 

Address register indirect with displacement. One word of extension is required with this addressing mode. The 
address of the operand is the sum of the contents of the specified Address register and the sign-extended 16-bit dis­
placement word contained in the extension word. Figure 7-23 illustrates the address register indirect with displace­
ment mode. 

Address register indirect with index and displacement. This addressing mode requires one word of extension which 
is formatted as shown in Figure 7-24. The operand address is the sum of the specified address register. the sign-extend 
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Address Registers 

.-
xxxxyyyy ~ 

(In this example rrr = 010) 

EA = [An] + dddd (sign extended) 
Mode = 101 2 
Register = n 

xxxxyyyy { 
+ssssdddd~ 

zzzzzzzz -.,.-..-

~ zzzzzzzz 

zzzzzzzz + 1 

zzzzzzzz + 2 

zzzzzzzz + 3 

Memory 

xfx1110111r1 r1r 

dd 

dd 

I I 
I 

!operation word 

Displacement word 

, 

~ 
Operand (1, 2, or 4 bytes) 

~ 

Byte 

Figure 7-23. MC68000 Address Register Indirect with Displacement Addressing 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 ...-Bit No. 

lPD-/-A""l-R-e-g-is-t-er-"I' IIW-rL"·I~o-'-lo-""lo-I"---D-is-p-la-ce-m-e-nt-l-n-te-g-e-r ---'1 

t ... ----------DisPlacement (-128 through + 127) 

Not used, always 0 

L-----------------------Index size: 
o = sign extended low-order 

integer in index register 
1 = long value in index 

register 

..... -------------------------Index register number 

..... ---------------------------- Index register indicator: 
o = data register 
1 = address register 

Figure 7-24. MC68000 Extension Word Format for Indexing 
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Address Registers Memory 

loperation word 
xx110r"r 

_ ....... fiiOo .......... lr 000 
p ......... ..I;L.......... Extension word 

d d 
~-"""'---I 

AO~ ______________ ~ 

A1 
~-----------------I 

A2~ ______________ ~ 

A3 
~-----------------I I I A4~ ______________ ~ 

A5~ ______________ ~~ 

A6~ _____ X_x_xx_y_y_y_y~~--I 

A7 
~------------~~ 

zzzzzz § Operand (1._2. or 4 bytes) 

zzzzzz + 1 

zzzzzz + 2 

zzzzzz + 3 

Data Registers 

OO~ _____________ ~ 

01 ppppqqqq 

02 
~--------------~~ 

03~ ______________ -4 

04 
~-----------------I 05~ _______ ~ 

06~ ______________ ~ 
07~ ______________ ~ 

~ 

Byte 

Index Size 

long (WfL = 1) short (W fL = 0) 

xxxxyyyy 
~--- + ssssssdd 
~--- + ppppqqqq 

zzzzzz 
or 

xxxxyyyy 
ssssssdd 
ssssqqqq 

zzzzzz 
_-_____ J' 

(In this example Of A = 0 and r2r2r2 = 001 therefore the 
index register is 01 ; r, r, r, = 11 0 which indicates A6 is used) 

EA = [An) + [Rn) + dd (sign extended) 
Mode = 1102 
Register = n, 

Figure 7-25. MC68000 Address Register Indirect with Index and Displacement .A.ddres~ing 

displacement integer in the least significant byte of the extension word, and the contents of the Index register. Address 
formation for the Address Register Indirect with Index and Displacement is illustrated in Figure 7-25. 

Implied Register Addressing 

There are some instructions that implicitly refer to a specific register. These registers are the Pro­
gram Counter (PCl. the Stack Pointer (SP-SSP or USPl. and the status register (SR). Table 7-5 
shows those instructions in which a register holding the operand is implied. 

Program Counter Relative Addressing 

There are two formats for PC-relative addressing. Both require one word of extension and both 
provide displacement. The second format includes indexing in additional to displacement. 
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Memory 

[PC]- 2 lope .. ,"," wend 
[PC] - 1 xixl1111110111o 

~[PC] dd 
OOPPPCCC ~ [PC] + 1 dd 

Extension word 
+ ssssdddd 

zzzzzz I I 
I I -c:... ''''''~ Operand (1, 2, or 4 bytes) 

zzzzzz + 1 

zzzzzz + 2 

zzzzzz + 3 ----EA = [PC] + dddd (sign extended) Byte 

Mode = 1112 
Register = 0102 

Figure 7-26. MC68000 Program Counter Relative Addressing 

Data Registers Memory 

DO 
~----------------~ Operation word 

01 
~----------------~ 

[PC] - 1 x x 1 1 1 1 1 

02 
~----------------~L.L-__ ---03 ppppqqqq 
~----------~~~ 04 

[PC] - 2 I 
[PC] ~ r r r ~ 00 0 
[PC] + 1 d d Extension word 

~--------------~~ 05 
~--------------~~ 06 
~------------~~ 07 
~----------~--~ 

+ ssssssdd 
+ ppppqqqq 

zzzzzz 

I I 
I I 

ZZZZZZ ~ Operand (1, 2, or 4 bytes) 

zzzzzz + 1 

zzzzzz + 2 

zzzzzz + 3 ---­Byte 

OOPPPCCC 
+ ssssssdd 

ssssqqqq 

zzzzzz 

'--.... _---- -----""./ 

(In this example Of A = 0 and rrrr = 011, therefore the selected index register is 03.) 

EA = [PC] + [Rn] + dd (sign extended) 
Mode=1112 
Register = 011 2 

Figure 7-27. MC68000 Program Counter-Relative with Index and Displacement Addressing 
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Byte ., ___ o_o_o_o_o_oo_o ____ ~ ___ o..;..:;.pe_r_an_d ___ ,,1 Extension word(s) 

or 
Word , ________ o .. p.e.ra.n_d _______ .... 

or 

Long Word t-____ ~O~p_e_ra-n~d~(h~i9 .. h-or-d-e-r h_a_lf~) ____ -I 
Operand (low order half) 

'-~--------------~~~--------------~~ Word 

EA = Not required; the operand is part of the instruction 
Mode =111 2 
Register = 1002 

Figure 7-28. MC68000 Immediate Data Addressing Extension Words 

The value contained in the Program Counter which is used in address calculation is the address of the extension 
word. 

PC-relative with displacement. This addressing mode generates an effective address by summing together the value 
of the Program Counter and the sign extended value of the extension word. Figure 7 -26 illustrates the PC-relative with 
displacement mode. 

PC-relative with index and displacement. This mode requires an extension word format similar to that required by 
the address register indirect with index and displacement mode (see Figure 7- 24). The address is calculated as shown 
in Figure 7-27. 

Immediate Data Addressing 

The operand for immediate data addressing is the value that immediately follows the instruction 
word. Thus. depending on the size of the operand. either one or two extension words will be 
necessary. as illustrated in Figure 7-28. 

THE MC68000 INSTRUCTION SET 

MC6S000 
IMMEDIATE 
DATA 
ADDRESSING 

Table 7-6 summarizes the instruction set of the MC6S000. Instruction object codes and execution times are 
given alphabetically in Table 7-7. Instruction object codes are given numerically in Table 7-S. 

When compared to other microprocessor instruction sets, the MC6S000 instruction set might seem quite large: 
over 300 instructions are listed in Table 7-6. However. if you examine this table closely. you will see that slight varia­
tions of the same instruction mnemonic may appear several times. These are different forms of the same instruction. 
There are actually 56 basic instructions provided in the MC68000. We have listed all the variations of a single 
instruction as though they were distinct instructions in order to make our description of the instruction set consistent 
with similar ones for other microprocessors. 

One of the most significant characteristics of the MC68000 instruction set is its orderliness. Despite its apparent 
complexity. this instruction set should be relatively easy to learn. since the variations are consistent and therefore pre­
dictable. These variations are due to the different addressing modes available and to the MC68000's ability to handle 
five different data types. Since there are really only 56 basic mnemonics that you must learn. it is more likely that you 
will use all of the instructions in the way that they were intended and thus obtain the full power of the instruction set. 

Let us examine the MC6S000 instruction set by instruction categories, as given in Table 7-6. 

One thing to keep in mind is that the MC68000 uses memory-mapped 1/0: therefore there are no separate 1/0 
instructions. The primary memory reference instructions will also be used to accomplish I/O. 

The basic format of all instructions is the same. The op-code for every instruction is one word. Additional extension 
words are required when the addressing modes specified use constants (immediate operands). absolute addresses. or 
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displacements. Accordingly. an instruction can be anywhere from 2 to 10 bytes in length. The number of bytes for 
each instruction is listed in Table 7-6. 

All of the primary memory reference instructions have byte, word, and long word versions. Secondary memory 
reference instructions can use most of the memory addressing modes. There are byte, word, and long word ver­
sions of most, but not all, of these instructions. 

The Move instruction provided by the MC68000 allows data movement between registers. from register to memory. 
from memory to register. and directly from one memory location to another. The Move Multiple Registers (MOVEM) 
instruction allows all of the MC68000 register contents to be quickly saved in memory or restored from memory. 

The MC68000 does not provide a block move instruction such as those available with the 8086 and the Z8000 
microprocessors. However, since the Move instructions can move data from one memory location to another. it is 
simple to move blocks of data by using the Move instruction in conjunction with the Decrement and Branch 
(DBcc) instruction. 

Both signed and unsigned multiply and divide instructions are included in the instruction set. In comparison. the 
Z8000 provided only unsigned multiplication and division. However. the Z8000 provides 32-bit multiplication and divi­
sion while the MC68000 can only multiply two 16-bit operands producing a 32-bit result. or divide a 32-bit dividend by 
a 16-bit divisor. The divide instructions reference the dividend in one of the Data registers: the divisor may 
reside in memory or in another Data register. Both the divisor and the dividend are treated as signed binary numbers 
in the DIVS instruction and as unsigned binary numbers in the DIVU instruction. After the division instruction has been 
executed. the quotient is returned in the low-order half of the dividend register and the remainder is returned in the 
high-order half of the dividend register. 

The multiply instructions also have only a word version: there is no long word version. As with the division. there 
is a signed (MULS) and unsigned (MULU) version of the multiply instructions. One of the operands must reside in the 
least significant half of a Data register while the other operand can be either a memory word. the lower half of another 
Data register. or can consist of immediate data included as part of the instruction. Upon completion of the multiply 
operation. the 32-bit product is returned in the source operand Data register. 

The MC68000 includes standard Jump and Jump to Subroutine instructions (JMP and JSR) which use specific 
addresses for loading the Program Counter. There are also the Branch Always and Branch to Subroutine instruc­
tions (BRA and BSR) which cause a transfer of program control relative to the Program Counter's current contents. 

The Trap instruction is the MC68000's equivalent of the System Call instruction provided by the Z8000. You 
will recall from the earlier discussion of the MC68000 exception processing logic that the Trap instruction automat­
ically switches the MC68000 into the Supervisor mode. which utilizes a separate Stack Pointer to isolate the operating 
system from application programs. 

The MC68000 also provides several instructions that are specifically designed to simplify implementation of 
higher level languages. These instructions are unique to the MC68000. The Link (LINK) and Unlink (UNLK) 
instructions can be used to maintain a linked list of local data and parameter areas on the Stack and thus 
simplify operations where there are frequent interrupts of nested subroutines. 

The Link instruction uses the System Stack Pointer (SFPl. one of the other Address registers. as a "frame pointer" and a 
displacement value. This instruction will typically be used at the beginning of a subroutine. The Link instruction first 
pushes the current value of the frame pointer onto the Stack. The current value of the Stack Pointer is then loaded into 
the frame pointer so that it now points to the top of the current Stack. Finally. the displacement value included with the 
Link instruction is used to decrement the System Stack Pointer so that it is displaced to clear a space in memory for 
storage of such things as local variables and parameters. These variables can then be accessed via the frame pointer. 
The Unlink (UNLK) instruction is used to clean up the Stack at the end of a subroutine and would be executed just prior 
to returning to a higher level subroutine. The Unlink instruction loads the System Stack Pointer with the contents of the 
frame pointer. The frame pointer is then loaded with the address pulled off the Stack. Thus. both the frame pointer and 
the System Stack Pointer will be restored to the values they held before the subroutine was called. 
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ABBREVIA TIONS 
Following are the abbreviations used for instruction formats and operation descriptions. 

addr 
An 
bitb 
bitl 
cc 

CCR 
count 
dadr 

dAn 
aDn 
data3 
data8 
data16 
data32 
On 
d8 
d16 
i 
jadr 
label 
madr 
reg-list 

rd 
rs 

Direct address (16 or 32 bits) 
Address registers. n = 0-7 (8. 16. or 32 bits. depending on the instruction size) 
Bit number of byte 0-7 
Bit number of long word 0-31 
Condition code: 

CC 
CS 
EO 
F 

GE 

GT 
HI 
LE 

LS 
LT 
MI 
NE 
PL 
T 

VC 
VS 

Carry clear 0100 
Carry set 0101 
Equal 0111 
False 0001 
Greater than 1100 
or equal 
Greater than 1110 
High 0010 
Less than or 1111 
equal 
Low or same 0011 
Less than 1101 
Minus 1011 
Not equal 0110 
Plus 1010 
True 0000 
No overflow 1000 
Overflow 1001 

Condition Code register - the low-order byte of the Status register 
Shift count (1-8) 
Destination address. which may be any of the following addressing modes: 

(An) 
(An)+ 

-(An) 

d16(An) 

d8(An.i) 
addr 

Register indirect 
Register indirect with 
postincrement 
Register indirect with 
predecrement 
Register indirect with 
displacement 
Register indirect. indexed 
Direct address 

Destination Address register. This form is used only when there are two An operands. 
Destination Data register. This form is used only when there are two Dn operands. 
3 bits of immediate data 
8 bits of immediate data 
16 bits of immediate data 
32 bits of immediate data 
Data register. n = 0-7 (8. 16. or 32 bits. depending on instruction size) 
8-bit address displacement. Required. even if zero on indexed instructions. 
16-bit address displacement 
Index register (An or Dn) 
Jump address - same as sadr except no (An)+ or -(An) 
Address label 
Multiple-instruction address - same as dadr except no (An)+ or -(An) 
Register list naming one or more registers. each item in the list separated by a comma. Items may 
have the form: 
Dn 
An 
rn l-rn 
Destination registers (dDn or dAn) 
Source register (sDn or sAn) 
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sadr Source address. which may be any of the following address modes: 

sAn 
sOn 
SR 
USP 
vector 
[[J] 

[ ] 

X 
x<y-z> 

+ 

x 

1\ 
V 
¥ 

(An) 
(An)+ 

-(An) 

d16(An) 

d8(An.i) 
addr 
label 
label (j) 

Register indirect 
Register indirect with 
postincrement 
Register indirect with 
predecrement 
Register indirect with 
displacement 
Register indirect. indexed 
Direct address 
Program relative 
Program relative. indexed 

Source Address register. This form is used only when there are two An operands. 
Source Data register. This form is used only when there are two Dn operands. 
Status register (16 bits) 
User Stack Pointer. Note that this is Register A7. 
Trap address vector. the memory location containing the address of the Trap routine. 
The contents of the memory location whose address is contained in the designated register 
(indirect memory addressing. or implied addressing). 
The contents of a register or memory location (register addressing or direct memory addressing). 

For example: 

[Dn] - [[An)) 

indicates that the contents of the memory location addressed by Register An are loaded into Dn. 
whereas: 

[On] - [An] 

indicates that the contents of Register An itself are loaded into On. 

Complement the value of x. 
Bits y through z of x. For example. On <0-7 > means the low-order byte of Dn. If the z term is omit­
ted. then only the bit selected by y is being referenced. Thus On <0> means the least significant 
bit of Dn. 

Add 
Subtract 
Multiply 
Divide 
Logical AND 
Logical OR 
Logical Exclusive-OR 
Equals 
Data moves in the direction of the arrow 
Data are exchanged between two locations 

INSTRUCTION MNEMONICS 

Table 7-6 summarizes the MC68000 instruction set. The MNEMONIC column lists the instruction mnemonic (e.g .. 
MOVE. ADD. JMP). The OPERAND(s) column lists the operands used with the instruction mnemonic. 

The fixed part of an assembly language instruction is shown in UPPER CASE. The variable part (register number. 
address. immediate data. etc.) is shown in lower case. 

The BYTES and CLOCK CYCLES are repeated in this table for reader convenience. Refer to "Instruction Object Code 
Tables" and the text accompanying Table 7-7 for a description of these entries. 
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STATUS 
The effect of instruction execution on the status bits is listed in Table 7-6. The status bits are: 

T Trace mode 
S Supervisor state 
X Extend bit 
N Negative (or Sign) bit 
Z Zero bit 
V Overflow bit 
C Carry bit 

The following symbols are used in the STATUS columns: 

X - flag is affected by operation 
(blank) - flag is not affected by operation 
1 - flag is set by operation 
o - flag is cieared by operation 

OPERATION PERFORMED 
This column shows the sequence of operations that occurs when the instruction is executed. (Instruction fetches are 
not shown. nor is the incrementing of the Program Counter for the purpose of instruction fetches.) Each operation is 
generally shown in the following form: 

destination source 

indicating that the source contents moves to the destination. replacing the destination contents. For example. the LEA 
instruction operation is: 

[An] jadr 

The effective address. which may be any of the jadr forms. is loaded into the specified Address register. 

Following the arrow sequence is a description of the operation in words. 

Alternate Mnemonics 
The MC68000 instruction set allows a choice of mnemonics for many operations. An "I" can be appended to the 
instruction mnemonic for an immediate operation. An "A" can be appended to the instruction mnemonic for an 
Address register operation. An ".S" can be appended to force a short-form conditional branch instruction. 

Mnemonic choices are summarized in Table 7-5 under these headings: 

PRIMARY MNEMONIC 
ALTERNATE MNEMONIC 

OPERAND 

DESCRIPTION 

Lists the nominal mnemonic form 
Lists the alternate choices that can be used in place of 
the primary mnemonic. 
Shows the operand category to which the primary and 
alternate mnemonics apply. xx is any allowed operand 
selection. 
Identifies the operation. 

For simplicity. only the primary mnemonics are shown in the instruction set tables that follow. 

Note that there are no mnemonic alternates for the instruction variations X (Extend). M (Multiple). and P (Peripheral 
Data). These suffixes cannot be omitted from their respective instruction mnemonics. 

Bear in mind that the assembler will select the "Quick" version of an instruction (e.g .. MOVEQ. AOOQ. SUBQ) whenever 
possible. Thus you can use the alternates for these mnemonics - the more general MOVE. ADD and SUB - without 
sacrificing any opportunities for code shortening. 

For example: MOVE.L #40.02 
is coded as: MOVEQ #40.02 

Another example: ADD #1. DO 
is coded as: ADOQ.W #1.00 
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MC68000 INSTRUCTION OBJECT CODE TABLES 

The object code for each MC68000 instruction is shown alphabetically by instruction mnemonic in Table 7-6. The 
object codes are listed in numerical order in Table 7-7. 

For instruction words which have no variations, object cades are represented as four hexadecimal digits; for example, 
4E71. 

For instruction words with variation in one of the two bytes, the object code is shown as a combination of lower case 
variables, hex digits, and binary digits. Each byte of an instruction word in Tables 7-7 and 7-8 is subdivided into two 
"nibble" fields (1 nibble = 4 bits). If a single digit appears in a nibble field, it is a hexadecimal digit. If four digits, or a 
combination of digits and lower-case variables (for example, 1 rrr), appear in a nibble field, each digit represents a single 
bit. 

Note that some lower-case variables are used to represent hexadecimal digits rather than binary digits. When four of 
these hexadecimal variable characters (for example xxxx or yyyy) are used to represent a 16-bit word, they will appear 
grouped together in the center of the 2-byte column comprising that word. 

INSTRUCTION EXECUTION TIMES 
Table 7-7 lists the instruction execution time in clock cycles. Each cycle = 125 nanoseconds (when fCLK =8.0 MHz). 

The abbreviations and notations used in the "clock cycles" column are defined as follows: 

+ea Effective address overhead. This is the additional time required to execute the instruction for addressing 
modes that take longer to execute than the nominal register indirect address. The following are the addi­
tional clock cycles required: 

N 

Addressing Mode 
(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,j) 
addr-16-bit 
addr-32-bit 
label 
label(j) 

Additional Clock Cycles 

o 
o 
2 
5 
7 
5 

10 
5 
7 

For shift instructions, the number of shifts. For move multiple instructions, the number of registers being 
moved. 
The first value is for branch or trap taken, the second is for branch or trap not taken. In the case of Bcc, 
the first of the latter numbers is for a two-byte instruction (8-bit displacement), and the second is for a 
four-byte instruction (16-bit displacement). In the case of DBcc, the first of the latter numbers is for 
branch not taken due to condition true, and the second is for branch not taken due to counter timeout. 
Indicates maximum value. 
The lower value is for condition false (byte set to all ones); the higher value is for condition true (byte 
cleared to all zeroes). 

The following abbreviations are used in Table 7-7: 

a Operand addressing mode (1 bit) 

bbb 
bbbbb 
ccc 

o = data register to data register 
1 = memory to memory 

3 bits of immediate data. In bit operations the bit numbers 0 - 7. 
Bit numbers a - 31. 
Shift count 000 = 8 shift,S 

001 = 1 shift 
010 = 2 shifts 
011 = 3 shifts 
100 = 4 shifts 
101 = 5 shifts 
110 = 6 shifts 
111 = 7 shifts 

ddd Destination register - same coding as rrr. 
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eeeee Source effective address (6 bits) 

Address Mode MODE/REGISTER 

(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,i) 
addr-16-bit 
addr-32-bit 
label 
label(j) 

010rrr 
011 rrr 
100m 
101 m 
110rrr 
111000 
111001 
111010 
111011 

[EXT] 

xxxx 
a iii w 000 xx 
pppp 
pppp qqqq 
xxxx 
a iii w 000 xx 

[EXT] One or two optional words of extension addressing that mayor may not appear, depending on the 
addressing mode (see the Addressing Modes description). 

ffffff 
gggggg 

hhhhhh 
iii 
jjjjjj 
kkkk 

mmmm 

Destination effective address - same as eeeeee except no label or label(j). 
Destination effective address but in a format with the MODE and REGISTER fields switched (e.g., 
(An)=rrrOl0). 
Multiple-destination effective address - same as ffffff except no (An)+ or -(An}.? 
Index register - same coding as rrr. 
Jump effective address - same as eeeeee except no (An)+ or -(An). 
Register mask list for predecrement mode, in the following format (a "1" selects the register): 

1514131211109876543210 

0001 D2D3D4D5D6D7AOAl A2A3A4A5A6A7 
Register mask list for non-predecrement modes, in the format (a "1" selects the register): 

1514131211109876543210 

A7 A6 A5 A4 A3 A2 A 1 AO 07 06 D5 04 D3 D2 01 DO 

pppp 16-bit address word or most Significant word of 32-bit address 
qqqq Least significant word of 32-bit address 
rrr Register 000 = DO or AO 

001 = Dl or Al 
010 = D2 or A2 
011 = 03 or A3 
100 = 04 or A4 
101 = D5 or A5 
110 = D6 or A6 
111 = D7 or A7 

sss Source register - same coding as rrr 
t Type of register 0 = On 

1 = An 
vvvv 4-bit vector 
w Index size. 0 = sign extended, low-order integer in index register 

1 = long word value in Index register 
xx 8-bit address displacement 
xxxx 16-bit address displacement 
yy 8-bit immediate data 
yyyy 16-bit immediate data or most significant word of 32-bit data 
zzzz Least significant word of 32-bit data 

INTERFACING THE MC68000 WITH 6800 PERIPHERALS 

Many peripheral components have been developed by Motorola and other manufacturers for the 8-bit 6800 
microprocessor. In general. any asynchronous peripheral device can be used with the MC68000 with only a small 
amount of external logic needed to meet the interface requirements (handshaking, etc.). However, the 6800-family 
components are based on synchronous read/write operations. This imposes certain constraints when you 
attempt to use a 6800 peripheral device with an asynchronous processor such as the MC68000. Obviously, it was 
in Motorola's interest to design the MC68000 so that it would be able to use both conventional asynchronous devices 
and the family of existing synchronous 6800 devices. Therefore they have included logic to simplify interfacing 6800 
peripheral devices. 
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Again, the MC68000 performs read/write operations asynchronously. The signals involved with these operations are 
the strobes (AS, UDS, lOS). the R/W signal. the Data Transfer Acknowledge signal (DT ACK). and of course the address 
(A 1-A23) and data (00-015) signals. 

Three additional signals are used to perform the synchronous read/write operations required by 6800 peripheral 
devices. These signals are Valid Memory Address (ViViA), Valid Peripheral Address (VPA), and Enable (E). Figure 
7-29 illustrates the timing of the synchronous read and write cycles. After the MC68000 has output the address on 
A 1-A23 and has asserted the Address Strobe (AS). external logic is expected to decode information on the address 
lines. If a 6800 peripheral device is being addressed, then the external logic should assert the VPA input to the 
MC68000. This causes the MC68000 to emulate the data transfer timing of the 6800 microprocessor. As a 
result, the transfer of data is synchronized with the clock signal E. The MC68000 will keep the address outputs 
valid throughout this cycle. 

During a read cycle, the 6800 peripheral device is expected to place data on tbe Data Bus when the E signal is high. 
Note that the Data Transfer Acknowledge (DT ACK) signal is not used since that signal implies an asynchronous transfer 
of data. Instead, the falling edge of E indicates that the data transfer (either read or write) has been completed. The 
MC68000 then proceeds to complete the cycle in the normal fashion by negating the strobe signals and returning the 
Address Bus to the high impedance state. 

You will note in Figure 7-29 that there is a difference in the total number of ClK cycles for the read and write 
operations. You should not infer from this that all 6800-type read operations take four more ClK cycles than 
write operations. That is only the case in the example shown, and has to do with the phase of E when t!:1e read 
or write operation was begun. In general. the E signal and the current MC68000 cycle state will not be synchronized 
at the outset of a 6800 reference cycle. This is because the E signal has a duty cycle of 40%: E is high for four ClK 
periods and low for six ClK periods. The MC68000 instruction cycles, on the other hand, vary in the number of ClK sig­
nal periods needed to execute. During the write cycle we have shown in Figure 7-29, the E Signal is in synchronization 
with the instruction execution cycle. Thus this particular write cycle takes the minimum possible number of ClK cycles 
to execute. Note that the MC68000 automatically inserts wait states after the VPA signal is input. The number of wait 
states inserted will depend on how much time is needed in order to synchronize with the signal. 

The VMA signal is output by the MC68000 in response to the VPA output. 

At the end of the read or write cycle, the 6800 peripheral device or the address decoding logic in the system must 
negate the VPA Signal within one clock period after the MC68000 negates AS. Otherwise, the MC68000 will assume 
that the following cycle is also supposed to be a 6800-type synchronous cycle. 

Figure 7-30 summarizes the timing constraints of 6800 peripherals. It includes the 6800 processor signals for 
reference so you can compare them with those associated with the MC68000. 

A SIMPLE MC68000/6800 INTERFACE EXAMPLE 
Figure 7-31 illustrates a simple interface of two 6800 peripheral devices in an MC68000-based system. In this 
example, the address region 000000 16 through 7FFFFF 16 (the lower eight megabytes) is used for asynchronous devices 
including memory. The upper eight megabytes is used, albeit inefficiently, for the two synchronous 6800 peripheral 
devices. The PIA (Peripheral Interface Adaptor) is assigned addresses 80000016 through BFFFFF 16, while the ACIA 
(Asynchronous Communications Interface Adaptor) is assigned addresses C0000016 through FFFFFF16. 

Interrupt request signals are connected directly to the IP'i:O and iPU input pins of the MC68000. Note that IPl2 
is tied high. In this example, an interrupt from the ACIA causes if5[Q to become active thus generating an interrupt of 
level 1 (the lowest priority). Both PIA interrupts are connected to IPL 1. When either of these becomes active, an inter­
rupt of level 2 is generated. If both the ACIA and the PIA request an interrupt simultaneously, an interrupt of level 3 
would be generated. 

For a detailed description of how the MC68000 responds to interrupt requests, refer to our earlier discussion of 
MC68000 exception processing. 

We have also included logic that will cause the MC68000 to use its autovector capability during response to an 
interrupt request from one of the 6800 family devices. Recall that if the VPA signal is asserted to the MC68000 dur­
ing an interrupt acknowledge cycle, then no byte of vector data need be supplied by the requesting device; instead, the 
MC68000 gets the appropriate autovector from the exception proceSSing vector table. 
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Standard Read Cycle .. I. 6800 Peripheral Read Cycle -,- 6800 Peripheral Write Cycle • I 

SO S2 S4 S6 ISO S2 S4 SW SW SW SW SW SW SW SW SW SW S6 ISO S2 S4 SW SW SW SW SW SW S6 ISO 

ClK 

A1-A23 

AS 

DM"/lDS 

..... 
R/IN ~ 
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OTACK 

00-015 

E 

VPA 

VMA 

Figure 7-29. MC68000 Synchronous Read/Write Timing for6aOO Peripherals 
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MC6800* Peripheral* 
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~~~~~~--~~ 

MC6800 
Write Data 

MC68000 
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Write Data 
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* Times are given for different MC6800 device clock frequencies 

Figure 7-30. MC68000/6800 Interface Timing Signal Summary 
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Table 7-4. MC68000 Instructions Which Use Implied Registers 

Instruction Implied Registerls) 

Branch Conditional (Bee), Branch Always (BRA) PC 

Branch to Subroutine (BSR) PC, SP 

Check Register against Bounds (CHK) SSP,SR 

T est Condition, Decrement and Branch (DBcc) PC 

Signed Divide (DIVS) SSP,SR 

Unsigned Divide (DIVU) SSP,SR 

Jump (JMP) PC 

Jump to Subroutine (JSR) PC,SP 

Link and Allocate (LINK) SP 

Move Condition Codes (MOVE CCR) SR 

Move Status Register (MOVE SRI SR 

Move User Stack Pointer (MOVE USP) USP 

Push Effective Address (PEA) SP 

Return from Exception (RTE) PC,SP,SR 

Return and Restore Condition Codes (RTR) PC,SP,SR 

Return from Subroutine (RTS) PC, SP 

Trap (TRAP) SSP,SR 

Trap on Overflow (TRAPV) SSP,SR 

Unlink (UNLK) SP 
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Table 7-5. MC68000 Instructions Which Use Implied Registers 

Primary Alternate 
Operand Description 

Mnemonic Mnemonic 

ADD. B ADDI. B dataS,xx Add Immediate Byte 
ADD.W ADD XX,XX Add Word 

ADDA.W xX,An Add Address Register Word 
ADDI.W data16,xx Add Immediate Word 

ADD. L ADDA.L xX,An Add Address Register Long 
ADDI.L data32,xx Add Immediate Long 

ADDQ.B ADD.B data3,xx Add Quick Byte 
ADDQ.w ADD data3,xx Add Quick Word 

ADD.W 
ADDQ.L ADD. L data3,xx Add Quick Long 
AND.B ANDI.B dataS,xx AND Immediate Byte 
AND.w AND XX,XX AND Word 

ANDI.w data16,xx AND Immediate Word 
AND.L ANDLL data32,xx AND Immediate Long 
Bcc Bcc.5 xx Conditional Branch Short 
CLR.w CLR xx Clear Word 
CMP.B CMPI.B dataS,xx Compare Immediate Byte 
CMP.W CMP XX,XX Compare Word 

CMPA.w xX,An Compare Address Register Word 
CMPI.W data16,xx Compare Immediate Word 

CMP.L CMPA.L xX,An Compare Address Register Long 
CMPI.L data32,xx Compare Immediate Long 

EOR.B EORI. B dataS,xx Exclusive OR Immediate Byte 
EOR.W EOR XX,XX Exclusive OR Word 

EORI.W data16,xx Exclusive OR Immediate Word 
EOR. L EORI. L data32,xx Exclusive OR Immediate Long 
MOVE. W MOVE XX,XX Move Word 

MOVEA.W xX,An Move Address Register Word 
MOVE. L MOVEA.L xX,An Move Address Register Long 
MOVEQ MOVE. L dataS,xx Move Quick (always Long) 
OR. B ORI. B dataS,xx OR Immediate Byte 
OR.W OR XX,XX OR Word 

ORI.W data16,xx OR Immediate Word 
OR. L ORI. L data32,xx OR Immediate Long 
SUB.B SUBI. B dataS,xx Subtract Immediate Byte 
SUBW SUB. XX,XX Subtract Word 

SUBA. W xX,An Subtract Address Register Word 
SUBIW data16,xx Subtract Immediate Word 

SUB.L SUBA. L xX,An Subtract Address Register Long 
SUBI. L data32,xx Subtract Immediate Long 

SUBQ. B SUB.B data3,xx Subtract Quick Byte 
SUBQ. W SUB data3,xx Subtract Quick Word 

SUBW 
SUBQ.L SUB. L data3,xx Subtract Quick Long 
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Table 7-6. MC68000 Instruction Set Summary 

Clock 
Status 

Mnemonic Operand(s) Bytes 
Cycles 

Operation Performed 

T S X N Z V C 

LEA jadr,An 2.4. 2(010)+ [An] - jadr 
or 6 Load effective address into specified address register. The addressing 

size is long. although the address loaded may be byte. word. or long. 
depending on how it is subsequently used.2 

MOVE.B (Anl.On \ 2 8(2/0) X X 0 0 [On<0-7>] - [[An]] 
Register indirect 

(An) +.On 2 8(210) X X 0 0 [On<0-7>] - [[An]]. [An] - [An] + 1 
Register indirect with postincrement 1 

-(Anl.On 2 10(2/0) X X 0 0 [An] - [An] - 1. [On<0-7>] - [[An)] 

d16(An),Dn I 
Register indirect with predecrement1 

4 12(3/0) X X 0 0 [On <0-7>] - [[AnI + d161 
sadr Register indirect with displacement 

d8(An.il.On 4 14(3/0) X X 0 0 [On<0-7>1 - [[An] + d8 + [ill 

a 
Register indirect. indexed 

I 

addr.On 40r 6 4(1/0)+ X X 0 0 [On<0-7>] - [addrl 
Dl Direct address 
:::I 

label.On 12(3/0) [On<0-7>1- [[PC] + d16] Q. 
I 4 X X 0 0 

4' Program relative 
3' labellil.On 4 14(3/0) [On<0-7>1 - [[PC] + d8 + [ill 
Dl 

-< Program relative, indexed 

..... 
&. 

3: Load byte to data register from memory location specified by any of 
~ 

3 the addressing modes above. Bits 8-31 of the data register are not 
..... S! affected . 

'< 
:Ill MOVE.B On(An) \ 2 9(1/1) X X 0 0 [[An]] - [On <0-7>1 
~ Register indirect 
~ I ; On,(An)+ 2 9(1/1) X X 0 0 [[An)) - [On <0-7>1. [AnJ - [AnI + 1 
:::I Register indirect with postincrement 1 n 
~ 

On,-(An) 2 9(1/1) X X 0 0 [Anl- [AnJ- 1, [[An]] - [On<0-7>1 
> dadr Register indirect with predecrement 1 

On,d 16(An) I 4 13(2/1) X X 0 0 [[AnJ + d16J - [On<0-7>1 
Register indirect with displacement 

On,d8(An, i) 4 15(211) X X 0 0 [[An] + d8 + [ill- [On <0-7>] 
Register indirect, indexed 

Dn,addr 40r 6 5(011)+ X X 0 0 [addrJ - [On<0-7>J 
Direct address 

Store byte from data register to memory location specified by any of 
the addressing modes above. 

MOVE.B sadr,dadr 2,4 5(1/1)+ X X 0 0 [dadrl - [sadrI 
6,8 Store byte from specified source memory location to specified 

or 10 destination memory location.1 

Notes: 

1. Postincrement and predecrement change by 1, unless the address register specified is the Stack Pointer (A 7), where the address is changed by 2 rather than 1 to keep the Stack Pointer 
on a word boundary. 

2. The effective address must be on an even word boundary (0000, 0002, 0004, etc.l. 
3. Postincrement and predecrement change by 2. 
4. Postincrement and predecrement change by 4. 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Cycles 
Operation Performed 

T S X N Z V C 

MOVE.w sadr. Dn 2.4 4(1/0)+ X X 0 0 [Dn<0-15>1 - [sadri 
or 6 Load word to data register from memory location. Bits 16-31 of the 

data register are not affected.2• 3 

MOVE.w sadr.An 2.4 4(110)+ [Anl<0-15>1 
or 6 [An <16-31 >1- [An<15>1 

Load word to address register from memory location. The sign is 
extended to all upper bits of the register.2• 3 

MOVE.w rs.dadr 2.4 5(0/1)+ X X 0 0 [dadrl - [rs<0-15>1 
or 6 Store word to memory location from data or address register.2• 3 

MOVE.w sadr.dadr 2.4 5(0/1)+ X X 0 0 [dadrl - [sadri 
6.8 Store word from source memory location to destination memory loca-

or 10 tion.2• 3 

MOVE.L sadr.Dn 2.4 4(110)+ X X 0 0 [Dn<0-31>1- [sadrl 
or 6 Load long word to data register from memory location.2• 3 

MOVE.L sadr.An 2.4 8(2/0)+ [An <0-31 >1 - [sadrI 

a or 6 Load long word to address register from memory location.2• 4 

" U, 
I'J 

II> MOVE.L rs.dadr 2.4 10(0/2)+ X X 0 0 [dadrl - [rs<0-31 >1 :::I 
CI. or 6 Store long word from data or address register to memory location.2• 4 
~ MOVE.L sadr.dadr 2.4 14(112)+ X X 0 0 [dadrl - [sadri 3' 
II> 6.8 Store long word from source memory location to destination memory 
-< or 10 location.2. 4 
s: MOVEM.w jadr.reg-list 4.6 8 + 4n(2 + n/O)+ [reg 1 <0-15>1 - [[Anll. [reg 1 < 16-31 >1 - [reg 1 < 15>1 CD 
3 or 8 [reg2<0-15>1- [[An + 2ll.[reg2<16-31>1- [reg2<15>1 g 

[reg3<0-15>1- [[An + 4ll.[reg3<16-31>1- [reg3<15>1 -< 
:II 

i-
ii 

[regn <0-15>1- [[An + 2n-2)IUregn<16-31 >1 - [regn<15>1 :::I 
n 
CD Load multiple words from sequential memory locations to specified 
('; registers. in order 00-07. AO-A 7. The sign is extended to all upper bits 0 

3- of the register.2 
S· 
c MOVEM.w (An)+.reg-list 4 8 + 4n(2 + n/O) [reg 1 <0-15>1 - [[Anll.[reg1 <16-31 >1- [reg 1 <l5>UAnl-CD e: [An + 21 

[reg2<0-15>1- [[AnlJ.[reg2<16-31 >1- [reg2<15>J.[Anl-
[An + 21 

[reg3<0-l5>I- [[AnIUreg3<16-31 >1- [reg 3 < 15>1. [Anl-
[An + 21 

[regn <0-15>1 - [[Anll. [regn< 16-31 >1 - [regn< 15>J.[Anl -
[An + 21 
Same as above except with postincrement.3 
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Mnemonic 

MOVEMW 

MOVEMW 

MOVEM.L 

MOVEP. W 

MOVEPW 

MOVEP.L 

MOVEP.L 

Operand(s) 

reg-list,madr 

reg-list,-(An) 

jadr,reg-list 

(An)+,reg-list 
reg-list.madr 

reg-list,- (An) 

d16(Anl,On 

On,d16(An) 

dos(Anl.Dn 

Dn,d16(An) 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Bytes 
Cycles 

Operation Performed 
T S X N Z V C 

4,6 4 + 5n(1/n)+ [(Anll - [reg 1 <0-15>] 
or 8 [(An + 211 - [reg2<0-15>] 

[(An + 411 - [reg3<0-15>] 

[(An + (2n-2)] - [regn<0-15>] 
Store multiple words to sequential memory locations from specified 
registers, in order 00-07, AO-A7.2 

4 4 + 5n(1/n)+ [An]- [An-2J.[[An11-lregn<0-15>] 

[An] - [An-2],[[An11 - [reg3<0-15>] 
[An] - [An-2],[[An11 - [reg2<0-15>] 
[An] - [An-2],[[An11 - [reg 1 <0-15>] 

Store multiple words to sequential memory locations with predecre-
ment to specified registers, in order A7-AO, 07-00.2, 3 

4,6 8 + 8n(2 + 2n/0) 
or 8 

4 8 + 8n(2 + 2n/0) } s.m." MOVEMW .. ~pt th .. _" 32 M' of tho ".;,te~ .re 
4,6 4 + lOn(l/n)+ moved.2,4 
or 8 

4 4 + lOn(l/n) 

4 16(4/0) [On<8-15>] - [[An] + d16],[An] - [An] + 2 
[On<0-7>] - [[An] + d16] 

Load peripheral data bytes from alternate memory locations to data 
register word. The address is a byte address.3 

4 18(2/2) [[An] + d16] - [On<8-15>],[An] - [An] + 2 
[[An] + d16] - [On<0-7>] 

Store peripheral data bytes from data register long to alternate 
memory locations. The address is a byte address.3 

4 24(6/0) [On<24-31»- [(An) + d16),[An)- [An) + 2 
[On<16-23>]- [[An] + d16],[An]- [An] + 2 
[On<8-15>] - [[An] + d16],[An] - [An] + 2 
[On<0-7>]- [[An) + d16] 

Load peripheral data bytes from alternate memory locations to data 
register long. The address is a byte address.3 

4 28(214) [[An] + d16] - [On <24-31 >],[An] - [An] + 2 
[[An) + d16)- [On < 16-23»,[An) -[An] + 2 
[[An] + d16] - [On<8-15>],[An] - [An] + 2 
[[An] + d16] - [On<0-7>] 

Store peripheral data bytes from data register long to alternate 
memory locations. The address is a byte address.3 
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Mnemonic 

ABeD 

AOO.B 

AOO.B 

AOO.w 

AOO.w 

ADD.W 

AOO.L 

AOO.L 

AOO.L 

AODX.B 

AOOX.w 

AOOX.L 

ANO.B 

AND.B 

Operand(s) 

-(sAnl.-(dAn) 

sadr.On 

On.dadr 

sadr.On 

sadr.An 

Dn.Dadr 

sadr.On 

sadr.An 

On.dadr 

- (sAn). -dAn) 

-(sAn).-(dAn) 

-(sAn).-(?An) 

sadr.On 

Dn.dadr 

Table 1-6 .. MC68000 Instruction Set Summary (Continued) 

Clock Status I 

Bytes 
Cycles 

Operation Performed 

T 5 X N Z V C 

2 19(3/1) X u x u X [sAnl - [sAnl - 1 
[dAnl - [dAnl-1 
[[dAn)] - [[dAn)] + [[sAn)] + X 

Add decimal memory byte to memory byte with carry (Extend bit). 
Both addresses are byte 1. 

2.4 4(110)+ X X X X X [On<0-7>1 - [On<0-7>1 + [sadri 
or 6 Add byte to data register from memory location. Bits 8-31 of the data 

register are not affected. 1 

2.4 9(1/1)+ X X X X X [dadrl - [dadrl + [On<0-7>J 
or 6 Add byte to memory location from data register. 1 

2.4 4(110)+ X X X X X [On<0-15>1 - [On<0-15>1 + [sadrJ 
or 6 Add word to data register from memory location. Bits 16-31 of the 

data register are not affected.2• 3 

2.4 8(1/0)+ [An <0-31 >1 - [An <0-31 >1 + [sadrl (sign extended) 

I 

or 6 Add word to address register from memory location. The sign of the 
memory word is extended to a full 32 bits for the operation.2• 3 

2.4 9(1/1)+ X X X X X [dadrl - [dadrl + [On<0-15>J 
or 6 Add word to memory location from data register.2. 3 

I 

2.4 6(1/0)+ X X X X X [On <0-31 >1 - [On <0-31 >1 + [sadri 
or 6 Add long word to data registers from memory location.2• 4 

2.4 6(1/0)+ [An <0-31 >1 - [An <0-31 >1 + [sadri 
or 6 Add long word to address register from memory location.2• 4 

2.4 14(1/2)+ X X X X X [dadrl - [dadrl + [On <0-31 >1 
or 6 Add long word to melnory locations from data register.2. 4 

2 19(3/1) X X X X X [sAnJ - [sAnJ - 1 
[dAnJ - [dAnl - 1 
[[dAn]] - [[dAn]] + [[sAn]] + X 

I 

Add memory byte to memory byte with carry (Extend bitl. Both 
addresses are byte. 1 

2 19(3/1) X X X X X [sAnJ - [sAnJ - 2 
[dAnJ - [dAnJ - 2 
[[dAn]] - [[dAn]] + [[sAn)] + X I 

Add memory word to memory word with carry (Extend bit). Both 
address are word.2• 3 

I 

2 32(5/2) X X X X X [sAnl - [sAnl - 4 
[dAnl - [dAnl - 4 
[[dAn]] - [[dAn]] + [[sAn]] + X 

Add memory long word to memory long word with carry (Extend bid. 

I 

Both addresses are long word.2. 4 

2.4 4(1/0)+ X X 0 0 [On<0-7>J - [On<0-7>J < [sadrJ 
or 6 AND byte to data register from memory location. Bits 8-31 of the data 

register are not affected.1 

I 2.4 9(1/1)+ X X 0 0 [dadrl - [dadrl < [On<0-7>J 
or 6 AND byte to memory location from data register.1 

I 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes 
Cycles 

Operation Performed 
T S X N Z V C 

ANO.w sadr,On 2,4 4(1/0)+ X X 0 0 [On<0-15>1 - [On<0-15>1 /\ [sadri 
or6 AND word to data register from memory location. Bits 16-31 of the 

data register are not affected.2, 3 

ANO.W On,dadr 2,4 9(1/1)+ X X 0 0 [dadrl - [dadrl < [On<0-15>1 
or 6 AND word to memory location from data register.2, 3 

ANO.L sadr,Dn 2,4 6(1/0)+ X X 0 0 [On <0-31 >1 - [On <0-31 >1 /\ [sadrI 
or 6 AND long word to data register from memory location.2, 4 

ANO.L On,dadr 2,4 14(1/2)+ X X 0 0 [dadr! - [dadrl < [On <0-31 >! 
or 6 AND long word to memory location from data register.2, 4 

CLR.B dadr 2,4 9(1/1)+ 0 1 0 0 [dadrl-O 
or 6 Clear memory byte to zeroes.1 

CLR.w dadr 2,4 9(1/1)+ 0 1 0 0 [dadrl -0 
CJ) or 6 Clear memory word to zeroes. 2, 3 
CD 
n CLR.L dadr 2,4 14(1/2)+ 0 1 0 0 [dadrl - 0 0 
:::I 

or 6 Clear memory long word to zeroes.2, 4 Co 
III 

-< CMP.B sa(Jr,On 2,4 4(1/0)+ X X X X [On <0-7> I - [sadrl 

...... 

3: or 6 Compare data register byte with memory byte and set condition codes 
(I 

accordingly. Register/memory data are not changed on any com-3 
~ pares. 1 
< 

&. 
(71 

:II CMP.w sadr,On 2,4 4(1/0)+ X X X X [On<0-15>! - [sadrl 
!. or 6 Compare data register word with memory word and set condition 
CD 
CD codes accordingly.2, 3 
:::I 

6(110)+ [An<0-15>1 - [sadri n CMP.w sadrAn 2,4 X X X X (I 

~ 
or 6 Compare address register word with memory word and set condition 

(I codes accordingly.2, 3 
3 CMP.L sadr,On 2,4 6(1/0)+ X X X X [On <0-31 >1 - [sadrI 0 

-< or 6 Compare data register with memory long word and set condition 
0 codes accordingly.2, 4 'C 
(I 

CMP.L Ql sadrAn 2,4 6(1/0)+ X X X X [An <0-31 >1 - [sadrI 

! or 6 Compare address register with memory long word and set condition 

n codes accordingly.2, 4 
0 CMPM.B (sAn)+,(dAn)+ 2 12(3/0) X X X X [[dAnl1 - [[sAn)) ~ 
5' [dAn! - [dAn! + 1 
c 

[sAn! - [sAn! + 1 (I 

!: Compare memory bytes and set condition codes accordingly. The 
memory data are not changed on any compares. 1 

CMPM.w (sAn)+,(dAn)+ 2 12(3/0) X X X X [[dAn)) - [[sAn)) 
[dAn I - [dAnl + 2 
[sAnl - [sAnl + 2 

Compare memory words and set condition codes accordingly.2, 3 

CMPM.L (sAn)+,(dAn)+ 2 20(5/0) X X X X [[dAn)) - [[sAn)) 
[dAnl - [dAnl + 4 
[sAn! - [sAnl + 4 

Compare memory long words and set condition codes accordingly.2, 4 

-- - .. -



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes 
Cycles Operation Performed 

T S X N Z V C 

OIVS sadr.On 2.4 < 158(1/0)+ X X X 0 [On<0-15>1 ~ [On <0-31 >1 +- [sadrI 
or 6 [On < 16-31 > I ~ remainder 

Divide signed numbers. Division by zero causes a TRAP. The source 
address is a word address.2• 3 

OIVU sadr.On 2.4 ~140(1/0)+ X X X 0 [On<0-15>1 ~ [On <0-31 >1 +- [sadrI 
or 6 [On<16-31 >1 ~ remainder 

Oivide unsigned numbers. Division by zero causes a TRAP. The source 
address is a word address.2• 3 

EOR.B On.dadr 2.4 9(1/1)+ X X 0 0 [dadrl ~ [dadrl ¥ [On<0-7>1 
or 6 Exclusive-OR byte to memory location from data register.1 

EORW On.dadr 2.4 9(1/1)+ X X 0 0 [dadr] ~ [dadr] ¥ [On<0-15>1 
or 6 Exclusive-OR word to memory location from data registers.2• 3 

Ul EORl On,dadr 2.4 14(1/2)+ X X 0 0 [dadrl ~ [dadr] ¥ [On<0-31 >1 CD 
() 

or 6 Exclusive-OR long word to memory location from data register.2. 4 0 
::I 

MUlS <70(1/0)+ 0 0 [On <0-31 >1 ~ [On<0-15>1 x [sadrI Q. sadr.On 2.4 X X III 

-< or 6 Multiply two 16-bit signed numbers. yielding a 32-bit signed product. 
s: The source address is a word address.2. 3 

.....,j 

u, 
(J) 

CD 
MUlU sadr.On 2.4 <74(210)+ X X 0 0 [On <0-31 >1 ~ [On<0-15>1 x [sadrI 3 

0 or 6 Multiply two 16-bit unsigned numbers. yielding a 32-bit unsigned pro--< 
::II duct. The source address is a word address.2. 3 
CD 

NBCO dadr 2.4 9(1/1)+ X U X U X [dadrl ~ 0 - [dadrl - X it 
Cil or 6 Negate decimal memory byte. This operation produces the tens com-
~ plement if X = 0 or the nines complement if X = 1. CD 

~ NEG.B dadr 2.4 9(111)+ X X X X X [dadrl ~ 0 - [dadrl 
CD or 6 Negate memory byte. 1 
3 
~ NEGW dadr 2.4 9(1/1)+ X X X X X [dadrl ~ 0 - [dadr] 
'< or 6 Negate memory word.2. 3 
0 
"C NEG.l dadr 2.4 14(112)+ X X X X X [dadrl ~ 0 - [dadrl CD 

~ or 6 Negate memory long word.2• 4 
!.. NEGX.B dadr 2.4 9(1/1)+ X X X X X [dadrl ~ 0 - [dadrl - X 
n or 6 Negate memory byte with Extend bit. 1 
0 

~ NEGXW dadr 2.4 9(1/1)+ X X X X X [dadrl ~ 0 - [dadr] - X 
5' or 6 Negate memory word with Extend bit.2. 3 c 
CD e: NEGX.l dadr 2.4 14(1/2)+ X X X X X [dadr] ~ 0 - Idadrl - X 

or 6 Negate memory long word with Extend bit.2. 4 
NOT.B dadr 2.4 9(1/1)+ X X 0 0 [dadrl ~ Idadr] 

or 6 Ones complement memory byte. 1 

NOTW dadr 2.4 9(111)+ X X 0 0 [dadrl ~ [dadrl 
or 6 Ones complement memory word.2. 3 

NOT.L dadr 2.4 14(1/2)+ X X 0 0 Idadr] ~ [dadr] 
or 6 Ones complement memory long word.2• 4 

ORB sadr,On 2,4 4(1/0)+ X X 0 0 [On<0-7>1 ~ [Dn<0-7>1 V [sadrl 
or 6 OR byte to data register from memory location. Bits 8-31 of the data 

register are not affected. 1 

ORB On.dadr 2.4 9(1/1)+ X X 0 0 Idadrl ~ [dadrl V [On<0-7>1 
or 6 OR byte to memory location from data register.1 
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Table 7-6, MC68000 Instruction Set Summary (Continued) 

C' k Status 
Mnemonic Operand(s) Bytes C o,c Operation Performed 

yc es T S X N Z V C 

ORW sadr,On 2. 4 4(1/0)+ X X 0 0 [On<0-15>1 - [On<0-15>1 V [sadrI 
or 6 OR word to data register from memory location, Bits 16-31 ofthe data 

register are not affected,2, 3 

ORW On,dadr 2,4 9(1/1)+ X X 0 0 [dadr] - [dadrJ < [On<0-15>J 
or 6 OR word to memory location from data register,2, 3 

ORL sadr,On 2,4 6(1/0)+ X X 0 0 [On <0-31 >1 - [On <0-31 >] V [sadrI 
or 6 OR long word to data register from memory location,2, 4 

ORL On,dadr 2,4 14(112)+ X X 0 0 [dadrl - [dadr] < [OnVO-31 >] 
or 6 OR long word to memory location from data register,2, 4 

SBeo -(sAnl,-(dAn) 2 19(3/1) X U X U X [sAn] - [sAn] - 1 
[dAn] - [dAn] - 1 
[[dAn]] - [[dAn]] - [[sAn]] - X 

C/l Subtract decimal memory byte from memory byte with carry (Extend 
~ bit), Both addresses are byte,1 

~ see dadr 2,4 9(111)+ [dadrJ - [all 1's if cc = TRUE 
91 or 6 [dadr] - all O's if cc = FALSE i Set status in memory byte, 1 

co SUB,B sadr,On 2,4 4(1/0)+ X X X X X [On<0-7>] - [On<0-7>] - [sadri 
5 or 6 Subtract memory byte from f)yte in data register, Bits 8-31 of the data 
-< register are not affected,1 

~ SUB.B On,dadr 2,4 9(1/1)+ X X X X X [dadrl - [dadrl - [On<0-7>] 
;; or 6 Subtract byte in data register from memory byte. 1 

iil SUBW sadr,On 2,4 4(1/0)+ X X X X X [On<0-15>1 - [On<0-15>] - [sadri 
~ or 6 Subtract memory word from word in data register. Bits 16-31 of the E data register are not aftected,2, 3 

5 SUBW sadrAn 2,4 8(1/0)+ X X X X X [An <0-31 >] - [An <0-31 >1 - [sadri (sign extended) 
-< or 6 Subtract memory word from address register contents. The sign of the 
o memory word is extended to a full 32 bits for the operation,2, 3 
"g 

~ SUBW On,dadr 2,4 9(1/1)+ X X X X X [dadrl - [dadr] - [On<015>] 
~ or 6 Subtract data register word from memory location word,2, 3 

R SUB,L sadr,On 2,4 6(1/0)+ X X X X X [On<0-31>]-[On<0-31>]-[sadr] 
g or 6 Subtract memory long word from data register contentS,2, 4 

g. SUB.L sadr,An 2,4 6(1/0)+ X X X X X [An<0-31>]-[An<0-31>]-[sadr] 
~ or 6 Subtract memory long word from address register contents.2, 4 

- SUB.L On,dadr 2,4 14(1/2)+ X X X X X [dadr] - [dadr] - [On <0-31 >] 
or 6 Subtract contents of data register from memory long word.2, 4 

SUBX,B -(sAn).-(dAn) 2 19(3/1) X X X X X [sAn] - [sAnl - 1 
[dAn] - [dAn] - 1 
[[dAn]] - [[dAn]] - [[sAn]] - X 

Subtract memory byte from memory byte with borrow (Extend bit), 
Both addresses are byte. 1 

SUBX.w -(sAnl,-(dAn) 2 19(3/1) X X X X X [sAn] - [sAnJ - 2 
[dAnl - [dAnl - 2 
[[dAn]] - [[dAn]] - [[sAn]] - X 

Subtract memory word from memory word with borrow (Extend bitl. 
Both addresses are word.2, 3 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Operation Performed 
Cycles 

T S X N Z V C 

2i SUBX.L -(sAnl.-(dAn) 2 32(5/2) X X X X X [sAnl - [sAnl - 4 
I» [dAnl - [dAnl - 4 
:::I [[dAn]] - [[dAn]] - [[sAn]] - X Co 

n~ Subtract memory long word from memory long word with borrow 

o 3 (Extend bitl. Both addresses are long word.2, 4 
~ ~ TAS dadr 2,4 11(111)+ X X 0 0 [dadr<7>1 - 1 :i" < 
; s: or 6 Test status of memory byte and set high-order bit to 1. 
Co CD 

TST.B dadr 2,4 4(1/0)+ X X 0 0 [dadrl - 0 -3 
0 or 6 Test status of memory byte. The byte value is not changed. -< 
:Jl TST.W dadr 2,4 4(1/0)+ X X 0 0 [dadrl - 0 
!!. or 6 Test status of memory word. The word value is not changed. CD 
(; TST.L dadr 2,4 4(1/0)+ X X 0 0 [dadrl - 0 :::I 
0 or 6 Test status of memory long word. The long word value is not changed. CD 

MOVEa data8,On 2 4(1/0) X X 0 0 [On<0-7>1- data8 
[On <8-32>1 - [On <7>1 

Load immediate data byte to data register. The sign is extended to all 
upper bits of the data register. 

MOVE.B data8,On 4 8(2/0) X X 0 0 [On<0-7>1 - data8 

-..I Load immediate data byte to data register. Bits 8-31 of the data 

&. register are not affected. 

en MOVE.B data8,dadr 4,6 9(111)+ X X 0 0 [dadrl - [data81 
or 8 Load immediate data byte into memory location.1 

MOVE.W data16,On 4 8(2/0) X X 0 0 [On<0-15>1 - data16 

3' Load immediate data word to data register. Bits 16-31 of the data 

3 register are not affected. 
CD 

'MOVE.W data16,An 4 8(2/0) [An <0-15>1 - data16 Co 
§" [An < 16-31 > I - [An < 15> I 
CD 

Load immediate data word to address register. The sign is extended to 
all upper bits of the register. 

MOVEW data 16,dadr 4,6 9(111)+ X X 0 0 [dadrl - data16 
or 8 Load immediate data word into memory location.2, 3 

MOVE.L data32,On 6 12(3/0) X X 0 0 [On <0-31 >1 - data32 
Load immediate data long word into data register. 

MOVE.L data32,An 6 12(3/0) [An <0-31 >1- data32 
Load immediate data long word into address register. 

MOVE.L data32,dadr 6,8 18(2/2)+ X X 0 0 [dadrl - data32 
or 10 Load immediate data long word into memory location.2, 4 

3' AOO.B data8,On 4 8(2/0) X X X X X [On<0-7>1 - [On<0-7>1 + data8 
3 Add immediate data byte to data register. Bits 8-31 of the data register 
CD are not affected. Co 
iii' 

AOO.B data8,dadr 4,6 13(2/1)+ X X X X X [dadrl - [dadrl + data8 i 
0 or 8 Add immediate data byte to memory location. 1 
~ AOOW data16,On 4 8(2/0) X X X X X [On<0-15>1 - [On<0-15>1 + data16 
~ Add immediate data word to data register. Bits 16-31 of the data 
CD 

rt)~ter are not affected. 



~ 
U1 
CD 

3" 
3 .. 
~ 
~. .. 
0 
og 

! 
;: 
0 
0 
;3. 
:i" 
c .. 
1: 

Mnemonic 

ADD.w 

ADD.w 

AOO.L 

ADD.L 

ADD.L 

AODQ.B 

ADDQ.B 

ADDQ.W 

ADDQ.W 

AODQ.W 

ADDQ.L 

ADDQ.L 

AOOQ.L 

AND.B 

AND.B 

ANO.w 

ANO.w 

AND.L 

AND.L 

Operand(s) 

data16,An 

data 16,dadr 

data32,On 

data32,An 

data32,dadr 

data3,Dn 

data3,dadr 

data3,Dn 

data3,An 

data3,dadr 

data3,Dn 

data3,An 

data3,dadr 

data8,Dn 

data8,dadr 

data16,On 

data 16,dadr 

data32,Dn 

data32,dadr 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Bytes Operation Performed 
Cycles 

T S X N Z V C 

4 8(210) [An <0-31> 1 - [An <0-31> 1 + data 16 (sign extended) 
Add immediate data word to address register. The sign of the data 
word is extended to a full 32 bits for the operation. 

4,6 13(211)+ X X X X X [dadr] - [dadrl + data16 

or 8 Add immediate data word to memory location.2, 3 

6 16(3/0) X X X X X [Dn<0-31 >1- [Dn<0-31 >1 + data32 
Add immediate data long word to data register. 

6 16(3/0) [An <0-31 >1 - [An <0-31 >1 + data32 
Add immediate data long word to address register. 

6,8 22(3/2)+ X X X X X [dadr] - [dadrl + data32 
or 10 Add immediate data long word to memory location.2, 4 

2 4(1/0) X X X X X [Dn<0-7>1- [On<0-7>1 + data3 
Add immediate three bits to data register byte. Bits 8-31 of the data 
register are not affected. 

2,4 9(1/0)+ X X X X X [dadrl - [dadrl + data3 

or 6 Add immediate three bits to memory byte. 1 

2 4(1/0) X X X X X [Dn<0-15>1 - [Dn<0-15>1 + data3 
Add immediate three bits to data register word. Bits 16-31 of the data 
register are not affected . 

2 4(1/0) [An<0-15>1 - [An<0-15>1 + data3 
Add immediate three bits to address register word. Bits 16-31 of the 
address register are not affected. 

2,4 9(1/1)+ X X X X X [dadrl - [dadrl + data3 

or 6 Add immediate three bits to memory word.2, 3 

2 8(1/0) X X X X X [Dn<0-31>1- [Dn<0-31 >1 + data3 
Add immediate three bits to data register long word. 

2 8(1/0) [An <0-31> 1 - [An <0-31> 1 + data3 
Add immediate three bits to address register long word. 

2,4 14(1/2) X X X X X [dadrl - [dadrl + data3 

or 6 Add immediate three bits to memory long word.2, 4 

4 8(2/0) X X 0 0 [Dn<0-7>1 - [Dn<0-7>1 A data8 
AND immediate data byte to data register. Bits 8-31 of the data 
register are not affected. 

4,6 13(2111+ X X 0 0 [dadrl - [dadrl A data8 
or 8 AND immediate data byte to memory byte. 1 

4 8(2/0) X X 0 0 [On<0-15>1 - [On<0-15>1 A data16 
AND immediate data word to data register. Bits 16-31 of the data 
register are not affected. 

4,6 13(2/1) X X 0 0 [dadrl - [dadrl A data16 
or 8 AND immediate data word to memory word.2. 3 

6 16(3/0) X X 0 0 [Dn<0-31>1- [Dn<0-31 >1 A data32 
AND immediate data long word to data register. 

6,8 22(3/2)+ X X 0 0 [dadrl - [dadrl < data32 
or 10 AND immediate data long word to memory.2, 4 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Operation Performed 
Cycles 

T S X N Z V C 

CMP.B data8.Dn 4 8(210) X X X X [Dn <0-7> 1 - data8 
Compare data register byte with immediate data byte and set condi-
tion codes accordingly. Register data are not changed on any com-
pares. 

CMP.B data8.dadr 4.6 8(2/0)+ X X X X [dadrl - data8 
or 8 Compare memory byte with immediate data byte and set condition 

codes accordingly.1 

CMPW data16.Dn 4 8(2/0) X X X X [Dn<0-15>1- data16 
Compare data register word with immediate data word and set condi-
tion codes accordingly. 

CMPW data16.An 4 8(210) X X X X [An < 0-15 > 1 - data 16 
Compare address register word with immediate data word and set 
condition codes accordingly. 

CMPW data 16.dadr 4.6 8(2/0)+ X X X X [dadrl - data 16 
or 8 Compare memory word with immediate data word and set condition 

codes accordingly.2. 3 

CMP.l data32.Dn 6 14(3/0) X X X X [Dn<0-31 >1 - daJa32 

3' 
Compare data register with immediate data long word and set condi-

3 
tion codes accordingly. 

...,J ~ CMP.l data32.An 6 14(3/0) X X X X [An<0-31>1- data32 Q. 

en ~ Compare address register with immediate data long word and set con-
o ~ dition codes accordingly. 

0 
'C CMP.l data32.dadr 6.8 12(3/0)+ X X X X [dadrl - data32 
~ 

! or 10 Compare memory long word with immediate data long word and set 
~ condition codes accordingly.2. 4 
n DIVS data16.Dn 4 :s; 162(210) X X X 0 [Dn<0-15>1 ~ [Dn<0-31 >1 -;- data16 
~ [Dn < 16-31 > 1 ~ remainder 
~. Divide signed numbers. Division by zero causes a TRAP. 
~ 

data16.Dn :s; 148(210) e: DIVU 4 X X X 0 [Dn<0-15>1 ~ [Dn<0-31 >1 -;- data16 
[Dn< 16-31 >1 ~ remainder 

Divide unsigned numbers. Division by zero causes a TRAP. 

EORB data8.Dn 4 8(2/0) X X 0 0 [Dn<0-7>1 ~ [Dn<0-7>1 ¥data8 
Exclusive-OR data byte to data register. Bits 8-31 of the data register 
are not affected. 

EOR.B data8.dadr 4.6 13(2/1)+ X X 0 0 [dadrl ~ [dadrl !oJ. data8 
I 

or 8 Exclusive-OR data byte to memory byte. 1 

EORW data16.Dn 4 8(210) X X 0 0 [Dn<0-15>1 ~ [Dn<0-15>1 !oJ. data16 
Exclusive-OR data word to data register. Bits 16-31 of the data register 
are not affected. 

EORW data 16.dadr 4.6 13(211)+ X X 0 0 [dadrl ~ [dadrl !oJ. data16 
or 8 Exclusive-OR immediate data word to memory word.2• 3 

EORl data32.Dn 6 16(3/0) X X 0 0 [Dn<0-31 >1 ~ [Dn>0-31 >1 ¥ data32 
Exclusive-OR immediate data long word to data register. 

EORl data32.dadr 6.8 22(3/2)+ X X 0 0 [dadrl ~.[dadrl ¥ data32 
or 10 Exclusive-OR immediate data long word to memory.2. 4 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock Status 
Mnemonic Operand(s) Bytes Cycles 

Operation Performed 

T S X N Z V C 

MULS data16,On 4 ::;74(210) X X 0 0 [On<0-311 >1 - [On<0-15>1 x data16 
Multiply two 16-bit signed numbers, yielding a 32-bit signed product. 

MULU data16,On 4 ~74(2/0) X X 0 0 [On <0-31 >1 - [On<0-15>1 x data16 
Multiply two 16-bit unsigned numbers, yielding a 32-bit unsigned pro-
duct. 

OR.B data8,On 4 8(2/0) X X 0 0 [On<0-7>1 - [On<0-7>1 V data8 
OR immediate data byte to data register. Bits 8-31 of the data register 
are not affected. 

OR.B data8,dadr 4,6 13(2/1)+ X X 0 0 [dadrl - [dadrl V data8 
or 8 OR immediate data byte to memory byte. 1 

ORW data16,On 4 8(210) X X 0 0 [On<0-15>1 - [On<0-15>1 V data16 
OR immediate data word to data register. Bits 16-31 of the data 
register are not affected. 

ORW data 16.dadr 4,6 13(2/1)+ X X 0 0 [dadrl - [dadrl V data16 
or 8 OR immediate data word to memory word.2, 3 

OR.L data32,On 6 16(3/0) X X 0 0 [On <0-31 >1 - [On <0-31 >1 V data32 
OR immediate data long word to data register. 

-...J a, 
--

§' OR.L data32,dadr 6,8 22(3/2)+ X X 0 0 [dadrl - [dadrl V data32 
3 or 10 OR immediate data long word to memory.2, 4 
11> 
c. 

SUB.B data8,On 4 8(2/0) X X X X X [On<0-7>1- [On<0-7>1 - data8 

~ Subtract immediate data byte from data register. Bits 8-31 of the data 
0 register are not affected. 
'0 
CD SUB.B data8,dadr 4,6 13(2/1)+ X X X X X [dadrl - [dadrl - data8 
~ or 8 Subtract immediate data byte from memory byte. 1 
11> 

n SUBW data16,On 4 8(2/0) X X X X X [On<0-15>1 - [On<0-15>1 - data16 
0 Subtract immediate data word from data register. Bits 16-31 of the 
~ 
;0' data register are not affected. 
c 
11> SUBW data 16,An 4 8(2/0) [An <0-31>1- [An<0-31>1- data16 (sign extended) e: Subtract immediate data word from address register. The sign of the 

data word is extended to a full 32 bits for the operation. 

SUBW data 16,dadr 4.6 13(2/1)+ X X X X X [dadrl - [dadrl - data16 
or 8 Subtract immediate data word from memory word.2, 3 

SUB.L data32,On 6 16(3/0) X X X X X [On <0-31 >1 - [On <0-31 >1 - data32 
Subtract immediate long word from data register contents. 

SUB.L data32.An 6 16(3/0) [An <0-31 >1 - [An <0-31 >1 - data32 
Subtract immediate data long word from address register. 

SUB.L data32,dadr 6.8 22(3/2)+ X X X X X [dadrl - [dadrl - data32 
or 10 Subtract immediate data long word from memory word.2, 4 

SUBQ.B data3,On 2 4(1/0) X X X X X [On <0-7>]- [On <0-7> I - data3 
Subtract immediate three bits from data register byte. Bits 8-31 of the 
data register are not affected. 

SUBQ.B data3.dadr 2.4 9(1/1)+ X X X X X [dadrl - [dadr] - data3 
or 6 Subtract immediate three bits from memory byte.1 
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T S X N Z V C 

SUBQ.W data3.0n 2 4(1/0) X X X X X [On<0-15>] - [On<O>] - data3 

3' Subtract immediate three bits from data register word. Bits 16-31 of 

3 the data register are not affected. 
CD SUBQ.W data3.An 2 4(1/0) [An<0-15>]- [An<0-15>] - data3 a. 
~. 

Subtract immediate three bits from address register word. Bits 16-31 
CD 

of the address register are not affected. 0 
"C SUBQ.W data3.dadr 2.4 9(1/1)+ X X X X X [dadr] - [dadr] - data3 CD .. or 6 Subtract immediate three bits from memory word.2. 3 
CD 

SUBQ.L data3.0n 2 8(1/0) X X X X X [On<0-31>]- [On<0-31>]- data3 n-
o Subtract immediate three bits from data register contents. 
3- SUBQ.L data3.An 2 8(1/0) [An<0-31>]- [An<0-31>]- data3 :i' 
c Subtract immediate three bits from address register contents. CD 
1: SUBQ.L data3.dadr 2.4 14(112)+ X X X X X [dadr] - [dadr] - data3 

or 6 Subtract immediate three bits from memory long word.2. 4 

-.J 

~ ~ 
BRA label 2 or 4 10(2/0) [PC] -label 

Branch unconditionally (short). 
~ 3: JMP jadr 2.4 4(110)+ [PC]- jadr o 'U ::t • 

or 6 Jump unconditionally. 

en 
N BSR label 2 or 10.8(1/0) [A7] - [A7] - 2 

4 10.12(210) [[A71l- [PC] 
VI [PC]-Iabel 
c 

Branch to subroutine (short). IT 
(; 

JSR jadr 2.4 14(1/2)+ [A7] - [A7] - 2 S. 
:i' or 6 [[A7]]- [PC] 
CD [PC]- jadr 
0 » Jump to subroutine. 
r 

16(4/0) [PC]- [[A7]] r RTS 2 .. 
[A7] - [A7] + 2 :::I 

a. 
l:I Return from subroutine 
m 

RTR 2 20(5/0) [SR<0-4>] - [[A7<0-4>ll ~ 
c: 

[A7] - [A7] + 2 l:I z [PC]- [[A7]] 
[A7] - [A71 + 2 

Restore condition codes and return from subroutine. 

01 
Bee label 2 or 10.8(1/0) [PCI -label 

iii 4 10.12(2/0) Branch if condition met. 
~ OBcc On.label 4 12(210) If cc then no further action. ~ 

g 10(210). [On<0-15>1 - [On<0-15>1 - 1 
0 14(3/0) If [On < 0-15 > I = -1 then no further action. 
0 [PCI -label :::I 
a. 

Test condition. decrement and branch. Loop until the specified condi-;:;: 
o· tion is true or until the loop count is exhausted. :::I 

--



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(sl Bytes 
Cycles 

Operation Performed 
T S X N Z V C 

MOVE.B sOn,dOn 2 4(1/01 X X 0 0 (dOn <07> 1 - [sOn <0-7> 1 
Move one byte of any data register to any data register. Bits 8-31 of 
the destination register are not affected. 

:D MOVEW rS,On 2 4(1/01 X X 0 0 [On<0-15>1 - [rs<0-15>1 
CD ca Move one word of any data or address register to any data register. 
~ Bits 16-31 of the destination register are not affected. 
!t 
21 MOVEW rS,An 2 4(1/0) [An<015>1 - [rs<0-15>1 
CD [An < 16-31 >]- [An<15>] ca 
i Move one word of any data or address register to any address register. 
!t The sign is extended to all upper bits of the address register. 
s:: MOVE.L rS,On 2 4(1/01 X X 0 0 [On <0-31> 1 - [rs<0-31 > 1 0 
< Move the contents of any data or address register to any data register. CD 

MOVE.L rS,An 2 4(1/01 [An<0-31>1- [rs<0-31 >1 
Move the contents of any data or address register to any address 
register. 

ABCO sOn,dOn 2 6(1/01 X u X U X [dOn <0-7>1 - [dOn <0-7>1 + [sOn <0-7>1 + X 
Add decimal source data register byte to destination data register byte 
with carry (Extend bitl. Bits 8-31 of the destination data register are 

" 
not affected. 

en AOO.B sOn,dOn 2 4(1/0) X X X X X [dOn <0-7>1 - [dOn <0-7>1 + [sOn <0-7>1 
w Add byte from data registers to data register. Bits 8-31 of the destina-

tion data register are not affected. 

AOOW rs,On 2 4(1/01 X X X X X [On<0-15>1 - [On<0-15>1 + [rs<0-15>1 
Add word from source register to data register. Bits 16-31 of the 
destination data register are not affected. 

AOOW rS,An 2 8(1/0) [An <0-15>1 - [An <0-15>1 + [rs<0-15>1 (sign extendedl 
:D Add word from source register to address register. The sign of the CD 
ca source word is extended to a full 32 bits for the operation. 0;' 

i AOO.L rS,On 2 8(1/01 X X X X X [On<0-31>1- [On <0-31 >1 + [rs<0-31 >1 
21 Add long word from source register to data register. 
CD ca AOO.L rS,An 2 8(1/0) [An <0-31 >1 - [An <0-31 >1 + rS<0-31 >1 0;' 

i Add long word from source register to address register. 

0 AOOX.B sOn,dOn 2 4(1/01 X X X X X [dOn <0-7>1 - [dOn <0-71 + [sOn <0-7>1 + X 
'C 

Add source data register byte to destination data register byte with CD 

~ carry (Extend bid. Bits 8-31 of the destination data register are not 
CD affected. 

AOOXW sOn. dOn 2 4(1/0) X X X X X [dOn<0-15>1- [dOn<0-15>1 + [sOn<0-15>1 + X 
Add source data register word to destination data register word with 
carry (Extend bit). Bits 16-31 of the destination data register are not 
affected. 

AOOKL sOn,dOn 2 8(1/0) X X X X X [dOn <0-31 >1- [dOn <0-31 >1 + [sOn <0-31 >1 + X 
Add source data register long word to destination data register long 
word with carry (Extend bitl. 

ANO.B sOn,dOn 2 4(1/01 X X 0 0 IdOn<0-7>1 - [dOn <0-7>1 < [sOn<0-7>1 
ANO byte from data register to data register. Bits 8-31 of the destina-
tion data register are not affected. 



';"l 
en 
~ 

:ID 
CD 
cg 
iii' 

i 
:II 
CD 

cg 

!a' 
~ 
0 
'CI 

~ 
~ 
CD 

R 
0 

~ 
:i" 
c 
CD 
~ 

Mnemonic 

ANO.w 

ANO.l 

CMP.B 

CMP.w 

CMP.w 

CMP.L 

CMP.l 

OIVS 

OIVU 

EOR.B 

EORW 

EaRL 

EXG 

MUlS 

MUlU 

ORB 

Operand(s) 

sOn.dOn 

sOn.dOn 

sOn.dOn 

rs.On 

rs.An 

rs.On 

rs.An 

sOn.dOn 

sOn.dOn 

sOn.dOn 

sOn.dOn 

sOn.dOn 

rs.rd 

sOn.dOn 

sOn.dOn 

sOn.dOn 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Status 
Bytes 

Clock 
Operation Performed Cycles 

T S X N Z V C 

2 4(1/0) X X 0 0 [dOn<0-15>1 - [dOn<0-15>1 < [sOn<0-15>1 
AND word from data register to data register. Bits 16-31 of the 
destination data register are not affected. 

2 8(110) X X 0 0 [dOn<0-31>1- [dOn <0-31 >1 < [sOn <0-31 >1 
AND long word from data register to data register. 

2 4(1/0) X X X X [dOn<0-7>1 - [sOn<0-7>1 
Compare data register bytes and set condition codes accordingly. 
Register data are not changed on any compares. 

2 4(1/0) X X X X [On<0-15>1 - [rs<0-15>1 
Compare data register word with register word and set condition 
codes accordingly. 

2 6(1/0) X X X X [An <0-15>1 - [rs<0-15> I 
Compare address register word with register word and set condition 
codes accordingly. 

2 6(1/0) X X X X [On <0-31 >1 - [rs<0-31 >1 
Compare data register with register and set condition codes accor-
dingly. 

2 6(1/0) X X X ·X [An <0-31> I - [rs<0-31 > 1 
Compare address register with register and set condition codes accor-
dingly. 

2 ~158(1/0) X X X 0 [dOn<0-15>1- [dOn <0-31 >1 + [sOn<0-15>1 
[dOn < 016-31> I - remainder 

Divide signed numbers. Division by zero causes a TRAP. 

2 ~140(1/0) X X X 0 [dOn<0-15>1- [dOn <0-31 >1 + [sOn<0-15>1 
[dOn<16-31>1- remainder 

Divide unsigned numbers. Division by zero causes a TRAP. 

2 4(1/0) X X 0 0 [dOn <0-7>1 - [dOn<0-7>1 ¥ [sOn <0-7>1 
Exclusive-OR byte from data register to data register. Bits 8-31 of the 
destination data register are not affected. 

2 4(110) X X 0 0 [dOn<0-15>1 - [dOn<0-15>1 ¥ [sOn<0-15>1 
Exclusive-OR word from data register to data register. Bits 16-31 of the 
destination data register are not affected. 

2 8(1/0) X X 0 0 [dOn <0-31 >1 - [dOn <0-31 >1 ¥ [sOn <0-31 >1 
Exclusive-OR long word from data register to data register. 

2 6(110) [rdl-~ [rsl 
Exchange the contents of two registers. This is always a long word 
operation. 

2 ::;,70(110) X X 0 0 [dOn <0-31 >1 - [dOn<0-15>1 x [sOn<0-15>1 
Multiply two 16-bit signed numbers. yielding a 32-bit signed product. 

2 ::;70(1/0) X X 0 0 [dOn<0-31>1- [dOn<0-15>1 x [sOn<0-15>1 
Multiply two 16-bit unsigned numbers. yielding a 32-bit unsigned pro-
duct. 

2 4(1/0) X X 0 0 [dOn<0-7>1- [dOn<0-7>1 V [sOn<0-7>1 
OR byte from data register to data register. Bits 8-31 of the 'destination 
dat register are not affected. 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Status 
Mnemonic Operand(s) Bytes Clock Operation Performed 

Cycles 
T S X N Z V C 

OR.W sOn.dOn 2 4(1/0) X X 0 0 [dOn<0-15>1 - [dOn<0-15>1 V [sOn<0-15>1 
OR word from data register to data register. Bits 16-31 of the destina-
tion data register are not affected. 

ORL sOn.dOn 2 8(1/0) X X 0 0 [dOn <0-31 >1 - [dOn <0-31 >1 V [sOn <0-31 >1 
OR long word from data register to data register. 

SBeO sOn.dOn 2 6(1/0) X U X U X [dOn<0-7>1- [dOn<0-7>1 - [sOn <0-7>1 - X 
Subtract decimal source· data register byte from destination data 
register byte with carry (Extend bit). Bits 8-31 of the destination data 
register are not affected. 

:a SUB.B sOn.dOn 2 4(1/0) X X X X X [dOn<0-7>1- [dOn<0-7>1 - [sOn <0-7>1 
CD Subtract data register bytes. Bits 8-31 of the destination data register ca 
iii' are not affected. ; 

SUB.W rs.On 2 4(1/0) X X X X X [On<0-15>1 - [On<0-15>1 - [rs<0-15>1 1 
CD Subtract register words. Bits 16-31 of the destination data register are 
ca not affected. iii' 

i SUBW rs.An 2 8(1/0) [An<0-15>1 - [An<0-15>1 - [rs<0-15>1 (sign extended) 
0 Subtract source register word from address register. The sign of the 
'C 
CD source word is extended to a full 32 bits for the operation. 
iil 
; SUB.L rs.On 2 8(1/0) X X X X X [On <0-31> I - [On <0-31> 1 - [rs<0-31 > 1 

-..J 

m 
U1 

n Subtract source register long word from data register. 
0 SUB.L rs.An 2 8(1/0) [An <0-31 >1 - [An <0-31 >1 - [rs<0-31 >1 a 
:i' Subtract source register long word from address register. 
c 
CD SUBX.B sOn.dOn 2 4(1/0) X X X X X [dOn<0-7>1 - [dOn<0-7>1 - [sOn <0-7>1 - X S: 

Subtract source data register byte from destination data register byte 
with borrow (Extend bit). Bits 8-31 of the destination data register are 
not affected. 

SUBXW sOn.dOn 2 4(1/0) X X X X X [dOn<0-15>1- [dOn<0-15>1 - [sOn<0-15>1 - X 
Subtract source data register word from destination data register 
word with borrow (Extend bit). Bits 16-31 of the destination data 
registers are not affected. 

SUBX.L sOn.dOn 2 8(1/0) X X X X X [dOn<0-31>1- [dOn<0-31>1- [sOn<0-31>1- X 
Subtract source data register long word from destination data register 
long word with borrow (Extend bit). 

CLRB On 2 4(1/0) 0 1 0 0 [On<0-7>1 - 0 
Clear data register byte to zeroes. Bits 8-31 of the data register are not 
affected. 

:a CLRW On 2 4(1/0) 0 1 0 0 [On<0-15> - 0 
CD Clear data register word to zeroes. Bits 16-31 of the data register are ca 
iii' not affected. 
i CLRL On 2 6(1/0) 0 1 0 0 [On<0-31>1-0 
0 
'C Clear data register to zeroes 
CD 
iil EXTW On 2 4(1/0) X X 0 0 [On<8-15>1 - [On<7>1 ; 

Extend sign bit of data byte to data word size. Bits 16-31 of the data 
register are not affected. 

EXT.L On 2 4(1/0) X X 0 0 [On < 16-31 > I - [On < 15> I 
Extend sign bit of data word to long data word size. 



'-I 
I 
0) 
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:D • = iii' 
i 
~ • = iii' 

i 
0 
'D • iil .. · 0 
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:::I 
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:::I 
c • e: 

Mnemonic Operand(s) 

NBCD On 

NEG.B On 

NEG,W On 

NEG.l On 

NEG.B On 

NEG,W On 

NEG.L On 

NOT.B On 

NOT.W On 

NOT.l On 

Sec On 

SWAP On 

TAS On 

TST.B On 

TST,W On 

TST.l On 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock Status 
Bytes. 

Cycles 
Operation Performed 

T S X N Z V C 

2 6(1/0) X U X U X [On<0-7>1 - [On<0-7>1 - X 
Negate decimal register byte. Bits 8-31 of the data register are not 
affected. 

2 4(1/0) X X X X X [On<O>1 - 0 - [On<0-7>1 
Negate register byte. Bits 8-31 of the data register are not affected. 

2 4(1/0) X X X X X [On<0-15>1 - 0 - [On<0-15>1 
Negate register word. Bits 16-31 of the data register are not affected. 

2 6(1/0) X X X X X [On <0-31 >1- 0 - [On <0-31 >1 
Negate register long word. 

2 4(1/0) X X X X X [On<0-7>1 - 0 - [On <0-71 - X 
Negate register byte with Extend. Bits 8-31 of the data register are not 
affected. 

2 4(1/0) X X X X X [On<0-15>1 - 0 - [On<0-15>1 - X 
Negate register word with Extend. Bits 16-31 of the data register are 
not affected. 

2 6(1/0) X X X X X [On <0-31 >1 - 0 - [On <0-31 >1 - X 
Negate register long word with Extend. 

2 4(1/0) X X 0 0 [On<0-7>1 - [On<0-7» 
Ones complement data register byte. Bits 8-31 of the data register are 
not affected. 

2 6(1/0) X X 0 0 [On<0-15>1 - [On<0-15» 
Ones complement data register word. Bits 16-31 of the data register 
are not affected. 

I 2 6(1/0) X X 0 0 [On<0-3>1- [On <0-31 >1 
I 

Ones complement data register contents. 

2 9(1/1) [On<0-7>1 - all l's if cc = TRUE 
[On <0-1 >1 - all O's if cc = FALSE 

Set status in data register byte. 

2 4(1/0) X X 0 0 [On<0-15>1 -~ [On< 16-31 >1 
Exchange the two 16-bit halves of a data register. 

2 4(1/0) X X 0 0 [On<7>1-1 
Test status of data register byte and set bit 7 to 1. 

2 4(1/0) X X 0 0 [On<0-7>1 - 0 
Test status of data register byte. The data register contents are not 
changed. 

2 4(1/0) X X 0 0 [On<0-15>1 - 0 
Test status of data register word. The data register contents are not 
changed. 

2 4(1/0) X X 0 0 [On<0-31» - 0 
Test status of data register long word. The data register contents are 
not changed. 

--- ---



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Operation Performed 
Cycles 

T S X N Z V C 

ASL dadr 2,4 9(1/11+ X X X X X 15 0 
or 6 :r' 101 

Arithmetic shift left one bit of memory word. A zero is shifted into bit 
O. Bit 15 is shifted into both Carry and Extend bits.2, 3 

ASL.B count,On 2 6 + 2N(1/0) X X X X X 31 8 7 0 
On,dOn 2 6 + 2N(1/0) X X X X X I a-HJ 

Arithmetic shift left of data register byte. The number of shifts is 
specified as a direct count 11-8) or in a data register (1-63). Zeroes are 
shifted into bit 0. Bit 7 is shifted into both Carry and Extend bits. 

ASL.W count,On 2 6 + 2N(1/0) X X X X X 31 16 15 0 

...,j 

en ..... 

On,dOn 2 6 + 2N(1/0) X X X X X I 
a~ 

f--.{2J 

en 
:r 
;: 

As ASL.B except shifts are for one word. 

ASLL count,On 2 8 + 2N(1/0) X X X X X 31 0 
On,dOn 2 8 + 2N(1/0) X X X X X :r' t---m 

As ASL.B except shifts are for entire register. 

ASR dadr 2,4 9(1111+ X X X X X 
or 6 c5 -1: 

Arithemtic shift right one bit of memory word. Bit 15 is propagated to 
bit 14. Bit 0 is shifted into both Carry and Extend bits. 

ASR.B count,On 2 6 + 2N(1/0) X X X X X 31 8 7 ° On,dOn 2 6 + 2N(1/0) X X X X X 

I cs----l! 
Arithmetic shift right of data register byte. The number of shifts is 
specified as a direct count 11-8) or in a data register (1-63). Bit 7 is pro-
pagated to the right. Bit 0 is shifted into both Carry and Extend bits. 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Operation Performed 
Cycles 

T S X N Z V C 

ASRW count.Dn 2 6 + 2N(1/0) X X X X X 31 16 15 0 
Dn.dDn 2 6 + 2N(1I0) X X X X X I EJ -1: 

As ASRB except shifts are for one word. 

ASRL count.Dn 2 8 + 2N(1/0) X X X X X 31 0 
Dn.dDn 2 8 + 2N(1/0) X X X X X L5 -1: 

As ASRB except shifts are for entire register. 

LSL dadr 2.4 9(1/1)+ X X X 0 X 15 0 
or 6 :r" 10' 

Logical shift left one bit of memory word. A zero is shifted into bit O. 
Bit 15 is shifted into both Carry and Extend bits. (Note that LSL is iden-

-..J 
tical to ASL except for the Overflow condition.)2. 3 

m 
CXl 

en 
::r 

LSL.B count.Dn 2 6 + 2N(1I0) X X X 0 X 31 8 7 0 ;: 
n Dn.dDn 2 6 + 2N(1/0) X X X 0 X , a-HID 0 a 
:i' 
c 
CD 

S: 

Logical shift left of data register byte. The number of shifts is specified 
as a direct count (1-8) or in a data register (1-63). ZeroeS are shifted 
into bit O. Bit 7 is shifted into both Carry and Extend bits. 

LSL.W count.Dn 2 6 + 2N(1/0) X X X 0 X 31 16 15 0 
Dn.dDn 2 6 + 2N(1/0) X X X 0 X I £l ~ 

As LSL.B except shifts are for one word. 

LSL.L count.Dn 2 8 + 2N(1/0) X X X 0 X 31 0 
Dn.dDn 8 + 2N(1I0) X X X 0 X :r. t---[Q) 

As lSL.B except shifts are for entire register. 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Mnemonic Operand(s) Bytes Cycles Operation Performed 
T S X N Z V C 

LSR dadr 2,4 9(1/1)+ X X X 0 X 
or 6 ~ '1: 

Logical shift right one bit of memory word. A zero is shifted into bit 15. 
Bit 0 is shifted into both Carry and Extend bits. 

LSR.B count,On 2 6 + 2N(1/0) X X X 0 X 7 0 
On,dOn 2 6 + 2N(1/0) X X X 0 X I r-t: 

Logical shift right of data register byte. The number of shifts is 
specified as a direct count 11-8) or in a data register (1-63). Zeroes are 
shifted into bit 7. Bit 0 is shifted into both Carry and Extend bits. 

LSR.W countOn 2 6 + 2N(1/0) X X X 0 X 15 0 

'" 

On,dOn 2 6 + 2N(1/0) X X X 0 X I 

~ '1: 
m 
co 

en As LSRB except shifts are for one word. 
::T 

= n LSRL count,On 2 8 + 2N(1/0) X X X 0 X 31 0 
0 On,dOn 2 B + 2N(1/0) X X X 0 X I2l---f -1: ~ 
:i" 
c 
CD 
S. 

As LSRB except shifts are for entire register. 

ROL dadr 2,4 9(111)+ X X 0 X 15 0 
or 6 ~. 1 

Rotate left one bit of memory word. Bit 15 is shifted into bit 0 and into 
the Carry. 

ROL.B count,On 2 6 + 2N(1/0) X X 0 X 31 8 7 0 
On,dOn 2 6 + 2N(1/0) X X 0 X I I-'l 

EJ. t 
Rotate left of data register byte. The number of shifts is specified as a 
direct count (1-8) or in a data register (1-63). Bit 7 is shifted into bit 0 I 

and into the Carry. 



i" 
" o 

Mnemonic 

ROL.W 

ROL.L 

ROR 

ROR.B 

ROR.W 

ROR.L 

ROXL 

Operand(s) 

count.Dn 
On.dOn 

count.On 
On.dOn 

oadr 

count.On 
On.dOn 

count.On 
On.dOn 

count. On 
On.dOn 

dadr 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Bytes 
Cycles 

Operation Performed 
T S X N Z V C 

2 6 + 2N(1/0) X X 0 X 31 16 15 0 
2 6 + 2N(1/0) X X 0 X I I. 1 m1- t 

As ROL. B except shifts are for one word. 

2 8 + 2N(1/0) X X 0 X 31 0 
2 8 + 2N(1/0) X X 0 X ~. ~ 

As ROL.B except shifts are for entire register. 

2.4 9(111)+ X X 0 X 15 0 
or 6 r -~ 

Rotate right one bit of memory word. Bit 0 is shifted into bit 15 and 
into the Carry. 

2 6 + 2N(1/0) X X 0 X 31 8 7 0 
2 6 + 2N(1/0) X X 0 X I I-~ { 

Rotate right of data register byte. The number of shifts is specified as a 
direct count (1-8) or in a data register (1-631. Bit 0 is shifted into bit 7 
and into the Carry. 

2 6 + 2N(1/0) X X 0 X 31 16 15 0 
2 6 + 2N(1/0) X X 0 X I I -:rm f 

As ROR.B except shifts are for one word. 

2 8 + 2N(1/0) X X 0 X 31 0 
2 8 + 2N(1/0) X X 0 X r .~ 

As ROR.B except shifts are for entire register. 

2.4 9(111)+ X X 0 X 15 0 
or 6 r' ~ ~ 

Rotate left one bit of memory word and Extend one bit. Bit 15 is shifted 
into both Extend and Carry bits. The Extend bit is shifted into bit O. 



Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock Status 
Mnemonic Operand lsI Bytes 

Cycles 
Operation Performed 

T S X N Z V C 

ROXL.B count,On 2 6 + 2NI1/01 X X 0 X 31 8 7 0 
On,dOn 2 6 + 2NI1/01 X X 0 X I I-~ ~ I 

Rotate left of data register byte with Extend. The number of shifts is 
specified as a direct count 11-81 or in a data register 11-631. Bit 15 is 
shifted into both Extend and Carry bits. The Extend bit is shifted into 
bit O. 

ROXL. W count,On 2 6 + 2NI1/01 X X 0 X 31 16 15 0 
On,dOn 2 6 + 2NI1/01 X X 0 X I I II 

~ )l I 
As ROXL.B except shifts are for one word. 

ROXL.L count,On 2 8 + 2NI1/01 X X 0 X 31 0 
On,dOn 2 8 + 2NI1/01 X X 0 X r4 

~ ~ 
As ROXL.B except shifts are for entire register. 

""'" .!.J .... 
en ROXR dadr 2,4 911/11+ X X 0 X 15 0 
::T or 6 r . , 
= ~ ~ n 
0 
~ 

Rotate right one bit of memory word and Extend. Bit 0 is shifted into S· 
c both Extend and Carry bits. The Extend bit is shifted into bit 15. CD 
S: 

ROXR.B count,On 2 6 + 2N(1/0) X X 0 X 31 8 7 0 
On,dOn 2 6 + 2N(1/0) X X 0 X I I-I 

t ~ ~ 
Rotate right of data register byte with Extend. The number of shifts is 
specified as a direct count 11-8) or in a data register (1-63). Bit 0 is 
shifted into both Extend and Carry bits. The Extend bit is shifted into 
bit 7. 

ROXR.W count.On 2 6 + 2N(1/0) X X 0 X 31 16 15 0 
On,dOn 2 6 + 2N(1/0) X X 0 X I I • I 

~ ~ ~ 
As ROXR.B except shfits are for one word. 

2 8 + 2N(1I0) X X 0 X 31 
ROXRL count,On 8 + 2N(1/01 X X 0 X r 0 

On,dOn 2 

•• ~ ~ 
As ROXR.B except shifts are for entire register. 



Table 7-6. MC68000 Instructim Set Summary (Continued) 

Mnemonic Operand(s) Clock Status 
Operation Performed Bytes 

Cycles 
T S X N Z V C 

BTST bitl.On 4 10(2/0) X [l] [On<bitl>] 
On,dOn 2 6(1/0) X [l] - [dOn < [On] > ] 

Test a bit of a data register and reflect status in lero bit. The bit to be 
tested may be specified directly or in a data register (bit 0-31 in either 

case). 
BTST bitb,dadr 4,6 8(2/0)+ X [l] - [dadr < bitb >] 

or 8 
On,dadr 2,4 4(110)+ X [l] - [dadr<[On]>] 

or 6 Test a bit of a memory byte and reflect status in Zero bit. The bit to be 
tested may be specified directly or in a data register (bit 0-7 in either 
case). 1 

~ 
BSET bitl,On 4 12(2/0) X [l]- [On <bitl >1. [On<bitl>] - 1 

On,dOn 2 8(1/0) X [l] - [dOn < [On] > 1. [dOn < [On] > - 1 
3: bitb,dadr 4,6 13(2/11+ X [l] - [dadr < bitb > 1. [dadr < bitb >] - 1 
III 
:::I or 8 is' 
c On,dadr 2,4 9(1/11+ X [l] - (dadr<[OnJ>1. [dadr<[On]>] ~- 1 
! or 6 Test a bit as (BTST) and then set the specified bit. o· 

14(2/0) X [l] - [On<bitl>1. [On<bitl>] ~- 0 :::I BClR bitl.On 4 
I 

On,dOn 2 8(1/0) X [l)·- [dOn<[On»l. [dOn<[On») - 0 
bitb,dadr 4,6 13(2/1)+ X (ll - [dadr<bit b>1. (dadr <bit b>]-O 

-..J or 8 
.!.J On,dadr 2,4 9(1/11+ X [l] - (dadr«On]>l. [dadr«Onl>] - 0 
N or 6 Test a bit (as BTST) and then clear the specified bit. 

BCHG bitl.On 4 12(2/0] X [l] - [On <bitl>l. [On<bitl>]- [On<bitl>] 
On,dOn 2 8(1/0) X [l] - [dOn - [On] > 1. [dOn < [On] > 1. [dOn <[dOn] >l 
bitb,dadr 4,6 13(211) X [l] - [dadr < bitb > 1. [dadr < bitb >] - [dadr < bitb > ] 

or 8 
On,dadr 2,4 9(1/1) X [l] - [dadr<[OnJ>l. [dadr<[On]>]- [dadr<[OnJ>] 

or 6 Test a bit (as BTST) and then complement the specified bit. 

MOVE An,USP 2 4(1/0) [USP]- [An] 
Move contents of address register to User Stack Pointer. This is a pri-
vileged instruction. 

MOVE USP,An 2 4(1/0) [An] - [USP] 
Move contents of User Stack Pointer to address register. This is a pri-
vileged instruction. 

LINK An,d16 4 18(212) [A7] - [A7] - 2 

VI [[A711- [An] 
Dr [An] - [A7] 
n 

[A7] - [A7] + d16 ;I; 

Save the contents of the specified address register on the Stack, load 
I 

the current Stack Pointer to the specified address register, and set the 
Stack Pointer to point beyond the temporary stack storage area. 

PEA jadr 2,4 10(1/2)+ [A7] - [A7] - 2 
or 6 [[A711- jadr 

Compute long word address and push address onto the Stack.3 
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Mnemonic Operand Is) 

UWLK An 

CHK data16.0n 

On.dOn 

sadr.On 

TRAP vector 

TRAPV 

RTE 

MOVE On.CCr 

MOVE sadr.CCR 

MOVE data8.CCR 

MOVE On.SR 

MOVE sadr.SR 

MOVE data16.SR 

MOVE SR.On 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock 
Status 

Bytes Operation Performed 
Cycles 

T S X N Z V C 

2 12(3/0) [A7] - [An] 
[An] - [[A7]] 
[A7] - [A7] + 2 

Store the contents of the specified address register to the Stack 
Pointer (A 7) and load the specified address register from the stack. 

4 49(6/3). X U U U If [On <0-15>] < 0 or [On <0-15>] > data16 
12(210) then [PC] - CHK interrupt vector 

2 45(5/3), X U U U If [dOn <0-15>] < 0 or [dOn <0-15>] > [On <0-15>] 
8(1/0) then [PC] - CHK interrupt vector 

2.4 45(5/3). X U U U If [On<0-15>] <0 or [On<0-15>] > [sadr] 
or 6 8(1/0) then [PC] - CHK interrupt vector 

Check register against bounds and initiate Check interrupt processing 
if register word is out of bounds. The upper bound is a twos comple-
ment integer specified as immediate data. in a data register. or in a 
memory word.2. 3 

2 37(4/3) [A7] - [A7] - 2 
[[A711- [PC] 
[A7] - [A7] - 2 
[[A711- [SR] 
[PCl - vector 

Initiate exception processing through specified vector . 

2 37(5/3). If Overflow = 1 then TRAP 
4(110) Initiate exception processing through Overflow vector if the Overflow 

bit is on. 

2 20(5/0) X X X X X [SR] - [[A7]1. [A7] - [A7] + 2 
[PC] - [[A7]l. [A7] - [A7] + 2 

Return from exception. 

2 12(210) X X X X X [SR<0-4>] - [On <0-4] 
Move status data from data register to condition codes. 

2.4 12(210)+ X X X X X [SR<0-4>] [sadr<0-4>] 
or 6 Move status data from memory location to condition codes. The 

source address is a word address.2• 3 

4 16(3/0) X X X X X [SR<O-4>] - data8<0-4> 
Move immediate status data to condition codes. 

2 12(2/0) X X X X X X X [SR]- [On<0-15>] 
Moves status word from data register to Status register. This is a pri-
vileged instruction. 

2.4 12(2/0)+ X X X X X X X [SR] - [sadr] 
or 6 Move status word from memory location to Status register. This is a 

privileged instruction. The source address is a word address.2• 3 

4 16(3/0) X X X X X X X [SR] - data 16 
Move immediate status word to Status register. This is a privileged 
instruction. 

2 6(1/0) [On<0-15>] - [SR] 
Move contents of Status register to data register. Bits 16-31 of the 
data register are not affected. 



~ 
-..J 
~ 

C/I g 
Ii 
Ci 
0 a 
S· 
c .. e: 

3: 
iii' 
() 

!!. 
iii 
::I .. 
0 

Ii 
n 
~ 
2. 

Mnemonic Operand(s) 

MOVE SR.dadr 

AND.B dataS.SR 

AND.w data 16.SR 

EORB dataS.SR 

EORW data 16.SR 

ORB dataS.SR 

ORW data 16.SR 

NOP 

RESET 

STOP data16 

Table 7-6. MC68000 Instruction Set Summary (Continued) 

Clock Status 
Bytes 

Cycles Operation Performed 
T S X N Z V C 

2.4 9(1/1)+ [dadrl - [SRI 
or 6 Move contents of Status register to memory location. The destination 

address is a word address. 2. 3 

4 20(3/0) X X X X X [SR<0-7>1- [SR<0-7>1 /\ dataS 
AND immediate data byte to low-order Status register byte. 

4 20(3/0) X X X X X X X [SRI - [SRI ./\ data16 
AND immediate data with Status register. This is a privileged 
instruction. 

4 20(3/0) X X X X X [SR<0-7>1 - [SR<0-7>1 ¥ dataS 
Exclusive-OR immediate data byte to low-order Status register byte. 

4 20(3/0) X X X X X X X [SRI - [SRI ¥ data 16 
Exclusive-OR immediate data with Status register. This is a privileged 
instruction. 

4 20(3/0) X X X X X !SR<0-7>1- !SR<0-7>1 < dataS 
OR immediate data byte to low-order Status register byte. 

4 20(3/0) X X X X X X X [SRI - [SRI V data 16 
OR immediate data with Status register. This is a privileged instruc-
tion. 

2 4(110) No operation. 

2 132(1/0) Reset. This is a privileged instruction. 

4 S(2/0) X X X X X [SRI - data16 
Stop processor. This is a privileged instruction. 



Table 7-7. MC68000 Instruction Object Codes 

ABCO -(SAn),-(dAn) C 2 19(3/1) 
sOn,dOn C 2 6(1/0) 

AOO.B dataS,dadr 0 4,6,orS 13(2/1)+ 
dataS,On 0 4 S(2/0) 
On,dadr 0 2,4,or6 9(1/1)+ 
sadr,On 0 2,4,or6 4(1/0)+ 
sOn,dOn 0 2 4(110) 

AOO.L data32,An 0 6 16(3/0) 
data32,dadr 0 6, S,or 10 22(3/2)+ 
data32,On 0 6 16(3/0) 
Dn,dadr 0 2,4,or6 14(1/2)+ 
rS,An 0 2 S(1/0) 
rS,On 0 2 S(1/0) 
sadr,An 0 2,4,or6 6(1/0)+ 
sadr,On 0 2,4,or6 6(1/0)+ 

AOO.W data16,An 0 4 S(2/0) 
data 16,dadr 0 4,6,orS 13(2/1) 

data16,On 0 4 8(2/0) 

On,dadr 0 2,4,or6 9(11)+ 
rS,An 0 2 S(1/0) 
rS,On 0 2 4(110) 
sadr,An 0 2,4,or6 8(1/0)+ 
sadr,On 0 2,4,or6 4(1/0)+ ...., AOOO.B data3,dadr 5 2,4,or6 9(1/0)+ 

.!.J data3,On 5 2 4(1/0) 
(J1 AOOQ.L data3,An 5 2 8(1/0) 

data3,dadr 5 2,4,or6 14(1/2)+ 
data3,On 5 2 B(1/0) 

AOOO.w data3,An 5 2 4(1/0) 
data3,dadr 5 2,4,or6 9(1/1)+ 
data3,On 5 2 4(1/0) 

AOOX.B -(sAn),-(dAn) 0 2 19(3/11 
sOn,dOn 0 2 4(1/0) 

AOOX.L -(sAn),-(dAn) 0 2 32(5/2) 
SOn,dOn 0 2 B(1/0) 

AOOX.w -(sAn),-(dAn) 0 2 19(3/1) 
sDn,dDn D 2 4(1/0) 

ANO.B dataS,dadr 0 4,6,orB 13(2/1)+ 
dataS,On 0 4 B(2/0) 
dataB,SR 0 4 20(3/0) 
Dn,dadr C 2,4,or6 9(1/1)+ 
sadr,On C 2,4,or6 4(1/0)+ 
sOn,dOn C 2 4(1/0) 

AND.L data32,dadr 0 6,B,orl0 22(3/2)+ 
data32,Dn 0 6 16(3(0) 
Dn,dadr C 2,4,or6 14(1/2)+ 
sadr,Dn C 2,4,or6 6(1/0)+ 
sOn,dOn C 2 B(1/0) 

AND.w data 16,dadr 0 4,6,orS 13(2/1)+ 
data16,Dn 0 4 B(2/0) 
data16,SR 0 4 20(3/0) 
On,dadr C 2,4,or6 9(1/1) 
sadr,Dn C 2,4,or6 4(1/0) 



-.oJ 
.:... 
0) 

ASl 
ASL.B 

ASL.l 

ASL.W 

ASR 
ASRB 

ASRl 

ASRW 

BCC 

BCHG 

BClR 

BCS 

BEQ 

BGE 

BGT 

BHI 

BlE 

BlS 

BlT 

BMI 

BNE 

BPl 

BRA 

BSH 

sOn,dOn 
dadr 
count,On 
On,dOn 
count,On 
On,dOn 
count,On 
On,dOn 
dadr 
count,On 
On,dOn 
count,On 
On,dOn 
count,On 
On,dOn 
label 
label 
bitb,dadr 
bitl,On 
On,dadr 
On,dOn 
bitb,dadr 
bitl,On 
On,dadr 
On,dOn 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 

label 
label 
label 
label 
label 
label 
label 
label 
bitb,dadr 
bitl,On 
On,dadr 
On,dOn 

Table 7-7. MC68000 Instruction Object Codes (Continued) 

2 
~~m6 

2 
2 
2 
2 
2 
2 

~~m6 
2 
2 
2 
2 
2 
2 
4 
2 

~~m8 
4 

~~m6 
2 

~~m8 
4 

~~m6 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 

~~m8 
4 

~~m6 
2 

4(1/0) 
9(1/1)+ 
6 + 2N(1/0) 
6 + 2N(1/0) 
8 + 2N(1/0) 
8 + 2N(1/0) 
6 + 2N(1/0) 
6 + 2N(1IO) 
9(1/1)+ 
6 + 2N(1/0) 
6 + 2N(1/0) 
8 + 2N(1/0) 
8 + 2N(1/0) 
6 + 2N(1/0) 
6 + 2N(1/0) 
10,12(2/0) 
10,18(1/0) 
13(2/11+ 
12(2/0) 
9(111)+ 
8(1/0) 
13(2/1)+ 
14(2/0) 
9(111)+ 
8(1/0) 
10,12(2/0) 
10,18(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0), 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10,12(2/0) 
10,8(1/0) 
10(2/0) 
10(110) 
13(2/1)+ 
12(2/0) 
9(1/1)+ 
8(1/0) 



Table 7-7. MC68000 Instruction Object Codes (Continued) 

Instruction Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Bytes Clock Cycles 

BSR label 6 4 10,12(2/0) 

label 6 2 10, B(1/0) 

BTST bitb,dadr 0 4,6,orB B(2/0)+ 
bitl,On 0 4 10(2/0) 

On,dadr 0 2,4,or6 4(1/0) 

On,dOn 0 2 6(1/0) 

BVC label 6 4 10,12(2/0) 

label 6 2 10, B(1/0) 
BVS label 6 4 10,12(2/0) 

6 2 10,B(1/0) 
CHK data16,On 4 4 49(6/3),12(2/0) 

On,dOn 4 2 45(5/3),B(1/0) 
sadr,On 4 2,4,or6 45(5/3)+,Bl/0) 

CLR.B dadr 4 2,4,or6 9(1/1)+ 
On 4 2 4(1/0) 

ClR.l dadr 4 2,4,or6 14(1/2)+ 

On 4 2 6(110) 

ClRW dadr 4 2,4,or6 9(1/1) 

On 4 2 4(1/0) 

CMP.B dataB,dadr 0 4,6,orB B(2/0) 
dataB,On 0 4 B(2/0) 
sadr,On B 2,4,or6 4(1/0)+ 

sOn,dOn B 2 4(1/0) 

" CMP.l data32,An B 6 14(3/0) 

.:.. data32,dadr 0 6, B, or 10 12(3/0)+ 

" data32,On 0 6 14(3/0) 

rS,An B 2 6(1/0) 
rS,On B 2 6(1/0) 

sadr,An B 2,4,or6 6(1/0)+ 

sadr,On B 2,4,or6 6(1/0)+ 

CMP.W data16,An B 4 B(2/0) 

data16,dadr 0 4,6,orB B(2/0)+ 

data16,On 0 4 B(2/0) 
rS,An B 2 6(1/0) 
rS,On B 2 4(1/0) 

sadr,An B 2,4, or6 6(1/0)+ 
sadr,On B 2,4,or6 4(1/0)+ 

CMPM. B (sAn)+,(dAn)+ B 2 12(3/0) 

CMPM. l (sAn)+,(dAn)+ B 2 20(5/0) 
CMPM.W (sAn) +, (dAn) + B 2 12(3/0) 
OBCC On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBCS On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBEQ On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBF On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBGE On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBGT On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBHI On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBlE On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBlS On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBlT On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBMI On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBNE On,label 5 4 12(2/0),10(2/0),14(3/0) 
OBPl On.label 5 4 12 (2/0), 1 0(2/0), 14(3/0) 



Table 7-7. MC68000 Instruction Object Codes (Continued) 

Instruction 

OBRA On.label 
OBT On.label 5 4 12(2/0).10(2/0).14(3/0) 
OVC On.label 5 4 12(2/0).10(2/0).14(3/0) 
OVS On.label 5 4 12 (2/0).10(2/0),14(3/0) 
DIVS data16,Dn 8 4 <162(2/0) 

sadr,On 8 2,4,or6 <15811/0)+ 
sOn,dOn 8 2 <158(1/0) 

OIVU data16.0n 8 4 <148(2/0) 
sadr.On 8 2,4.or6 <140(1/0)+ 
sOn,dOn 8 2 <140(1/0) 

EOR.B data8.dadr 0 4.6.or8 13(2/1)+ 
data8,On 0 4 8(2/0) 
data8,SR 0 4 20(3/0) 
On.dadr 2A.or6 9(1/1)+ 
sOn,dOn 2 4(1/0) 

EOR. L data32,dadr 6,8,or10 22(3/2)+ 
data32,On 6 16(3/0) 
Dn,dadr 2.4.or6 14(1/2)+ 
sOn,dOn 2 8(110) 

EOR. W data 16,dadr 4,6,or8 13(2/1)+ 
data16,Dn 4 8(2/0) 
data16,Sr 4 20(3/0) 
On.dadr 2,4,or6 9(1/1)+ 

...,J sOn,dDn 2 4(1/0) 

.!.J EXG An,An 2 6(1/0) 
CO An.On 2 6(110) 

On, An 
On,On 2 6(1/0) 

EXT.L On 2 4(1/0) 
EXTW On 2 4(1/0) 
JMP jadr 2,4.or6 4(1/0)+ 
JSR jadr 2.4.or6 14(1/2)+ 
LEA jadr.An 2.4.or6 2(0/0)+ 
LINK An.d16 4 18(2/2) 
LSL dadr E 2.4.or6 9(1/1)+ 
LSL.8 count. On E 2 6 + 2N(1/0) 

On.dOn E 2 6 + 2N(1I0) 
LSL.L count. On E 2 8 + 2N(1I0) 

On.dOn E 2 8 + 2N(1/0) 
LSL.W count.On E 2 6 + 2N(1/0) 

Dn.dOn E 2 6 + 2N(1/0) 
LSR dadr E 2.4.or6 9(1/1)+ 
LSR.B count. On 2 6 + 2N(1/0) 

On.dOn 2 6 + 2N(1I0) 
LSR.L count. On E 2 8 + 2N(1/0) 

On.dOn E A 2 8 + 2N(1/0) 
LSRW count. On E 4 2 6 + 2N(1/0) 

On.dOn E 6 2 6 + 2N(1/0) 
MOVE An.USP 6 2 4(1/0) 

data8.CCR F 4 16(3/0) 
data16.SR F 4 16(3/0) 
Dn.CCR C 2 12(2/0) 
On.SR C 2 12(2/0) 



Table 7-7. MC68000 Instruction Object Codes (Continued) 

Bytes Clock 

sadr,CCR 4 il~~llee_ 2,4,or6 12(2/0)+ 
sadr,SR : Ill.; ~ ~ ~II 2,4,or6 12(2/0)+ 
SR,dadr 2,4,or6 9(111)+ 
SR,On 4;;~C" 2 6(1/0) 
USP,An 

4 it"JJ 6 .' 
2 4(110) 

MOVE.S dataS,On 1.3_l 4 S(2/0) 
dataS,dadr 1.11./¥, 4,6,orS 9(1/1)+ 
On,dadr 1 ''>'''::001111 2,4,or6 5(0/1)+ 
sOn,dOn '1 0111 2 4(1/0) 
sadr,dadr 1"'" ee_ 2, 4, 6, S or 10 5(111)+ 
sadr,On 

~I~ti 
2,4,or6 4(1/0)+ 

MOVE. L An,dadr 2,4,or6 10(0/2)+ 
data32,An 6 12(3/0) 
data32,dadr 6,S,or 10 lS(2/2)+ 
data32,Dn 2 .' . 3 G;,~'< 6 12(3/0) 
On,dadr 2 W~, 00181 2,4,or6 10(0/2)+ 
rS,An 

2 ! .' :gg4 .;; 2 4(110) 
rS,On ~ lo~_. 2 4(110) 
sadr,An 2,4,or6 S (2/0) + 
sadr,dadr 2 ~>,y* ggee. 2,4,6, S, or, 10 14(112)+ 
sadr,On 2 ,'" OOee'" + 2,4,or6 4(1/0)+ 

MOVE.W An,dadr 3 II ooWij 2,4,or6 5(0/1)+ 
3 • ,gg7'''1441 data16,An 

'" • K~ P<0':;;; 
4 S(2/0) 

~ data 16,dadr 3 IIIgg 
11 fii~ 4,6,orS 9(111)+ 

...., data16,On 3. 3 .·C¢!+~ 4 S(2/0) 
<0 On,dadr 3 lliP;; Od'liil 2,4,or6 5(0/1)+ 

rS,An 3 IIIgg
4 III:; 2 4(1/0) 

rs,On 
3.011

1 2 4(1/0) 
sadr,An 3 '~Olee;m i 2,4,or6 4(1/0)+ 
sadr,dadr 3.ggee_ 2,4, 6, S, or 10 5(0/1)+ 
sadr,On 

11~1 
2,4,or6 4(1/0)+ 

MOVEM. L (An)+,reg-list 4 S + Sn(2 + 2n/0) 
jadr,reg-list 4,6,orS S + Sn(2 + 2n/0)+ 
reg-list, - (An) 4 4 + 10n(1/n) 
reg-list,madr 4,6,orS 4 + 10n(1/n)+ 

MOVEM. W (An) + ,reg-list 4 S + 4n(2 + n/O) 
jadr,reg-list 4 !C:!tf~ 10' . II 4,6,orS S + 4n(2 + n/O)+ 
reg-list, - (An) 

: liiil~:. 4 4 + 5n(1/n) 
reg-list,madr 4,6.orS 4 + 5n{1/n)+ 

MOVEP. L d16(An),On O~! 4'iII 4 24(6/0) 
On,d16(An) o ;1\1; C .1 4 2S(2/4) 

MOVEP. W d16(An),On °8°ill 4 16(4/0) 
On,d16(An) o •. . .. ~~ S 1.:,0.0.: 4 lS(2/2) 

MOVEQ dataS,On 

~ 11:eel 

2 4(110) 
MULS data16,On 4 <74(2/0) 

sadr,On 2.4,or6 <70(1/0)+ 
sOn,dOn C'IIQ'C.! 2 <70(1/0) 

MULU data16,On 

g~+~ 
4 <74(2/0) 

sadr,On 2,4,or6 <70(1/0)+ 
sOn,dOn 

4~00ff1 
2 <70(1/0) 

NBCO dadr 2,4,orS 9(1/1)+ 
On : lif) O~ff;" '~jl 2 6(1/0) 

NEG.B dadr 2.4.or6 9(1/1) ... 



...., 
00 o 

NEG.L 

NEG.w 

NEGX.B 

NEGX.L 

NEGX.w 

NOP 
NOT.B 

NOT.L 

NOT.W 

OR. B 

OR. L 

OR. W 

PEA 
RESET 
ROL 
ROL.B 

ROL.L 

ROL.W 

ROR 
ROR.B 

ROR.L 

RORW 

ROXL 
ROXL.B 

Instruction 

On 
dadr 
On 
dadr 
On 
dadr 
On 
dadr 
On 
dadr 
On 

dadr 
On 
dadr 
On 
dadr 
On 
data8.dadr 
data8.Dn 
data8.SR 
Dn..dadr 
sadr.Dn 
sDn.dOn 
data32.dadr 
data32.Dn 
Dn.dadr 
sadr.Dn 
sOn.dOn 
data 16.dadr 
data16.0n 
data16.SR 
Dn.dadr 
sadr.Dn 
sDn.dDn 
jadr 

dadr 
count. On 
On.dOn 
count. On 
Dn.dOn 
count. On 
Dn.dOn 
dadr 
count. On 
Dn.dDn 
count.Dn 
Dn.dDn 
count.On 
On.dOn 
dadr 
count. On 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
o 
o 
o 
8 
8 
8 
o 
o 
8 
8 
8 
o 
o 
o 
8. 
8 
8 
4 
4 

E 
E 
E 
E 
E 
E 

Table 7-7. MC6SOOO Instruction Object Codes (Continued) 

Bytes 

2 
~~m6 

2 
~~m6 

2 
~~m6 

2 
~~m6 

2 
~~m6 

2 
2 

2.4.or6 
2 

2.4.or6 
2 

2.4.or6 
2 

4.6.or8 
4 
4 

2.4.or6 
2.4.or6 

2 
6.8, or 10 

6 
2.4.or6 
2.4.or6 

2 
4.6.or8 

4 
4 

2.4.or6 
2.4.or6 

2 
2.4.or6 

2 
2.4.or6 

2 
2 
2 
2 
2 
2 

2.4or6 
2 
2 
2 
2 
2 
2 

2.4.or6 
2 

Clock Cycles 

4(1/0) 
14(1/2)+ 
6(1/0) 
9(111) 
4(1/0) 
9(111)+ 
4(110) 
14(112)+ 
6(1/0) 
9(1/1)+ 
4(1/0) 
4(1/0) 
9(1/1)+ 
4(1/0) 
14(1/2)+ 
6(110) 
9(1/1)+ 
6(1/0) 
13(2/1)+ 
8(2/0) 
20(3/0) 
9(111)+ 
4(1/0)+ 
4(1/0) 
22(3/2)+ 
16(3/0) 
14(1/2)+ 
6(1/0)+ 
8(1/0) 
13(2/1)+ 
8(2/0) 
20(3/0) 
9(1/1)+ 
4(110)+ 
4(110) 
10(1/2)+ 
132(1/0) 
9(1/1)+ 
6 + 2N(1/0) 
6 + 2N(1/0) 
8 + 2N(1I0) 
8 + 2N(1/0) 
6 + 2N(1/0) 
6 + 2N(1/0) 
9(1/1)+ 
6 + 2N(1/0) 
6 + 2N(1/0) 
8 + 2N(1/0) 
8 + 2N(1/0) 
6 + 2N(1/0) 
6 + 2N(1/0) 
9(1111+ 
6 + 2N(1/0) 



Table 7-7. MC68000 Instruction Object Codes (Continued) 

Instruction Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Bytes Clock Cycles 

On,dOn 2 6 + 2N(1/0) 

ROXl.L count.On 2 B + 2N(1/0) 
On,dOn 2 B + 2N(1/0) 

ROXl.W count, On 2 6 + 2N(1/0) 
On,dOn 2 6 + 2N(1/0) 

ROXR dadr 2,4,or6 9(1/1)+ 
ROXR.B count.On E 2 6 + 2N(1/0) 

On,dOn E 2 6 + 2N(1/0) 
ROXR.L count.On E 2 B + 2N(1/0) 

On,dOn E 2 B + 2N(1/0) 
ROXR.W count, On E 2 6 + 2N(1/0} 

On,dOn E 2 6 + 2N(1/0) 
RTE 2 20(5/0) 
RTR 2 20(5/0) 
RTS 2 16(4/0) 
SBeo -(sAn),-(dAn) 2 19(3/1) 

sOn,dOn 2 6(1/0) 
see dadr 2,4,or6 9(1/1)+ 

On 5 2 6,4(110) 
ses dadr 5 2,4,or6 9(1/1)+ 

On 5 2 6,4(1/0) 
SEQ dadr 5 2,4,or6 9(1/1)+ 

On 5 2 6,4, (1/0) 
-...I SF dadr 5 2,4,or6 9(111)+ 

~ On 5 2 6,4(1/0) 
SGE dadr 5 2,4,or6 9(111)+ 

On 5 2 6,4(1/0) 
SGT dadr 5 2,4,or6 9(111) 

On 5 2 6,4(1/0) 
SHI dadr 5 2,4,or6 9(111)+ 

On 5 2 6,4,(110) 
SLE dadr 5 2,4,or6 9(111)+ 

On 5 2 6,4(1/0) 
SLS dadr 5 2,4,or6 9(1/1)+ 

On 5 2 6,4(1/0) 
SLT dadr 5 2,4,or6 9(111)+ 

On 5 2 6,4(110) 
SMI dadr 5 2,4,or6 9(1/1)+ 

On 5 2 6,4(110) 
SNE dadr 5 2,4,or6 9(1/1)+ 

On 5 2 6,4(110) 
SPL dadr 5 2, 4,or 6 9(111)+ 

On 5 2 6,4(1/0) 
ST dadr 5 2,4,or6 9(1/1)+ 

On 2 6,4(110) 
STOP data16 4 B(2/0) 
SUB. B dataB,dadr 4,6,orB 13(2/1)+ 

dataB,On 4 B(2/0) 
On,dadr 2,4,or6 9(1/1)+ 
sadr,On 2,4,or6 4(1/0)+ 
sOn,dOn 2 4(1/0) 

SUB. L data32,An 6 16(3/0) 
data32,dadr 6,B,or 10 22(3/2)+ 



SUBW 

SUBQ.B 

SUBQ.L 

SUBQ.w 

SUBX.B 

" c» SUBX.L 
N 

SUBXW 

svc 

SVS 

SWAP 
TAS 

TRAP 
TRAPV 
TST.B 

TST.L 

TSTW 

UNLK 

data32,On 
On,dadr 
rS,An 
rS,On 
sadr,An 
sadr,On 
data1S,An 
data 1S,dadr 
data16,On 
On,dadr 
rS,An 
rS,On 
sadr,An 
sadr,On 
data3,dadr 
data3,On 
data3,An 
data3,dadr 
data3,On 
data3,An 
data3,dadr 
data3,On 
-(sAn), -(dAn) 
sOn, dOn 
-(sAn),-(dAn) 
sOn,dOn 
- (sAn), - (dAn) 
sOn,dOn 
dadr 
On 
dadr 
On 
On 
dadr 
On 
vector 

dadr 
On 
dadr 
On 
dadr 
On 
An 

Table 7-7. MC68000 Instruction Object Codes (Continued) 

16(3/0) 
2,4,orS 14(112)+ 

2 8(1/0) 
2 8(1/0) 

2,4,orS S(1/0)+ 
2,4,or6 6(110)+ 

4 8(2/0) 
4,6,or8 13(2/1)+ 

4 8(210) 
2,4,or6 9(1/1)+ 

2 8(1/0) 
2 4(1/0) 

2,4,orS 8(1/0)+ 
2,4,or6 4(1/0)+ 
2,4,or6 9(111)+ 

2 4(1/0) 
2 8(1/0) 

2,4,or6 14(1/2)+ 
2 8(1/0) 
2 4(1/0) 

2,4,or6 9(111)+ 
2 4(110) 
2 19(3/1) 
2 4(110) 
2 32(5/2) 
2 8(1/0) 
2 19(3/1) 
2 4(110) 

2,4,or6 9(111)+ 
2 6,4(1/0) 

2,4,orS 9(111)+ 
2 S,4(1/0) 
2 4(110) 

2,4,or6 11(111)+ 
2 4(1/0) 
2 36(4/3) 
2 37(5/3),4(1/0) 

2,4,or6 4(1/0)+ 
2 4(110) 

2,4,or6 4(1/0)+ 
2 4(1/0) 

2,4,orS 4(1/0)+ 
2 4(1/0) 
2 12(3/0) 



Table 7-8. MC68000 Object Codes in Numerical Order 

ORB data8,Dn 
ORB data8,dadr 
ORB data8,SR 
OR.w data16,on 
OR.w data 1 6,dadr 
OR.w data16,SR 
ORl data32,on 
ORl data32,dadr 
BTST on,don 
MOVEP.w d16{Anl.on 
BTST on,dadr 
BCHG on,don 
MOVEP.l d16{An),on 
BCHG on,dadr 
BClR on,don 
MOVEP.w on,d16(An) 
BClR on,dadr 
BSET on,don 
MOVEP.l on,d16{An) 
BSET on,dadr 
ANo.B data8,on 
ANo.B data8,dadr 
ANo.B data8,SR 
ANo.w data16,on 
ANo.w data 16,dadr 
ANo.w data16,SR 
ANo.l data32,on 
ANo.l data32,dadr 
SUB.B data8,on 
SUB.B data8,dadr 
SUB.w data16,on 
SUB.w data 16,dadr 
SUB.l data32,on 
SUB.l data32,dadr 
ADo.B dataS,on 
ADo.B dataS,dadr 
ADo.w data16,on 
Aoo.w data 16,dadr 
Aoo.l data32,on 
Aoo.l data32,dadr 
BTST bitl,on 
BTST bitb,dadr 
BCHG bitl.on 
BCHG bitb,dadr 
BClR bitl.on 
BClR bitb,dadr 
BSH bitl.on 
BSH bitb,dadr 
EOR.B dataS,on 
EOR.B dataS,dadr 
EORB dataS,SR 
EOR.w data16,on 
EOR.w data 16,dadr 
EOR.w data16,SR 
EORl data32,on 
EORl data32,dadr 
CMP.B dataS,on 
CMP.B dataS,dadr 
CMP.w data16,on 
CMP.w data 16,dadr 
CMP.l data32,on 
CMP.l data32,dadr 
MOVE.B son,don 
MOVE.B sadr,on 
MOVE.B dataS,on 
MOVE.B on,dadr 
MOVE.B sadr,dadr 
MOVE.B dataS,dadr 
MOVE.l rS,on 
MOVE.l sadr,Dn 
MOVE.l data32,Dn 
MOVE.l rS,An 
MOVE.l sadr,An 
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2 
2 
2 
2 
3 
3 
3 
3 4 
3~01ee 
3 . 7 

3." " ,',' , gOO t$$S:' 
3~mggee 
3' gll 
4 a 
40';00ft 
40::,; .," 4 
40' Olff 

40'~ B 
40':" <.;,1 Oft 
4C;h,fl C 
40,:; {llff 
4 B 
4, 10ee 
4' B 
4 l1jj 

4~,>~. 0 Q~ 
4~ ,':; ,00ff f!:ft:: 
42'"'/ 4 ~q 
42": ',Olff 
4!i:;'ir B 
4~<::,: 10ft 
44',i/ 0 
44~:·' :'" OOff 

4~'::i 4 
44 ,>;:, Olff 
44·, B 
44" 10ft 
44:. c 
440 ;':,:llee 
44··;' F .. 
46 00ij.d:4 
46 OOft f,{ff. 
46:,4~Q 
46, '; 01 ft "it> 
46. B . 
4ij, ~'10ff 
46,,', C 
4~> 'Jlee~~ 
4$. 'F . 

48 , 0 
4tf , OOft ftf!·:; 
4fit, , ' 4 Om: 
48 ,,'. 01jj . 

48:' . B 
48 .10hhhlitlh 
48," A 
4$' C 
48····. :'llh~ 
48': ,': E ',",. 
4A o~. 
4A OOft ffff' . 
41\ 4 Om 
4A Olff ffff 
41\ 8 Orrr 
4A . 1 Off ftff 
4A, C Orrr 
4A l1ff ffff· 
4C '10jj W.: 
4C A 9$5$ 
4C E Q'~s 
4C, l1jj ijjj:., 
4C E ~~.~ 
4E. 4 Ww 

Table 7-8. MC68000 Object Codes in Numerical Order (Continued) 

Instruction 

MOVE.L data32,An 
MOVE.L rS,dadr 
MOVE.L sadr,dadr 
MOVE.L data32,dadr 
MOVE.w rS,On 
MOVE.w sadr,On 
MOVE.w data16,On 
MOVE.W rS,An 
MOVE.w sadr,An 
MOVE.w data16,An 
MOVE.w rS,dadr 
MOVE.w sadr,dadr 
MOVE.w data16,dadr 
NEGX.B On 
NEGX.B dadr 
NEGX.w On 
NEGX.w dadr 
NEGX.L On 
NEGX.L dadr 
MOVE SR,On 
MOVE SR,dadr 
CHK On,dOn 
CHK sadr,On 
CHK data16,On 
LEA jadr,An 
CLR.B On 
CLR.B dadr 
CLR.w On 
CLR.w dadr 
CLR.L On 
CLR.L dadr 
NEG.B On 
NEG.B . dadr 
NEG.w On 
NEG.W dadr 
NEG.L On 
NEG.L dadr 
MOVE On,CCR 
MOVE sadr,CCR 
MOVE dataB,CCR 
NOT.B On 
NOT.B dadr 
NOT.w On 
NOT.w dadr 
NOT.L On 
NOT.L dadr 
MOVE On,SR 
MOVE sadr,SR 
MOVE data16,SR 
NBCO On 
NBCO dadr 
SWAP On 
PEA jadr 
EXT.w On 
MOVEM.w reg-list.madr 
MOVEM.W reg-list,-(An) 
EXT.L On 
MOVEM.L reg -list,madr 
MOVE. L reg-list.-(An) 
TST.B On 
TST.B dadr 
TST.w On 

, (EXT) TST.w dadr 
TST.L On 

{E~T) TST.L dadr 
TAS On 

f~T) TAS dadr 
MOVEM.W jadr,reg-list 
MOVEM.w (An) +,reg-list 
MOVEM. L (An)+.reg-list 
MOVEM. L jadr,reg-list 
MOVEM. L (An)+,reg-list 
TRAP vector 
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Table 7-8. MC68000 Object Codes in Numerical Order (Continued) 

7-85 

LINK 
UNlK 
MOVE 
MOVE 
RESET 
Nap 
STOP 
RTE 
RTS 
TRAPV 
RTR 
JSR 
JMP 
ADDQ.B 
ADDQ.B 
ADDQ.w 
ADDQ.w 
ADDQ.w 
ADDQ.l 
ADDQ.l 
ADDQ.l 
ST 
DBT 
ST 
SUBQ.B 
SUBQ.B 
SUBQ.w 
SUBQ.w 
SUBQ.w 
SUBQ.l 
SUBQ.l 
SUBQ.l 
SF 
DBF 
SF 
SHI 
DBHI 
SHI 
SlS 
DBlS 
SlS 
see 
DBee 
see 
ses 
DBes 
ses 
SNE 
DBNE 
SNE 
SEQ 
DBEQ 
SEQ 
sve 
Dve 
sve 
SVS 
DVS 
SVS 
SPl 
DBPl 
SPl 
SMI 
DBMI 
SMI 
SGE 
DBGE 
SGE 
SlT 
DBlT 
SlT 
SGT 
DBGT 

An.d16 
An 
An.USP 
USP.An 

data16 

jadr 
jadr 
data3.Dn 
data3.dadr 
data3.Dn 
data3.An 
data3.dadr 
data3.Dn 
data3.An 
data3.dadr 
On 
Dn.label 
dadr 
data3.Dn 
data3.dadr 
data3.Dn 
data3.An 
data3.dadr 
data3.Dn 
data3.An 
data3.dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 
dadr 
On 
Dn.label 



Table 7-8. MC68000 Object Codes in Numerical Order (Continued) 

7-86 

SGT 
SlE 
OBlE 
SlE 
BRA 
BRA 
BSR 
BSR 
BHI 
BHI 
BlS 
BlS 
Bee 
Bee 
Bes 
Bes 
BNE 
BNE 
BEQ 
BEQ 
Bve 
Bve 
BVS 
BVS 
BPl 
BPl 
BMI 
BMI 
BGE 
BGE 
BlT 
BlT 
BGT 
BGT 
BlE 
BlE 
MOVEQ 
OR. B 
OR.B 
OR. W 
OR.W 
OR.l 
OR.l 
OIVU 
OIVU 
OIVU 
SBe 
SBeo 
OR.B 
OR.W 
OR.l 
OIVS 
OIVS 
OIVS 
SUB.B 
SUB.B 
SUBW 
SUBW 

Instruction 

dadr 
On 
On.label 
dadr 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
dataS.On 
sOn.dOn 
sadr.On 
sOn.dOn 
sadr.On 
sOn.dOn 
sadr.On 
sOn.dOn 
sadr.On 
data 16.0n 
sOn.dOn 
-(sAn).-(dAn) 
On.dadr 
On.dadr 
On.dadr 
sOn.dOn 
sadr.On 
data16.0n 
sOn.dOn 
sadr.On 
rs.On 
sadr.On 
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THE 2901, 2901 A, AND 2901 B MICROPRO' 

The 2901, 2901A, and 29018 are identical except for execution speeds. The 
than the 2901 ; the 2901 B is about 25% faster than the 2901 A. For details see the de 

The 2901 provides a 4-bit slice through the arithmetic and logic unit of a Centl 
the Central Processing Unit's registers may also be generated out of 2901 Ie 

Figures 8-1 and 8-2 functionally illustrate 2901 logic. 

Figure 8-1 is a variation of Figure 4-3 from Volume 1 : it illustrates 2901 logic 
description given in Chapter 4 of Volume 1. Figure 8-2 is a more accurate repr 
paths. Note that all logic and data paths in Figure 8-2 are four bits wide. 

2901 logic consists of an arithmetic and logic unit. a local. two-part read/write mer 
and logic unit performs addition. subtraction. and the standard Boolean operati 
receives two inputs and generates one output. The local read/write memory storE 
results. In addition to the local read/write memory there is a "Q register" which is 
double-length operations. You may compare the 2901's 16 registers to a CPU VI 

usually implement a CPU's accumulator in the Q register. and you mayor may not i 
registers in local RAM (in general. however. you will implement these registers in 

You will frequently see obvious parallels between 2901 logic and CPU logic. You I 

understand 2901 logic; however. do not assume that these parallels translate intc 

The many data paths within the 2901 have been selected to link the ALU. local read 
output in a functionally efficient manner. Shift logic has been inserted at selected 
combination of data paths with ALU and shift logic minimizes the number of steps n 
cessing Unit functions. 

The few 2901 enhancements over the prior 6701 were designed specifically to redl 
implement typical CPU operations; and these few enhancements were sufficient t 

2901 MICROPROCESSOR SLICE PINS AND SIGNALS 
Pins and signal assignments for the 2901 are illustrated in Figure 8-3. We will 
each of these signals superficially before examining device operations in detail. 

We may divide 2901 signals into these three categories: 

1) Control inputs that are generated by a microinstruction 

2) Control signals connecting 2901 slices 

3) Data and status outputs 

First consider microinstruction-generated inputs. 

AO-A3 and 80-83 are two 4-bit addresses which select locations within the 29 

10-18 is a 9-bit instruction code which determines data flow and arithmetic/logic. 
9-bit control code can be divided into three 3-bit fields as follows: 

8 7 654 3 2 o '--BitNo. 

I I I I I I I I I ~Instruction coe 

'L4'-_ALU sourceid l ALU operation ALU destinatic 
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Chapter 8 
2900 SERIES CHIP SLICE PRODUCTS 

Chip slice products represent a radical departure from the single-chip Central Processing Units that we have de­
scribed up to this point. Chip slice products are. in fact. the building blocks for many Central Processing Units: they 
are also used to build intelligent controllers. 

There are·a variety of chip slice-type products on the market today; however, the 2900 series products are the 
clear leaders in terms of sales and customer acceptance. The 2900 series is an enhancement of the older 6700 
series chip slice products, which are not described since they are now obsolete. 

Chip slice products are described conceptually in Chapter 4 of Voume 1 (in fact, the "general case" product de­
scribed in Volume 1, Chapter 4 is a thinly disguised variation of the 2901 microprocessor slice). Therefoer, the 
discussion which follows assumes that you have a conceptual understanding of chip slice devices and 
microprogramming. If you do nto have this background, see Chapter 4 of Volume 1 before reading any further. 

In this chapter we will describe the following 2900 series parts: 

~ The 2901. 2901 A. and 2901 B microprocessor slices 

• The 2902A Look-Ahead Carry Generator 
• The 2903 Enhanced Microprocessor Slice 
• The 2909A. 2910. and 2911A Microprogram Sequencers 
• The 2930 and 2932 Program Control Units 

All 2900 series devices use bipolar LSI technology. 2900 series microinstruction execution times vary with manufac­
turer and device. Consult the data sheets at the end of this chapter for details. 

The primary source for the 2900 series chip slice products is: 

ADVANCED MICRO DEVICES 
901 Thompson Place 

Sunnyvale. California 94086 

Secondary sources for the 2900 series include: 

MOTOROLA SEMICONDUCTOR 
Box 20912 

Phoenix. Arizona 85036 

RAYTHEON SEMICONDUCTOR 
350 Ellis Street 

Mountain View. Caiifornia 94042 

NATIONAL SEMICONDUCTOR 
2900 Semiconductor Drive 

Santa Clara. California 95050 

FAIRCHILD CAMERA & INSTRUMENT CORPORATION 
464 Ellis Street 

Mountain View. California 94042 
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THE 2901, 2901A, AND 29018 MICROPROCESSOR SLICE 

The 2901, 2901A, and 29018 are identical except for execution speeds. The 2901A is approximately 30% faster 
than the 2901; the 2901 B is about 25% faster than the 2901 A. For details see the data sheets at the end of this chapter. 

The 2901 provides a 4-bit slice through the arithmetic and logic unit of a Central Processing Unit. Some or all of 
the Central Processing Unit's registers may also be generated out of 2901 logic. 

Figures 8-1 and 8-2 functionally illustrate 2901 logic. 

Figure 8-1 is a variation of Figure 4-3 from Volume·1; it illustrates 2901 logic in terms of the general chip slice 
description given in Chapter 4 of Volume 1. Figure 8-2 is a more accurate representation of 2901 logic and data 
paths. Note that all logic and data paths in Figure 8-2 are four bits wide. 

2901 logic consists of an arithmetic and logic unit a local. two-part read/write memory, and shift logic. The arithmetic 
and logic unit performs addition, subtraction, and the standard Boolean operations. The arithmetic and logic unit 
receives two inputs and generates one output. The local read/write memory stores data, which may be operands or 
results. In addition to the local read/write memory there is a "0 register" which is used as a temporary register or for 
double-length operations. You may compare the 2901's 16 registers to a CPU with 16 accumulators. You will not 
usually implement a CPU's accumulator in the 0 register, and you mayor may not implement a CPU's general purpose 
registers in local RAM (in general. however, you will implement these registers in .Iocal RAM). 

You will frequently see obvious parallels between 2901 logic and CPU logic. You may use these parallels to help you 
understand 2901 logic; however, do not assume that these parallels translate into CPU implementation. 

The many data paths within the 2901 have been selected to link the ALU, local read/write memory, data input and data 
output in a functionally efficient manner. Shift logic has been inserted at selected points along data paths so that the 
combination of data paths with ALU and shift logic minimizes the number of steps needed to create typical Central Pro­
ceSSing Unit functions. 

The few 2901 enhancements over the prior 6701 were designed specifically to reduce the number of steps required to 
implement typical CPU operations; and these few enhancements were sufficient to render the 6701 obsolete. 

2901 MICROPROCESSOR SLICE PINS AND SIGNALS 
Pins and signal assignments for the 2901 are illustrated in Figure 8-3. We will summarize functions performed by 
each of these signals superficially before examining device operations in detail. 

We may divide 2901 signals into these three categories: 

1) Control inputs that are generated by a microinstruction 
2) Control signals connecting 2901 slices 

3) Data and status outputs 

First consider microinstruction-generated inputs. 

AO-A3 and 80-83 are two 4-bit addresses which select locations within the 2901 local 16 X 4 bit RAM. 

10-18 is a 9-bit instruction code which determines data flow and arithmetic/logical operations within the 2901. This 
9-bit control code can be divided into three 3-bit fields as follows: 

8 7 654 3 2 o .--BitNo. 

I I I I I I I I I f.-,nstruction code 

~t L '4"'--___ ALU source identifier 
_ - ALU operation identifier 

ALU destination identifier 
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4-bit wide shifter 

t--4 bits wide_! 

I I 
I 
I 
I 

Data In 

A (Direct connection from A-A to Y-Y) 

Figure 8-1. The 2901 Microprocessor Slice 
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CL~~D-_-D--I 

D;,octtg~JklmRr1TfD~EJJ Data 01 
Inputs DO 

ControlD-------<D---t-~>_t-.... +__...J 
DE 

Figure 8-2. 2901 4-Bit Slice Logic 
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A3 
A2 
A1 
AO 
16 
18 
17 

RAM3 
RAMO 

(+5V)VCC 
F 

10 
11 
12 

CP 
Q3 
BO 
B1 
B2 
B3 

-.. -
--

--

.. 
1 -... 2 ... 3 -- 4 - 5 ... 6 -... 7 .. 8 -... 9 -

10 
11 - 12 - 13 - 14 

- 15 .. 16 -- 17 - 18 

- 19 
... 20 

40 -- .. 
1 -OE 18 

39 
.. - 2 -Y3 17 

38 - - - 3 --Y2 RAM3 

37 - Y1 nc 4 

36 YO RAMO -- ,- 5 

35 ... - 6 P (+5V) VCC 
34 - 7 -OVR F 

33 .. - ... 8 -C(N+4) 10 

32 ... - - 9 G 11 

2901 31 - .. 10 2901A -F3 12 

DIP 30 GND CP - 11 FLAT 

29 -- CN nc 12 PACK 

28 .. - - ... 13 - -14 Q3 

27 - ... 14 -15 BO 

26 ... 15 -13 B1 

25 .. - - 16 DO B2 

24 .. - .. 17 -01 B3 

23 02 QO -- - 18 

22 - ... 19 -03 03 

21 -- ~ .. 20 -QO 02 
01 .. 21 

Pin Name Description Type 

DO - 03 Data input Input 
YO - Y3 Data output Output. Tristate 
OE Output enable Input 
AO - A3 Local RAM A address Input 
BO - B3 Local RAM B address Input 
10 -18 Instruction code Input 
RAMO, RAM3 Local RAM shift logic I/O Bidirectional 
QO,Q3 Q register shift logic I/O Bidirectional 
CN Carry in Input 
C(N+4) Carry out Output 
G,P Carry generate/propagate Output 
F Zero status Output. Open collector 
F3 Sign status Output 
OVR Overflow status Output 
CP Clock Input 
VCC,GND Power, ground 

Figure 8-3. 2901 A Microprocessor Slice Pins and Signal Assignments 
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42 --
41 -
40 
39 -
38 -
37 --
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 --
25 --
24 --
23 --
22 --

.. ---.. -
-.. -.. 
... -

16 
AO 
A1 
A2 
A3 
OE 
Y3 
Y2 
Y1 
YO 
P 
OVR 
C(N+4) 

G 
F3 
GND 
CN 
14 
15 
13 
DO 



00-03 is a data input port. All data entering a 2901 must be input via DO-D3. We include these four pins among the 
microinstruction-generated group since a microinstruction could indeed generate immediate data (in macro assembly 
language terms) to be input via DO-D3. A more common alternative might be to generate this data out of an external 
buffer. using microinstruction bits to enable a single output as follows: 

2 to 4 
Decoder 

'----..... D3. D2. D1. DO I--..... ~ DO - D3 

Enable 1 
Buffer 1 

Enable 2 
Buffer 2 

Enable 3 
Buffer 3 

OE is an output enable control. When OE is low. the 2901 can output data via YO-Y3. When OE is high. YO-Y3 is 
floated. A microinstruction must anticipate microcycles within which data output is to occur and must generate a low 
OE control at this time. When no data output is anticipated YO-Y3 should be floated. 

Let us now examine data and status output signals. 

As indicated in the previous paragraph. a 2901 outputs the results of internal operations via the four pins YO-V3. 
In addition, separate Overflow (OVR) and Zero (F) status indicators are output. These indicators are used to gener­
ate standard Overflow and Zero statuses - as we will describe later. 

Carry Status logic and associated signals are not simple status outputs; they are more accurately represented as in­
terslice connecting signals. CN is the carry in used by addition and.!ubtra£,tion. C(N+4) is the carry out generated 
by addition and subtraction. Carry Look-Ahead logic uses the P and G signals, together with the 2902 Carry 
Generator. in order to compute the carry for an arithmetic operation occurring in parallel at two or more 2901 slices. 
This carry logic has been described in Volume 1. Chapter 4; it is summarized later in this chapter when we describe the 
2902 Carry Look-Ahead Generator. 

The 2901 has two sets of internal shift, logic. For multislice shifts. bits shifted -out from one slice must be shifted 
into the adjacent slice. QO and Q3 are the shift pins used by one set of shift logic; RAMO and RAM3 are the shift 
pins used by the other set of shift logic. 

CP is the master clock signal used to control and synchronize event sequences within the 2901. 
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2901 LOGIC 
We will now examine 2901 logic in detail. 

The best place to start understanding 2901 logic is at the read/write memory (local RAM): 

RAMO 
LO/RI 

./ 

?~ 

"--

""'--

'--
31N - 31N 
MUX - MUX 

-"-
~--\ 

~ 

I- 31N I- 31N .A-

I- MUX ~ MUX 

Z--r----r----r----r-Z 
ord A1 D--AW 

Add 

roG-
ress A2o--

A3D--

DO 01 02 03 ~BO} 
16-Bit by 4-Bit 2-Port RAM ~B1 BWord 

(Local RAM) r-o B2 Address 

C .... New> ~ ~ C .... New> r-o B3 <t<t<t<t m m all:C 

A--- -~ ~ -- A .~ B-i-- ----B 

CLOCK 
CP cr---t>- E 

A Latch 

C .... New> 
<t<t<t<t 

III/ 

B Latch 
H ...-E 

C· .... New> 
mmmal 

IIII 
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RAM3 
O/Li R 

l 
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The 2901 local RAM consists of sixteen 4-bit locations. 

You use pins AO-A3 to identify the location from which data will be output to the A latch. This may be illustrated as 
follows: 

Input 
address 
in range 

0- F16 

3 2 0 

IA31 A21 A1 lAO I Microinstruction 

X A Latch 

8-8 

This is the addressed location. 
It contains X16, which is output 
to the A latc h 



You use pins 80-83 to identify the 4-bit location from which data will be output to the 8 latch and into which data from 
the ALU will be written. This may be illustrated as follows: 

Input data = y 

~ 
DO 01 02 03 

80 81 

X 

This is the addressed location. 
Y can be written into it via 
DO - 03. X can be read out of 

{ 
BO} Input 
81 ~ddress 
82 In range 

0- F16 
83 

82 83 

8 Latch 

76543210 

I 831 82'1 81 I 80 I A3·1 A21 A 1 lAO I Microinstruction 

In the two illustrations above we show the A and B pin inputs coming from eight bits of a 
microinstruction. This data may come from the Instruction register as well. The selected 
microinstruction bit numbers are not significant. 

2901 MICRO­
INSTRUCTION 

The same address input at AO-A3 and 80-83 results in the same data out the A and 8 latches. 

In order to avoid race conditions which could result if you attempted to read and write at the same time, the 
clock signal CP controls event sequences as follows: 

CP 
__ I \ ...... _~r 

A and 8 Latch ____ [!!!~~a~~~:l .. __ o_at_a_s_t_ab_l_e_ .... [~E~E~~~ J __ o_a_ta_st_a_b_le __ L:: 
Write Location --y Data stable [?;:c;a;gTn; -y Data stable [-O:t; ;:;;-y--J ..... ____ ...-I. _______ J .... _____ ..... _______ ~ 

In the timing diagram above. the A and 8 latch will receive data from the local RAM location addressed by the A and 8 
address inputs. However. the A and 8 latch will only receive data from its associated RAM location while CP is high. As 
soon as CP goes low. and A and 8 latches hold whatever data they contained at the time CP made its high-to-Iow tran­
sition. 

Similarly. data at the DO-D3 inputs can be written into the local RAM location addressed by the 8 address inputs while 
CP is low. While CP is high. the addressed local RAM location will hold whatever data it contained when CP made its 
low-to-high transition; thus. the addresses can be changed. These internal RAM latches cause the RAM to appear to 
the user as a (Iow-to-high) edge-triggered RAM. 

8-9 



The 2901 local RAM generates a 4-bit word through selected programmable registers of a 
Central Processing Unit. But these sixteen local RAM locations do not represent the only place 
where CPU registers can be created; that would limit you to a combined total of sixteen program­
mable registers -which is frequently insufficient. 

2901 RAM 
AND CPU 
REGISTERS 

Using register terminology from Chapters 6 and 7 of Volume 1, Primary Accumulators will most likely occupy 2901 
local RAM locations; this is because Primary Accumulators are frequent sources and destinations for data operated on 
by the arithmetic and logic unit. 

Secondary Accumulators mayor may not occupy 2901 local RAM locations. Certainly if there are spare local RAM loca­
tions it would make sense to allocate these to Secondary Accumulators, or fixed, "non-programmable" constants. But if 
there are no spare local RAM locations, then Secondary Accumulators could easily occupy external read/write memory. 
A 2901 can access external memory to read or write data, but this has some associated restrictions - which are de­
scribed later in this chapter when we examine the 2903. 

Central Processing Unit registers that are normally used to compute memory addresses for the macroprogram mayor 
may not occupy 2901 RAM space. To the 2901 ALU, there is no difference between computing an address, or data. 
Adding an Index to a base address is the same as adding the contents of two Accumulators;· both are simple addition. 

For a simple Central Processing Unit address registers are likely to be located in the 2901 local RAM; then memory ad­
dress computations and data computations must occur sequentially. In more complex Central Processing Units, you 
will compute assembly language memory addresses using one of the special memory addreSSing devices - the 2930 
or the 2932. These devices contain their own registers; also, they compute memory addresses while the 2901 is per­
forming ALU operations in parallel. Alternatively, the deSigner may choose to use a second set of 2901 s to build a high­
speed memory addressing unit. 

In the preceding discussion we used the term "macroprogram memory address" to identify computer memory, in con­
trast to memory within Central Processing Unit logic, where microinstructions are stored. If you are confused by the 
difference between a macroinstruction memory address and a microinstruction memory address, refer again to Chapter 
4 of Volume 1. 

If a memory address register. such as an Index register, is also to serve as a general purpose Accumulator, it will have to 
be located in the 2901 local RAM. or in the external memory that accommodates Secondary Accumulators. 

The Instruction register will almost never be housed in local 2901 RAM. The macroinstruction object code will be held 
in an external buffer (the Instruction register) whose contents are decoded by logic external to the 2901 in order to trig­
ger execution of appropriate microinstruction sequences. We will describe this logic later. 

The 00-03 inputs to the local RAM come from a 3-IN MUX. The 3-IN MUX receives the arithmetic and logic unit 
output, which it can shift up or down one bit position. The shift is achieved by connecting each ALU output line to 
three local RAM inputs. The RAMO and RAM3 pin connections of the 2901 allow you to cascade 2901 slices so that an 
up or down shift can be propagated through eight twelve, sixteen, or more bit positions. 

Beginning at the 4-bit level. we can illustrate logic for unshifted local RAM input as follows: 

RAMO - - - -t'" ..., 

:4 
I 
I r-----~ I 

I I I 

! 1 I 
3-IN 3-IN 
MUX MUX 

t t 
DO = FO 01 = F1 

-r-----r -
I 1 I 

3-IN 
MUX 

t 
02 = F2 

8-10 

.-

r-----~ 
i i 

i~---RAM3 

I i *i 
I 
I 
I 
I 
I 

3-IN 
MUX 

t 

FO 
Fl 
F2 
F3 

03 = F3 



Data shifted up one bit receives a new low-order bit from RAMO and outputs the high-order ALU product bit via RAM3 
as follows: 

RAMO --I~~-, --..... -~ RAM3 = F3 

* t- -r=-.:--=-.:--~-.--,----------------~------------------------------1-+1------..;+------~~ 
I I I r---- -,------- F2 
I I I I I r-----+--4~-+--F3 

3-IN 
MUX 

DO = RAMO 

3-IN 
MUX 

D1 = FO 

3-IN 
MUX 

D2 = F1 

3-IN 
MUX 

D3 = F2 

Similarly. a 1-bit downshift receives a new high-order bit from RAM3 and outputs the low-order product bit via RAMO 
as follows: 

RAMO = FO 

~-
RAM3 

FO} F1 ALU 
F2 output 
F3 

3-IN 3-IN 3-IN 3-IN 
MUX MUX MUX MUX 

DO = F1 D1 = F2 D2 = F3 D3 = RAM3 
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The Q register is a single 4-bit location with 3-IN MUX input logic similar to the local RAM 
input logic which we have just described. Q register logic may be illustrated as follows: 

FO} F1 From 
F2 AlU output 
F3 

1 - (00) 

-
I T 

1 I 
(Q3) 

3-IN 3-IN 3-IN 3-IN 
MUX MUX MUX MUX 

DO 01 02 03 

Q Register 

QO Q1 02 03 

} To ALU ;nput' 

a register logic is used primarily to enable double length up and down shifts which are needed by binary multiply and 
divide logic. Accordingly the a register 3-IN MUX receives these inputs: 

• The ALU output 

• Its own output - shifted up or down one bit position 

Thus fresh data entering the a register comes from the arithmetic and logic unit output. Subsequently, this data may 
be shifted up or down any number of bit positions by recycling the a register output back to the 3-IN MUX input 
shifted down one bit position: 

QO Q1 02 Q3 (Q3) 

IIIII 
(QO) DO 01 02 D3 

or shifted up one bit position: 

(QO) QO Q1 Q2 Q3 

\\\\\ 
DO D1 D2 D3 (Q3) 

The 00 and 03 pin connections serve the same purpose for the a register shift logic as the RAMO and RAM3 pin con­
nections serve for local RAM logic. 
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We will now examine the arithmetic and logic unit. including the following logic from Figure 
8-2: 

c!~o-----------~-+~-+~-+~~ 
OE 

These three aspects of ALU logic are important: 

1) The ALU operation which is to be performed. 

2) The operands which are input to the ALU. 

3) The destination for the ALU output. Shift logic lies in the path of ALU output data. therefore the destination 
specification includes any shift operation. 

Instruction code bits 10. 11. and 12 control the data input to the 2901 ALU; instruction code bits 13. 14. and 15 
determine the operations which occur within the arithmetic and logic unit. Table 8-1 summarizes 10.11. and 12 
interpretations. while Table 8-2 summarizes 13. 14. and 15 interpretations. Table 8-3 shows the result of 10-15 
combinations. 

The two arithmetic and logic unit inputs are generated by a 2-IN MUX and a 3-IN MUX. The 2-IN MUX (which generates 
the R inputs) receives external data. or the A latch outputs from the local RAM. The 3-IN MUX (which generates the S 
inputs) receives the A or S latch outputs from the local RAM. or the Q register output. As an additional option. a can be 
inserted at the R or S inputs of the arithmetic and logic unit. Thus the following twelve Rand S input combinations 
cou Id be generated. 

R 
S 

A A A A 
A B Q 0 

D D D D 
A B Q 0 

o 000 
A B Q 0 

Used by 2901 
Not used by 2901 

A 3-bit input code can specify eight of the twelve input combinations illustrated above. 

A.A is eliminated since it is equivalent to A.S with the same address input at A and S. 

A.O is eliminated since it is equivalent to O.A. 

D.S is eliminated since it is equivalent to D.A: remember. the A and S addresses can be the same. 

0.0 is eliminated since you cannot perform a useful arithmetic or logic operation on two zero operands. 
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Table 8-1. ALU Source Operand Control Table 8-2. 2901 ALU Function Control 

Micro Code ALU Source Operands 

12 
Hex 

11 10 
Code 

R S 

Micro Code 
ALU 

Symbol 
Hex Function 

15 14 13 
Code 

0 0 0 0 A Q 0 0 0 0 R Plus S R+S 
0 0 1 1 A B 0 0 1 1 S Minus R S-R 
0 1 0 2 0 Q 0 1 0 2 R Minus S R-S 
0 1 1 3 0 B 0 1 1 3 R OR S RVS 
1 0 0 4 0 A 1 0 0 4 RAND S RAS 
1 0 1 5 0 A 1 0 1 5 RAND S RAS 
1 1 0 6 0 Q 1 1 0 6 REX-OR S REBS 
1 1 1 7· 0 0 1 1 1 7 REX-NOR RQfS 

Table 8-3. 2901 Source Operand and ALU Function Matrix 

~ 1210 0 1 2 3 4 5 6 7 

I~ 15 Source 
4 A,a A,a o,a O,a O,A D,A D,a D,O 
3 ALU 

Function 

CN=L A+Q A+B Q B A O+A O+Q 0 
0 R Plus S 

CN=H A+Q+1 A+B+1 Q+1 B+1 A+1 0+A+1 0+Q+1 0+1 

CN = L Q-A-1 B-A-1 Q-1 B-' A-' A-0-1 Q-0-1 -0-1 
1 S Minus R 

CN=H Q-A B-A Q B A A-O Q-D -0 

CN = L A-Q-1 A-B-1 -Q-1 -B-1 -A-' O-A-' O-Q-' 0-' 
2 R Minus S 

CN=H A-Q A-B -0 -B -A O-A O-Q 0 

3 R OR S· AVQ AVB 0 B A OVA OVQ 0 

4 RANDS AAQ AAB 0 0 0 OAA OAQ 0 

5 ii AND S AAQ AAB 0 B A DAA DAQ 0 

6 REX-OR S AE9Q AE9B 0 B A OE9A OE9Q 0 

7 REX-NOR S AE9Q AE9B 0 B A OE9A OEDQ 5 

+ = Plus; - = Minus; V = OR; A = AND; ED = EX-OR 

The eight ALU operations specified by 13. 14. and 15. combined with operand options. generate more than eight effec­
tive operations. If you look at Table 8-3 you will see that you can increment. decrement. complement or negate data: 
you can simply pass data through the ALU. or you can generate a zero ALU output. Any of the functions shown in Table 
8-3 can become an ALU output. You have the option of shifting these functions up or down one bit position. 

Instruction bits 16, 17, and 18 select the destination for ALU output, plus any shift which will be performed on 
the ALU output. Table 8-4 summarizes the eight destination options. 
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Table 8-4. ALU Destination Control 

RAM Q Register RAM Q 
Micro Code Function Function y Shifter Shifter 

Output 
18 17 16 Hex Code Shift Load Shift Load RAMO RAM3 QO Q3 

0 0 0 0 X NONE NONE F-O F X X X X 

0 0 1 1 X NONE X NONE F X X X X 

0 1 0 2 NONE F-B X NONE A X X X X 

0 1 1 3 NONE F-B X NONE F X X X X 

1 0 0 4 DOWN F/2 - B DOWN 0/2- 0 F FO IN3 00 IN3 

1 0 1 5 DOWN· F/2 - B X NONE F FO IN3 00 X 

1 1 0 6 UP 2F - B UP 20-0 F' INO F3 INO 03 

1 1 1 7 UP 2F - B X NONE F INO F3 X 03 

X = Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which 
is in the high impedance state. 

B = Register addressed by B inputs. 
Up is toward MSB, Down is toward LSB. 

Because these options are not self-evident, they are illustrated in Figures 8-4 through 8-11. 

You will note that most destination codes generate a Y output. In many cases you will not wish to use this output. The 
OE control input. if high, disables the Y output - in which case ALU output does not appear at the Y pins. 

The primary purpose of destination code 0, illustrated in Figure 8-4, is to load the Q register. 

Destination code 1 generates a Y output only. In this case the OE control input will be low. 

Destination code 2. illustrated in Figure 8-6. is a little unusual. This code outputs data directly from local RAM to the Y 
pins: simultaneously the ALU output is loaded into local RAM. If the Program Counter is one of the sixteen general pur­
pose registers, this code is used to load the Memory Address register and simultaneously update the Program Counter 
to point to the address of the next instruction. 

Destination code 3. illustrated in Figure 8-7. loads ALU outputs into local RAM and transmits ALU outputs to the Y 
pins. 

Destination codes 4. 6. 6, and 7, illustrated in Figures 8-8 through 8-11, are quite similar. These four codes output 
the ALU product at the Y pins and load this product into local RAM. Codes 4 and 6 also transfer Q register output back 
as Q register input. Codes 4 and 6 generate downshifts at the local RAM and Q register inputs. while codes 6 and 7 
generate upshifts at the local RAM and Q register inputs. 
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3-IN 3-IN 
MUX MUX 

t I 

Q 
Local RAM Register 

t t 
A Latch B Latch 
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Data 
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k 
~ 

ALU 
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~ 
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Figure 8-4. 2901 Destination Code 0 Data Paths 
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MUX MUX 

t t 

Q 
Local RAM Register 

t t 
A Latch B Latch 

Data 
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R MUX SMUX 

t t 

ALU 

; 
"I'" 

Y ~ I~'b'h b .. Ix ~:, 

&~:.",., •. ".<. ~, 

Figure 8-5. 2901 Destination Code 1 Data Paths 
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Figu~e 8-6, 2901 Destination Code 2 Data Paths 
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Figure 8-7. 2901 Destination Code 3 Data Paths 
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Figure 8-8. 2901 Destination Code 4 Data Paths 
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Figure 8-10. 2901 Destination Code 6 Data Paths 
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Let us now examine status logic of the 2901. You can generate Zero, Sign, Overflow and 
Carry statuses. The Zero, Sign and Overflow statuses are easy to understand, so we will 
look at them first. 

Every 2901 generates an Overflow status at the OVR pin. This status is the exclusive-OR of ca­
rries out of the penu Itimate bit and the high-order bit. This may be illustrated as follows: 

3 2 0 ",,--Bit No. 

C3 C2 C2 = Carry from bit 2 to bit 3 
C3 = Carry out of bit 3 

OVR = C2 e C3 

2901 
STATUS 
LOGIC 

2901 
OVERFLOW 
STATUS 

Every 2901 generates an Overflow status; however, in a multi-2901 configuration only the high-order (or most signifi­
cant) 2901 Overflow status is usually used. Lower-order 2901 Overflow status outputs can be ignored. For an 8-bit con­
figuration this may be illustrated as follows: 

High-order : Low-order 
2901 I 2901 

I 
7 6 5 4 I 3 2 0 ~Bit No. 

00 11$5 
High-order OVR 

becomes CPU status 

Ignore low-order 
OVR 

The Sign status wh ich is output at pin F3 is the level of the high-order ALU output bit. like the 
Overflow status, the Sign status is output by every 2901 in a multislice configuration; however, 
only the high-order 2901 Sign status is significant. For an 8-bit configuration this may be illus­
trated as follows: 

High-order 
2901 

6 5 

I I 

F3 = level 
of bit 7. 

Use as CPU 
sign status 

I 

Low-order 
2901 

4 I 3 2 

I I 

F3 = level 
of bit 3. 

o ~BitNo. 

The Zero status is the NOR of the four ALU output lines, FO, F1, F2, and F3. If all fou r of these 
outputs are 0, then the Zero status output is 1. The Zero status is an open collector Signal; 
therefore in multislice configurations Zero status outputs can be wire-ANDed. The AND of all Zero 
status outputs in a multi-2901 configuration generates the Zero status for the CPU 
(Zero = FO • F1 • F2 • etc.). 

2901 Carry status logic is not straightforward because in a multi-2901 configuration an arithmetic 
operation (such as addition) should occur in parallel at each slice; but the carry from a low-order 
slice will not be generated in time to be accounted for by a parallel operation occurring at a high­
er-order slice. This problem has been described in detail in Chapter 4 of Volume 1, therefore we 

2901 
SIGN 
STATUS 

2901 
ZERO 
STATUS 

2901 
CARRY 
STATUS 

will not dwell on it at this time. For now it suffices to note that you can use the CN and-C(N+4) pins of a 2901 to 
generate carry if you allow ample time between clock cycles for the carry to ripple up through the slices. But if you 

8-24 



want to perform the entire arithmetic operation optimally. you must use the propagate (Pi and generate (G) signals. in 
addition to CN and C(N+4). These signals are processed by the 2902 Carry Look-Ahead device. which is described 
later in this chapter. 

Table 8-10. given in the 2902 Carry Look-Ahead device discussion. summarizes the exact logic used by the 2901 to 
generate P. G. CN and C(N+4). 

The 2901 can generate a Half-Carry status. The Half-Carry status is needed by microprocessors 
that use binary arithmetic with decimal adjust to generate binary coded decimal logic. In an 8-bit 
configuration the C(N+4) output from the low-order 2901 becomes the Half-Carry status. 

SOME 2901 OPERATIONS 
In order to illustrate 2901 logic inaction, we will now show how various operations can be 
performed for a Central Processing Unit created using two 2901 slices. We will show the 
microcode for each operation, based on the following 34-bit microinstruction code: 

l1XX10000000XOXXXX X X X X X X X XBBBBAAAA 
21201F1E1D1C1B1A191B1716151413121110 OF OEOD OC OB OA 09 OB0706050403020100 ~Microinstructionbit 
CYCXSI SOOEIB 17 16 15 1413121110 T1 TOM1 Me DH3DH2DHI DHODL3DL2DL1 DLOB3B2Bl BOA3A2Al AO 

1---' 
I 

·Local RAM A address 
Local RAM B address 

2901 
HALF­
CARRY 
STATUS 

2901 
SAMPLE 
MICROCODE 

-~TTTTT 
Low-order 2901 immediate data in 
High-order 2901 immediate data in 
Source select 
o 0 - Immediate data from miCrocode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 
Destination select (Four arbitrary destinatIons) 
Instruction code 
Output enable 
Shift/rotate logic control 
Carry in control 
00 - 0 in 
01 - 1 In 

1 0 - source 1 in 
1 1 - source 2 in 

The fields of the illustrated microinstruction are all self-evident. and have been described in the preceding text. with 
the exception of CY. CX. 51 and SO. These four bits are used by shift and rotate logic. which we are about to describe. 
Note that all fields. with the exception of the immediate data fields. are shared by the two 2901 devices. This is 
because 2901 devices operate in parallel and must perform identical operations at any instant The immediate 4-bit 
data fields differ since an 8-bit data field is unlike 4-bit halves. 

Consider shift and rotate logic (in macroprogram terms) for one or more 2901 slices. Figure 
22-12 shows one possibility using 25LS253 Dual 4 Input Multiplexers to select the correct con­
nections for RAMO. RAMN. 00. and ON. We refer to the high-order pins as "ON" and "RAMN" 
since one or more slices may be present. For a single slice. RAMN and ON would become RAM3 

2901 SHIFT 
AND ROTATE 
OPERATIONS 

and 03. respectively. For two 2901 slices. RAMN and ON would become RAM7 and 07. respectively 

The key to Figure 8-16 lies in the 17 signals which are input to the 1 G and 2G pins of the 25L5253 device. Recall that 
17 is one of three control signals input to the 2901 destination control logic. 17 controls shift logic at the local RAM and 
o register 3-IN MUX inputs. 17 is always high when a downshift occurs. 17 is always low when an upshift occurs. Thus 
in Figure 8-12. 17 conditions one 25LS253 device to output data. while disabling the other device. 
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i7 yy I sr r 1 
T 1 1 1 T 1 T 1 
lG A B 2G lG A B 2G 

GND- lCO lY 00 03 - - 04 0(N-4) - - 0(N-3) ON lY lCO ~GND - - -.. 

CD 

~ 
CJ) 

+5V- lCl lCl 1--+5V 
lC2 Low- High- lC2 

GND- lC3 25LS253 order order 25LS253 lC3 ~ -GND- 2CO 2901 2901 2CO ~GND 
+5V-=- 2Cl 2Cl ~+5V 

2C2 
RAM 2C2 

r4-. 2C3 2Y RAMO RAM3 - .- RAM4 RAM - - RAMN 2Y 2C3 -- (N-4) - (N-3) 

FN 

I 

Figure 8-12. 2901 Shift and Rotate Logic 



Shifts do not always occur at the 2901 local RAM or Q register inputs (see Figures 8-4 through 8-11). But that is not 
a problem. If the low-order to high-order 25LS253 device is enabled by 17. but no shift is to occur. then the 2901 will ig­
nore the active 25LS253 output. 

When a shift is specified by 16. 17. and 18. then the SO and S1 inputs control the output of the selected 25LS253 device 
- which determines the kind of shift or rotate that will occur. 

In this discussion of shifts and rotates, the sense of a "Ieft" or "right" shift can cause confusion since all vendor 
2900 literature illustrates bit positions from right to left: 

Low-order High-order 
bit bit 

We have elected to make our illustrations compatible with vendor literature so that you will have less trouble connect­
ing descriptions of the same parts. But in macro assembly language terms a left shift normally implies multiplication: 

7 6 54 32 0 

High-order 
bit 

while a right shift implies division: 

Low-order 
bit 

765432 0 

High-order 
bit 

After right shift 

Low-order 
bit 
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Given the bit numbering system used by 2900 vendor literature. the opposite shift logic would apply. That is to say. a 
left shift would become a divide: 

0234567 

Low-order 
bit 

while a right shift becomes a multiply: 

High-order 
bit 

o 234567 

Low-order 
bit 

Before right shift 

After right shift 

High-order 
bit 

In order to avoid confusion, we shall refer to "upshifts" and "downshifts". An "upshift" causes multiplication. 
while a "downshift" causes division. An upshift becomes a left shift in macrolanguage terms. but looks like a right shift 
in 2900 vendor literature. and in the illustrations of this chapter. A downshift becomes a right shift in macrolanguage 
terms. but looks like a left shift in 2900 vendor literature. and in the illustrations of this chapter. We have elected to live 
with this confusion since it is smaller than the confusion which would arise if all our 2900 series part descriptions in­
verted bit numbers and data flows with respect to vendor literature. 

Beginning with the simplest case. consider a simple downshift where zero is loaded into the high-order bit and the low­
order bit is lost. In effect the number has been divided by two. 

Figure 8-13 illustrates a downshift occurring in local RAM only. 17 is-low. therefore the right-most 25LS253 device 
(as illustrated in Figure 8-13) is enabled. while the left-most 25LS253 device is disabled. SO and S 1 are both low. 
therefore 1 CO is output at 1 Y and 2CO is output at 2Y. Thus 0 is loaded into RAMN - and it is assumed that the three 
bits 16. 17. and 18 cause the downshift to occur at the local RAM 3-IN MUX logic. 

Note that a 0 downshift will occur in Figure 8-13 at the same time as the local RAM downshift - if 16.17. and 18 codes 
have enabled the Q register 3-IN MUX downshift logic. For clarity we have not shown both downshifts occurring. 

Were 17 high. then in Figure 8-13 an upshift would occur with 0 loaded into RAMO. and thence DO. 

When executing a down- or upshift, as illustrated in Figure 8-13. you could shift in 1. rather than O. by inputting SO 
high and S1 low. This causes 1C1 to be output at 1Y and 2C1 to be output at 2Y. 

Next consider a down rotate; this operation is illustrated in Figure 8-14. 

The only difference between the down rotate illustrated in Figure 8-14 and the downshift illustrated in Figure 8-13 is 
the source for the Y2 output. A high input at S 1 with a low input at SO causes 1 C2 to be output at 1 Y and 2C2 to be 
output at 2Y. 1 C2 and 2C2 receive their inputs from 00 and RAMO of the low-order 2901. respectively: hence a down 
rotate is achieved. 
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You can generate an up rotate by inputting 17 high -which disables the right-most 25LS253 (as illustrated in Figure 
8-14) and enables the left-most 25LS253. 

We need to stress again the fact that 17 has been chosen to enable the left-most 25LS253 when high. and the right­
most 25LS253 when low. because this conforms to the way in which shift logic within the 2901 is controlled. 

Let us now examine arithmetic shifts. The difference between an arithmetic shift and a logical shift lies in the high­
order bit of a binary number. which arithmetic shift logic treats as a sign bit the sign bit must be excluded from the 
shift. For arithmetic shifts the logic illustrated in Figure 8-12 concatenates local RAM with the Q registers to generate 
a double length number. For two 2901 slices this may be illustrated as follows: 

High-order Low-order 
2901 2901 

7 6 5 4 3 2 0 ....--Overall bit number 

I Local RAM 

3 2 0 3 2 0 .....-Local bit number 

3 2 0 3 2 0 .--Local bit number 

I I I a register 

15 14 13 12 11 10 9 8 '--"Overall bit number 

+ Sign bit 

When an arithmetic downshift occurs. the high-order ALU output bit - which is the signed bit - is recycled back to 
RAMN. thus ensuring that it is preserved through the downshift. The remainder of the arithmetic number is shifted 
down one bit position. with the low-order local RAM bit (output via RAMO) becoming the high-order Q register bit (via 
ON). This may be illustrated as follows: 

7 6 5 4 1 
I 3 2 0 

I 
f 
I f-. 00 --. Lost 

a Re~ister 

ON 4 1Y 1C3 

2t3~ Local RAM t 
~ RAMN I RAMO 

15 14 13 12 I 11 10 9 8 
1 

High-order I Low-order 
2901 I 2901 

As illustrated in Figure 8-12. an arithmetic downshift is generated by 17=0. SO=1 and S1 =1. 
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An arithmetic upshift causes 0 to be shifted into 00 while ON, the high-order a register bit. is shifted into RAMO. This 
may be illustrated as follows: 

I 
I 

7 6 5 4:3 2 0 

I 
~ 

I I 
a register 

I 

I 

ON 2(:3 

~OO"'O 

~ 2Y 

I 

local RAM ~ 
~RAMO lost .... RAMN.-t 

~1-5~1-4~1-3--1~2~1-1-1~1-0~9~'-' 8 
I 

High-order I low-order 
2901 2901 

Note that this arithmetic upshift does not preserve the high-order sign bit. Therefore the arithmetic upshift is really a 
double length logical upshift. 

You can easily generate double length down and up logical rotates by concatenating the a registers with the local 
RAM. Connect the 1 C3 input of the left side 25LS253 device to the RAMN output. Connect the 2C3 input of the left 
side 25LS253 device to the ON output. Connect the 1 C3 input of the right side 25LS253 device to the RAMO output. 
Connect the 2C3 input of the right side 25LS253 device to the 00 output. 

All of the shift and rotate logic functions we have just described, as well as the Status register and carry-in multiplexer, 
are contained in the 2904 Status and Shift Control Unit. This device eliminates most of the MSI. such as the two 
25LS253s around the 2901 s. 

8-32 



Let us now look at the simple problem of loading data into a local RAM location. If the data is 
immediate - that is to say, if it is provided by the microinstruction itself - then the following 
single microinstruction will load eight bits of data into the local RAM location addressed by the B 
address: 

r--------------------------------Output result to RAM 

r--------------------------Input Data and 0 to ALU 
Select immediate data 

2901 
DATA INPUT 

ffg
----------------------------OR Data with 0 

ill , ... ____ 1 .... __ -_, :LI ~~,'='~ ;.0 w",'" "" ""-

XXXXX011011111XXOO D D D D D D D DBBBBXXXX 
21201F1E1D1C1B1A191B1716151413121110 OF OE OD OC OB OA 09 080706050403020100~Microinstructionbit 
CYCXS1 SOOE IB 17 16 15 1413 12 11 10 T1 TOM1 MO DH3DH2DH1 DHODL3DL2DL1 DLOB3B2B1 BOA3A2A1 AO 

• "--~. TT-CT'------LocaIRAMAaddress 

- Local RAM B address 
Low-order 2901 immediate data in 
High-order 2901 immediate data in 

L-____________________ Source select 

o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 

L...-------------------,------Destination select (Four arbitrary destinations) 
L----------------------------Instruction code 

L...---------------------------------Output enable 
L...----------------------------------Shift/rotate logic control 

'-------------------------------------Carry in control 
00 - 0 in 
01 - 1 in 
1 0 - source 1 in 
1 1 - source 2 in 

If the data which is to be loaded into local RAM comes from an external buffer. and we arbitrarily assume that it comes 
from external data buffer number 2. then the following single microinstruction will transfer the data from external 
buffer 2 to the local RAM location selected by the B address: 

r-------------------------------Output result to RAM 

±fE
----------------------------OR Data with 0 

r-------------------------Input Data and 0 to ALU 
Select buffer 2 as data source 

n~ , I ,=tr--I------~~~tl~:;;ion into which data is loaded 

XXXXXO 11 0 11111 XX 10 X X X X X X X X BBBBXXXX 
21201F 1E 1D 1C 1B 1A 19 1817 16 15 14 13 1211 10 OF OE OD OC OB OA 09 08 07060504030201 00 -4--Microinstruction bit 
CYCXS1 SOOE 18 17 16 15 1413 12 11 10 T1 TOM1 MO DH3DH2DH1 DHODL3DL2DL1 DLOB3B2B1 BOA3A2A1 AO 

~.-- TTTT'-----LocalRAMAaddress 
- Local RAM B address 

Low-order 2901 immediate data in 
High-order 2901 immediate data in 

L...---------------------Source select 
o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 

L-----------------------Destination select (Four arbitrary destinations) 
'------------------------------Instruction code 

'----------------------------------Output enable 
L--------------------------------___ Shift/rotete logic control 

'-----------------------------________ Carry in control 
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00 - 0 in 
01 - 1 in 
1 0 - source 1 in 
1 1 - source 2 in 



We described logic associated with microinstruction bits M1 and MO earlier. 

An arithmetic or logic operation performed on two sources taken from local RAM, with the result being output via Y to 
external destination number 1, requires the following single microinstruction: 

Select A and B latches as ALU operands 
Y output destination select 
Local RAM B address ±fffi 
OutputresultviaY 

j 
Select ALU operation 

t ,...-----Local RAM A address 

il,....--..-l....-..= =L -,,," 
XXXX000111100101 XX X X X X X X X XBBBBAAAA 
2120 1F 1E 10 1C 1B 1A 191817161514131211 10 OF OE 00 OC OB OA 09 OB 070605040302 01 OO~Microinstruction bit 
CYCX 51 SO OE 18 17 16 15 14 13 12 11 10 T1 TO M1 MO DH3DH2 DHt DHO DL3 Dl2 DL1 DLO B3 B2 B1 BO A3 A2 A1 AO 

""'" ---'-1TTl~T I 
-Local RAM A address 
-Local RAM B address 
-Low-order 2901 immediate data in 
High-order 2901 immediate data in 
-Source select 
o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 
Destination select (Four arbitrary destinations) 
Instruction code 
Output enable 
Shift/rotate logic control 
Canry in control 
00 - 0 in 
01 - 1 in 
1 0 - source 1 in 
1 1 - source 2 in 

Now consider the same operation performed on one operand taken from local RAM (as addressed by A), while the other 
operand is provided by the microinstruction as immediate data: the result is returned to the local RAM location ad­
dressed by B. Here is the necessary microinstruction: 

it t 
t t -, 

" 

I 

- - _1_ 

Disable Y output 
Output ALU result to 8 
Specify AL U operation 
Select immediate data and A latch as ALU operands 
Destination select 
Immediate data. second operand 
Result address in local RAM 
Operand address in local RAM 
Don't care 

XX X X 1011 I I 11010100000000008 B B 8 A A A A 
21201F1E1D1C181A191B1716151413121110 OF OE 00 OC 08 OA 09 080706050403020100...-Microinstructionbit 
CYCX 51 SO OE 18 17 16 15 14 13 12 11 10 T1 TO M1 MO DH3DH2 DH1 DHO DL3 DL2 DL 1 OLO 83 B2 B1 80 A3 A2 A1 AO 

- Local RAM A address '----~----TLL- tL-----
Local RAM 8 addr~ss 
Low-order 2901 immediate data in 
High-order 2901 immediate data in 

'---------------------- Source select 
o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 

L..-. ______________________ Destination select (Four arbitrary destinations) 
L..-. ___________________________ Insiruction code 

L..-. ________________________________ Output enable 
L..-. __________________________________ Shift/rotate logic control 

~----------------------------------- Carry in control 
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Two microinstructions, with appropriate looping and select logic, is all you need in order to 
multiply two 8-bit numbers and generate a 16-bit product. The algorithm needed for this 
multiplication initially stores the multiplier in the low-order eight bits of the product space with 
the multiplicand in a separate 8-bit storage location as follows: 

7 0 • Product (initial) 

15 8 7 o ~Product (final) 

Q B I.--Product space 

7 o ~Multiplier (initial) 

7 0 

A J...-MultiPlicand 

We are going to downshift the contents of the 16-bit product space eight times. After eight shifts. the multiplier will 
have been shifted out and lost. Therefore the high-order eight bits of the product space will initially be assigned to the 
low-order eight bits of the product. as shown above. 

In the typical "shift" and "add" multiplication routine (which we have described in Volume 1) the multiplicand is 
upshifted one bit position at a time. and is added to the product whenever there is a 1 in the multiplier bit correspond­
ing to the current upshift. Here is a simple illustration of two 4-bit numbers being multiplied to create an 8-bit product: 

1010·0101 = 00110010 

Step 1: 00000000 101':e' 
0101 

Step 2: 00000000 1 0"110 
01010 

00001010 

Step 3: 00001010 n'·10 
010100 

Step 4: 00001010 01::01 0 
0101000 

00110010 

The multiplicand initially corresponds to the low-order multiplier bit. The multiplicand is subsequently upshifted three 
times. corresponding to the three higher-order multiplier bits. Following the first and third upshift. the multiplicand is 
added to the product. since bits 1 and 3 of the multiplier are 1. 

Now instead of upshifting the multiplicand. as illustrated above. we could downshift the product's space. This may be 
illustrated as follows: 

Step 1: 0 0 0 0 0 0 0 0 101ib 

Step 2: 

Step 3: 

Step 4: 

0101 

00000000 
0101 

00001010 

00001010 
0101 

o 0 0 0 1 0 1 0 '1>0 1 0 
0101 

00110010 
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This is the algorithm we are about to use. This algorithm allows the multiplier to be stored in half of the product space, 
since this space is slowly shifted out. 

Returning to our 8-bit X 8-bit multiplication, after the first shift the 16-bit product space will be shared by the low-order 
nine bits of the product and the high-order seven bits of the multiplier: 

765432 0765432 0 

C •• , ~sNft 

8 765 432 0765432 

, Product Multiplier 

and ultimately the sixteen bits of the product space will be occupied by the 16-bit product - after the entire multiplier 
has been shifted out. Each time the contents of the product space are shifted down one bit position, the next low-order 
bit of the multiplier will be shifted out and will appear at output pin RAMO. This output is tested. If it is 1, then the 
multiplicand is added to the high-order eight bits of the product space {the 0 register) before the next shift occurs. The 
carry from the addition must become the next high-order product bit prior to the next addition. Therefore the carry is 
shifted into the high-order 0 register bit via 07. 

In this fashion, the multiplicand is added to the product in each bit position that corresponds to a 1 in the multiplier. 
The logic for this operation may be illustrated as follows: 

Since we have discussed multiplication algorithms in some detail in Volume 1, we will not spend more time in this 
chapter describing the theory of this multiplication algorithm. Rather. consider the following example: 

2C' A4 =1C30 

S~rt 0000000000101100 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

End 

10100100 

000000000010110'0-0000000000010110 

0000000000010110---0000000000001011 

0000000000001011-0000000000000101 
10100100 
1010010000000101 C=O 

101001000000010';1:-0101001000000010 
10100100 

1111011000000010 C=O 

1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 ;0-0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 

o 1 1 1 1 0 1 1 0 0 0 0 0 0 01-0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 
10100100 
1110000110000000 

1 1 1 0 0 0 0 1 1 0 0 0 0 0 00:- 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 

o 1 1 1 0 0 0 0 1 1 0 0 0 0 0 -0- 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 

0001110000110000 

C=O 

The algorithm above starts by downshifting 0 and B registers' contents as a single 16-bit entity. Carry, which must in­
itially be 0, is Shifted into the high-order 0 register bit via 07, while the low-order bit of B appears at RAMO. If RAMO is 
0, then ° must be added to O. If RAMO is 1, then the multiplier in the local RAM location with address A must be added 
to O. A second microinstruction accomplishes this addition. If this addition generates a carry, then the carry bit must be 
loaded into the next high-order product bit. By connecting the carry to 07 we make sure that any carry is loaded into 
the next high-order product bit on the next downshift of 0 and B registers' contents. Necessary logic is illustrated in 
Figure 22-15. 

8-36 



D 01-

CP- CK 

7 y S,l 1 s, r CY· CX 

T I I I T I I I 

9 lG A B 2G C8 lG A B 2G 

GND- lCO lY 00 03 .. 04 07 lY lCO - . 
-=-+5V +5V- lCl 1 Cl 

lC2 Low- High- lC2 -GND- lC3 
25LS253 order order 25LS253 lC3 -GND- 2CO 2CO -+5V- 2Cl 2901 2901 2Cl -+5V 

2C2 2C2 .. .. 2C3 2Y RAMO RAM3 - -- RAM4 RAM7 2Y 2C3 -
(X) 

W 
--.J 

FN 

I 

--- D O~ 

CP- CK 

4-
~ 

Figure 8-15. 2901 Connections for Binary Multiplication 



In Figure 8-15. CX and CY high is the characteristic combination identifying binary n:tultiplication. As compared to 
Figure 8-12. we have modified the 1 CO and 2CO inputs to the right-most 25LS253 device so that when CY and CX are 
both high. a downshift loads the Carry out into the high-order bit of 07. while 00 is loaded into RAM7 - and thence 
into the high-order bit of the local RAM location with address B. Thus a downshift treats the 0 and local RAM locations 
as a single 16-bit register. which. following a downshift causes a prior carry to be input at Q7 while the low-order 
multiplier bit is output at RAMO. 

Before describing the logic surrounding 11 in Figure 8-15. let us look at the two microinstructions which must be ex­
ecuted sequentially within a loop in order to perform the required multiplication. First we execute a downshift 
microinstruction. then we execute an add microinstruction. as follows: 

1Ir----+--1r---r-....--=--L==-----~-L-~I=-r=--===-1 ==--= .... =-=t--=-_=+-_=-==-~?~~~ 
11001100000011XXXX x x X x x x X XBBBBXXXX 

21201F1E1D1C1B1A191B1716151413121110 OF OE 00 OC OB OA 09 080706050403020100~Microinstructionbit 
CYCX 51 SO ~ 18 17 16 15 14 13 12 11 10 T1 TO Ml MO DH3DH2 DHI DHO Dl3 Dl2 Dl1 DlO B3 82 Bl BO A3 A2 Al AO ------1TT -t-T 

1 • • t 1 I 1 - -
l1XX10000000XOXXXX X X X X X X X X8888AAAA 

. local RAM A address 
local RAM B address 

. low-order 2901 immediate data in 
,High-order 2901 immediate data in 
,Source select 
o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 
Destination select (Four arbitrary destinations) 
Instruction code 
Output enable 
Shift/rotate logic control 
Carry in control 
00 - 0 in 
01 - 1 in 
1 0 - source 1 in 
1 1 - source 2 in 

Multiplication specified 
Disable Y output 
Store sum in Q 

Add two operands 
o and Q or A and Q fonm AlU operands 
nitial multiplier/final product low-order I 

eight bits address in local RAM 
Local RAM multiplicand address 
Don't care 

2120 IF IE 10 lC 18 lA 191817 16 15 141312 11 10 OF OE 00 OC OB OA 09 08 07060504030201 00 4--Microinstruction bit 
CYCX 51 SO or 18 17 16 15 14 13 12 11 10 T1 TO Ml MO DH3DH2 DHI DHO Dl3 Dl2 Dl1 DlO 83 82 Bl 80 A3 A2 Al AO , ----'-~TTTTT 
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·Local RAM A address 
·Local RAM 8 address 
,Low-order 2901 immediate data in 
,High-order 2901 immediate data in 
,Source select 
o 0 - Immediate data from microcode 
o 1 - Data from buffer 1 
1 0 - Data from buffer 2 
1 1 - Data from buffer 3 
Destination select (Four arbitrary destinations) 
Instruction code 
Output enable 
Shift/rotate logic control 
Carry in control 
00 - 0 in 
01 - 1 in 
1 0 - source 1 in 
1 1 - source 2 in 



The downshift microinstruction is self-evident. Note. howev~r. that RAMO must become the 11 instruction bit for the 
addition so that 0 will be added to Q when RAMO outputs O. while the contents of the local RAM location addressed by 
A are added to Q when RAMO outputs 1. But when CY and CX are not both high. binary multiplication is not in 
progress: therefore 11 comes directly from the microinstruction. The three NAND gates shown in Figure 8-15 provide 
the necessary logic. 

The multiplication example we have just described is a useful illustration of 2901 logic. but the2903. which we de­
scribe next. performs binary multiplication and division automatically. 
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THE 2903 MICROPROCESSOR SLICE 

The 2903 is a 4-bit microprocessor slice. The 2903 is conceptually similar to the 2901, which we have already 
described. The 2903 has more versatile signals than the 2901, and more on-chip functions; however, the 2903 
and the 2901 are driven by clocks with approximately equal frequency. But remember, the 2901A and 2901B 
are faster than the 2901; therefore, they are faster than a 2903 - excluding special 2903 functions. The 2903A 
is currently in development and, when available, will offer faster operation than the' 2903. 

The 2903 is not a superset of the 2901. Microprograms written for the 2903 and the 2901 will be completely 
different so will external logic supporting the two devices. Nor is the 2903 always the part of choice. as compared to a 
2901. If your application uses a lot of complex arithmetic and logic operations. or if your application requires a large 
number of local registers. then the 2903 is the part of choice. But if your application stresses execution speed. then the 
2901 A or 2901 B may be a better choice. 

2901 and 2903 ALU logic also differ sharply. The 2903 performs operations which encompass the simple 2901 ALU 
functions; the 2903 also performs a separate set of more complex operations. Furthermore. 2903 ALU logic discrimi­
nates between a high-order slice. a low-order slice. and an intermediate slice; 2901 logic makes no such 
high/intermediate/low-order distinctions. By discriminating between high-order. low-order. and intermediate slices. 
the 2903 is able to perform operations oil non-symmetrical data. For example. a twos complement binary number is 
non-symmetrical since the high-order bit is a sign bit subject to different interpretation from other bits. which are mag­
nitude bits. Also. by discriminating between high-order. low-order. and intermediate slices. the 2903 makes double use 
of many signals; signals perform secondary functions at slices where the primary function is meaningless. For example. 
Carry. Generate. and Propagate signals share pins with Overflow and Sign status. since the Carry. Generate. and Pro­
pagate signals are meaningless at the most significant slice. while status signals are meaningful only at the most sig­
nificant slice. 

In the description of the 2903 which follows, we will compare and contrast the 2903 with the 2901. We will 
refer to the 2901 description, together with Chapter 4 of Volume 1 for all conceptual information. 

The 2903 is packaged as a 48-pin DIP. It uses bipolar LSI technology. 

A 2903 FUNCTIONAL OVERVIEW AND COMPARATIVE ANALYSIS 
Figures 8-16 and 8-17 functionally illustrate 2903 logic. Figure 8-16 is a variation of Figure 8-1. given earlier in 
this chapter. and of Figure 4-3. from Volume 1; it illustrates the 2903 in terms of the general chip slice description 
given in Chapter 4 of Volume 1. Figure 8-17 is a more accurate representation of 2903 logic and data paths. 

SuperficiaUy the 2903 and the 2901 look very similar. Both have an arithmetic and logic unit which receives two in­
puts and generates a single output. Both have a 16 x 4-bit. two output-port RAM. additional local data storage in the 4-
bit Q register. and two sets of shift logic. 

The 2903 16 x 4-bit local RAM. like the 2901. receives two 4-bit addresses - the A and B addresses. Data can be writ­
ten into the 2903 local RAM location addressed by B. but only when the separate WE control input is low. The 2901 
has no signal equivalent to WE. Data addressed by A and B is output to the 2903 A and B latches; but the 2903 B latch 
has an output enable control. OEB. which must be low for the B latch contents to be passed on. The 2901 has no signal 
equivalent to OEB. 

Both 2901 and 2903 A and B latch outputs are transmitted to the Rand S ALU input multiplexers; but that is the only 
similarity between the twosets of ALU input logic. The 2901 uses three instruction code bits to generate eight possible 
combinations of Rand S inputs. The 2903 uses one instruction code bit. together with two new control signals to select 
substantially different ALU operand combinations. The 2903 then makes up for the lack of operand input options with 
additional ALU functions. 

Both 2901 and 2903 ALU outputs may go to the Q register. the Y port. or the 16 X 4-bit local RAM. 

Like the 2901. the 2903 Q register has shift logic at its input. The 2903 also has shift logic on the local RAM data path; 
but 2903 shift logic precedes the Y outputs. and has a separate output enable control Signal OEy like the 2901. 

Perhaps the most obvious difference between the 2901 and the 2903 lies in the data input and output ports. 
The 2901 has a single data input port. DO-D3. and a single data output port. YO-Y3. The 2903 has the same data input 
port. DAO-DA3. but the 2903 has two bidirectional data output ports. DBO-DB3 and YO-Y3. 
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Figure 8-16. The 2903 Microprocessor Slice 
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DAO 
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WE 
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Figure 8-17. 2903 4-Bit Slice Logic 



01°0 1 48 01°3 
EA 2 47 B3 

DAO 3 46 B2 
DAl 4 45 B1 
DA2 5 44 BO 
DA3 6 43 CP 

12 7 42 10 
13 8 41 11 
14 9 40 WRITE/MSS 

eN 10 39 LSS 
C(N+4) 11 38 lEN 
P/OVR 12 

2903 
37 WE 

GND 13 36 VCC (+5V) 
G/N 14 35 15 
OEy 15 34 16 

YO 16 33 17 
Yl 17 32 18 
Y2 18 31 OEB 
Y3 19 30 AO 

SIOo 20 29 Al 

SI03 21 28 A2 
Z 22 27 A3 

DBO 23 26 DB3 
DBl 24 25 DB2 

Pin Name Description Type 

DAO - DA3 Data input Input 
DBO - DB3 Data input/output Input/output 
AO - A3 Local RAM A address Input 
BO - B3 Local RAM B address Input 
EA ALU R input select Input 
WE Local RAM write enable Input 
YO - Y3 Data input/output Input/output 
OEB RAM B output/DBO - DB3 input enable Input 
OEy YO - Y3 output enable Input 
SIOO, SI03 RAM shifter controls Bidirectional 
0100, 0103 a shifter controls Bidirectional, Tristate 
CN Carry logic input Input 
C(N+4) Carry logic output Output 
G/N Carry look ahead generate/Negative status Output 
P/OVR Carry look ahead propagate/Overflow status Output 
Z Zero status/control Bidirectional, Open collector 
10 - 18 Instruction code Input 
lEN Instruction enable Input 
LSS Least significant slice select Input 
WRITE/MSS Most significant slice select/Write indicator Bidirectional 
VCC,GND Power, Ground 

Figure 8-18. 2903 Microprocessor Slice Pins and Signal Assignments 
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2903 MICROPROCESSOR SLICE PINS AND SIGNALS 
Pins and signal assignments for the 2903 are illustrated in Figure 8-18. We will summarize functions per­
formed by each of these signals superficially before examining device operations in detail. 

2903 signals can be divided into these three categories: 

1) Data inputs and outputs 

2) Instruction and control inputs that are generated by a microinstruction 

3) Control and status signals connecting 2903 slices. and status signals generated by 2903 slices 

First consider data inputs, outputs and associated address signals. 

AO-A3 and BO-83 are two 4-bit addresses which select locations within the 2903 local 16 x 4-bit RAM. Data 
may be written into the local RAM location addressed by B - but only while both WE and the clock signal, CP, 
are input low. 

While CP is high. the contents of the local RAM location addressed by AO-A3 are written into the A latch -which is 
therefore changing continuously. When CP goes low. the A latch contents are stable. holding whatever data was read 
from local RAM at the instant that CP made its high-to-Iow transition. The A latch contents are continuously output to 
the ALU R input multiplexer. 

The B latch output is enabled by the OEB control signal. When this signal is high. the B latch still receives data from the 
local RAM location addressed by BO-B3. but the B latch output is floated. 

If OEB is low and the B output from local RA~s enabled. then DBO-DB3 becomes a 4-bit output. The B output ap­
pears at DBO-OB3. as illustrated earlier. When OEB is high and the B latch output is disabled. DBO-DB3 becomes a 4-
bit data input. Data input via DBO-DB3 can be selected as the ALU S operand. 

DAO-DA3 always functions as a 4-bit data input. 

The R input to the ALU may be the A latch output from local RAM, or the DAO-DA3 external 
data input. If EA is high, then DAO-DA3 is selected. If EA is low then the local RAM A latch 
output is selected. 

The low-order instruction code input (10) determines the ALU S input. If 10 is high. the Q 

2903 ALU 
INPUT 
OPTIONS 

register output becomes the S input to the ALU. If 10 is low. the B output from the local RAM. or data input via DBO-OB3 
becomes the ALU S input. These options are summarized in Table 8-5: logically they may be illustrated as follows: 

------------ALU R input 
A latch outPut-----~ 

EA ____ T __ 
DAO-DA3 -

8 latch output--------__1 

OE8--..... --I 
ALU S input 

D80-D83-----------------I 

IO---------------------~__1 

Q Register output------------------~~ 

ALU input options are described in more detail later when we look at 2903 logic. 

YO-Y3, which were data output pins of the 2901, are bidirectional 2903 pins (see Figure 8-17). 

OEy is a control signal which enables or disables the ~LU output. If OEy is low. then ALU output. after passing 
through the ALU shifter. appears at the YO-Y3 pins. But if OEy is high. ALU output is disabled and YO-Y3 become input 
pins. Data input at YO-Y3 can be written into the local RAM location addressed by BO-B3. provided WE and CP are low. 
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The 2903 has a 9-bit instruction code which is input via 10-18. The interpretation of this instruction code differs sharply 
from the 2901. Without reference to the 2901. the 2903 instruction code interpretation may be illustrated as 
follows: 

.... --------------16 special functions 

~ 
See Table 22-8 

. ~ , 
00000. Select special functions 

18 171 6 \ 5 \ 4 13\ 2 \ \ 0 ~Instruction code with bit number 

TI_' __ selectALU S input 
See Table 22-5 

Not 0 0 0 O. Select ALU simple functions 
See Table 22-6 

Specify ALU output destination 
See Table 22-7 

As illustrated above, the 2903 instruction code has two different interpretations. 

We can compare 2901 and 2903 instruction codes. but to do so we must include the EA and OES control inputs as in­
struction code contributors. The two instruction codes may now be compared as follows: 

2901: 18 17 16 15 14 13 12 11 10 

l~~ 
2903: 18 17 16 15 14 13 12 11 EA 10 OES 

Note that OES and EA do not usually come from the microcode. 

2903 instruction code interpretations are quite complex and make use of additional control and status signals. 
Therefore we will complete our summary of signals before examining instruction code interpretations in detail. 

Let us now examine status and control signals of the 2903. We have already described WE. EA. OES' and OEy . 

The 2903 has logic to discriminate between a most significant slice, a least significant slice, 
or an intermediate slice. 

2903 SLICE 
SIGNIFICANCE 

When LSS is input low, a 2903 acts as a least significant slice. As a least significant slice, SELECT 
the WRITE/MSS signal becomes a WRITE output. As such. WRITE/MSS is output low for every 
microcycle during which data is written into local RAM. Frequently the WE inputs for all 2903 slices will be connected 
to the WRITE output of the least significant 2903 slice. This may be illustrated as follows: 

r----

~~ 

Most 
Significant 

2903 

LSS 

W/MSS 
WE 

+5V 

~ 

+5V 
0.-

Intermediate 

2903 
+5V 

LSS f-o 

+5V 
W/MSS 00-

WE 

~ ~ 
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Intermediate 

2903 
+5V 

LSS r--o 

W/MSS ~ 

WE 

~ 

Least 
Signficant 

2903 

W/MSS LSS 
WE 

j 

~ 

-~ 



At intermediate and most significant slices, LSS is input high. Now the WRITE/MSS signal becomes an MSS in­
put. A low MSS input selects the most significant slice, while a high MSS input selects an intermediate slice, as 
illustrated above. 

iEN is described in vendor literature as an "instruction enable" input. This may lead you to believe that it enables 
or disables the 10-18 instruction code inputs. but in fact the effect of iEN is more limited. When low. lEN allows data 
to be written into the Q register: it also enables the WRITE output at the least significant slice. When lEN is high. data 
cannot be written into the Q register. and the WRITE output at the least significant slice is constantly output high. If the 
WE inputs for all slices are connected to the WRITE output of the least significant slice. then lEN high effectively dis­
connects the instruction code input. since it prevents data from being written into the Q register or local RAM: but it 
does not prevent an instruction from being decoded and executed by the ALU. and it does allow data to be output via 
the DB and/or Y pins. 

2903 
STATUS 
SIGNALS 

2903 ALU logic has the stand~d Ca..':!y In (CN) and Carry Out (C(N+4)) signals. The 2903 also has 
the Carry Look-Ahead signals G and P. But if you look at the discussion of Carry Look-Ahead logic 
given in Chapter 4 of Volume 1 (and later in this chapter for the 2902). you will see that G and P 
outputs are not used at the most significant slice. Conversely. the Sign and Overflow status out­
puts are meaningful only at the most significant slice. Therefore 2903 pins share G with the Sign status (N) and P 
with the Overflow status (OVR). These pins output Sign (N) and Overflow (OVR) statuses at the most significant 
slice: they output Carry generate (3) and propagate (P) for intermediate and least significant slices. 

The 2903 also has an open-collector Zero status output (Z). This Signal is output high when all ALU outputs are low. 

The 2903 makes additional use of its shifter signals (SIOO, 8103, QIOO, Q103) and its status signals (CN. 
C(N+4), N, OVR, and Z). These Signals are occasionally used in special ways by ALU operations that do not use the 
signals for their primary purpose. For a summary see Table 8-8 and associated text. 

SIOO and SI03 are ALU shifter connections. QIOO and Q103, likewise, are Q register shifter connections. These 
Signals allow shifts to occur across multiple slices as described for the 2901. These Signals will always be connected as 
follows: 

Most 
Significant 

Slice 

0103 

5103 

Intermediate Slices 

5100 
+5V 

QI03 

5103 

0100 

CP is the master clock signal used to control and synchronize events within the 2903. 
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Significant 

Slice 

0100 

SIOO 

0100 

5100 



2903 LOGIC 
We will now examine 2903 logic in detail. 

The best place to start understanding 2903 logic is at the read/write memory lIocal RAM): 

DO 01 D2 03 

A Word {~~---I" 
Address A2~ 

16 x 4-Bit 2-Port RAM 
BO } B1 B Word 
B2 

A3 . 

A3 A2 A1 AO 

A Latch 

OAO-----+-+--+~ 
OA 1 ----40-+--0 
OA2----+ ... DA3i 

~ Address 

WE 
BO B1 B2 B3 

B 

B Latch OEB 

~~-1-~-----DBO 
... ~-+----. OB1 

....... ---OB2 
.... ----OB3 

The 2903 local RAM consists of sixteen 4-bit locations. You will use pins AO-A3 to identify the location from which 
data will be output at the A latch. You use pins 80-83 to identify the 4-bit location from which data may be output to 
the 8 latch or into which data may be written via YO-Y3. 

Data may be written into the local RAM location addressed by B - but only while WE and CP are input low. This 
may be illustrated as follows: 

CP 

BO - B3 Y 

Local RAM Data Stable Data Changing Data Stable 

RAM Location X RAM Location Y 

X and Yare any two hexadecimal memory addresses , High WE inhibits write 

As illustrated above. the contents of the local RAM location addressed by 8 are changing while WE and CP are both 
low. When CP goes high. contents of the addressed RAM location are stable. holding whatever data was input when 
CP made its low-to-high transition. If WE is high. local RAM is not accessed and its contents remain stable. 

Data is output from the local RAM locations addressed by A and 8 when CP is high. The contents of the local RAM loca­
tion addressed by A are output to the A latch. The contents of the local RAM location addressed by B are output to the 
8 latch. These outputs occur when CP is high; therefore the A and 8 latch contents are continuously changing while 
CP is high. but they are stable while CP is low. holding whatever data was input when CP made its high-to-Iow transi­
tion. 
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The A latch contents are output continuously. We can therefore illustrate A latch output timing as follows: 

CP I \ 1 \ 1 \ r 
AD - A3 X P X Q X R [ 

A Latch Read P Read Q Q Stable Read R R Stable 

Local RAM ~ C E: ~ C E: ~ C E 
RAM Location P RAM Location Q RAM Location R 

P.O. and R are any three hexadecimal addresses. S represents stable data. and C represents changing data in the 
selected RAM location. 

In the illustration above. the RAM location addressed by A is shown as stable while CP is high and changing while CP is 
low. The stable data is output to the A latch while CP is high. The A latch contents subsequently become stable while 
CP is low - at which time local RAM contents are changing until RAM access time has elapsed. Thus race conditions 
are avoided. 

The A latch outputs are continuously enabled. 

B latch timing is a little more complex than A latch timing because the B latch has its own output enable control 
signal OES ' When OEB is high. the B latch output is floated. But when OEB is low. the B latch outputs are enabled. B 
latch timing may be illustrated as follows: 

CP I \ I \ ___ 1 \_--' 
80 - B3 X L I ~ __________ ~ _______ M ______ ~I _______ N ______ X 

B Latch Read L L Stable M Stable Read N 

DEB 

B Latch output ------------------.....,.,. 

DBO - DB3 Input 

Output 
[M) means "contents of RAM location M". 

The VO-V3 input to local RAM may come from the ALU output. or from the VO-V3 pins. 
Unlike the 2901. there is no shifter at the local RAM input: rather. the shifter has been moved to 
the ALU output. and the shifter output is itself enabled or disabled by the OEy control input. If 
OEy isJQw. then the shifter output is enabled: it appears as output at YO-Y3 and at RAM DO-D3. 
But if OEy is high. YO-Y3 become input pins providing local RAM with its data input. 

N Stable 

Input 

The 2903 local RAM. like the 2901. generates a 4-bit slice through selected programmable registers of a 
Central Processing Unit. But it is much easier to extend 2903 local RAM using external memory. This is because 
the 2903 has one data input port and two bidirectional data ports situated between local RAM and the ALU. The 29705 
is used as an expansion RAM. 
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CPU register implementation and ALU operand inputs are logically dependent on each other. since the primary func­
tion of CPU registers is to store ALU source or destination data. We will therefore explore the ALU operand options 
available using a 2903. and see what impact these options have on register implementation . .... ------.... Turning to the 2903 Arithmetic and Logic Unit. these three aspects of ALU logic are im- 2903 ARITHMETIC 
portant: AND LOGIC UNIT 

1) The operands which are input to the ALU 

2) The ALU operation which is to be performed 

3) The destination for the ALU output. (The destination specification includes any shift operations.) 

Instruction code bit 10. together with EA and OES' controls the data input to the 2903 ALU; instruction code bits 11 
through 14 specify simple ALU functions. while 15 through 18 specify the destination and shift operation for simple func­
tions. Instruction code bits 15 through 18 may also specify special 2903 functions. 

Table 8-5 shows the ALU operand source options that can be specified using 10. EA. and 
OEB, Let us now explore these options in detail, 

Table 8-5. 2903 ALU Rand S Operand Selections 

Control Signal 
R Operand S Operand 

EA 10 OEa 

0 0 0 A latch output B latch output 
0 0 1 A latch output DBO - DB3 input 
0 1 0/1 A latch output Q register output 
1 0 0 DAO - DA3 input B latch output 
1 0 1 DAO - DA3 input DBO - DB3 input 
1 1 0/1 DAO - DA3 input Q register output 
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Beginning with the logically simplest case. we will assume that EA is low. so the A latch output becomes the ALU R in­
put. Any of the ALU S input options could also accompany EA high. in which case DAO-DA3 becomes the ALU R input. 
Consider 00-03 providing the ALU S input. while DBO-DB3 is idle: 

DO - D3 

Local RAM 

A Latch B Latch 

14t------- OEB = 1 

_------... DBO - DB3 
DAO - DA3 ____ _ 

~~~QO-Q3 

EA=O---t~ ..... ~-IO=l 

ALU 

Data paths illustrated above would probably be used by a complex ALU operation involving one source operand. This 
source operand comes from local RAM via the A latch. while the complex ALU operation acts on temporary data held in 
the 0 register. 
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Now consider the same data paths illustrated above. but with OEB input low. so that B latch data is output via OBO­
DB3: 

DO - 03 

L 
Local RAM 

I 
A Latch 

0 D. " 
DAO - DA3 

EA=O - RM 

"4 " 

ALU 

I 
B Latch 

rill: _ ,,-~9 

~ ~ f 
SM 

J , 

.... 

.. 

.. -

OEB = 1 

DBO - DB3 

00 -03 

10 = 1 

Data being output via DBO-DB3 will probably come from a CPU register implemented in local RAM. DBO-DB3 could be 
connected to external read/write memory within which additional CPU registers are implemented. The direct data path 
from local RAM to DBO-OB3 can be used effectively to implement any register-to-register operation within a CPU. If. for 
example. an Accumulator or other primary register is implemented in local RAM while secondary registers are held in 
external RAM. then the data path illustrated above lends itself readily to register-register data transfers. which may. or 
may not. occur in parallel with any other CPU operation. 
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Now consider the data paths we just illustrated. but with EA high. so that the ALU R operand comes from the external 
data inputs DAO-DA3. This may be illustrated as follows: 

DO - D3 

Local RAM 

A Latch B Latch 

.·1 ...... -----_ OEB = 0 

DBO - DB3 

DAO - DA3 "'"-_______ ..... _-------.I QO - Q3 

RMUX S MUX ............... 10 = 1 

ALU 

Data input via DAO-DA3 may be immediate data coming from a microinstruction. or non-immediate data taken from 
any other source. DAO-DA3 may also receive its input from an external RAM within which additional CPU registers are 
held. 
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But. moving away from complex operations that may require the ALU S operand to come from the Q register. let us ex­
amine some more complex data paths used by simple CPU operations. In the simplest case. the two ALU operands will 
come from local RAM. This may be illustrated as follows: 

DO - 03 

Local RAM 

DAO - DA3 c...... ___ .... 

EA= 0 ---I~ 

AlU 

1'/ .• 4------- OEB = 0 

Ik'}l~--------J DBO - DB3 

·~:,MUX 
"<>;: 

_---..1 00 - 03 

.... ~-IO=O 

Data paths illustrated above show two ALU operands being taken from local RAM locations - probably CPU registers. 
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We can take the S ALU input from DBO-DB3 by inputting OEB high. thus enabling the data from the B latch. This may 
be illustrated as follows: 

DO - D3 

Local RAM 

A Latch B Latch 

.... ~------OEB = 1 

l'Iaiiil!!BSB DBO - DB3 

DAO - DA3 '--___ '" _-----J 00 - 03 

EA= 0 "'1---10= 0 

ALU 
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Data entering at DBO-DB3 could be immediate data coming from a microinstruction. or data from an external RAM 
location being used to implement additional CPU registers. By inputting EA high. we can take. both the Rand S ALU in­
puts from external RAM: 

DO - 03 

Local RAM 

A Latch B Latch 

.... f-------- DEB = 1 

DBa - DB3 

DAO - DA3 ....... ____ ....... , ,_---..1 00 - 03 

EA = 1 RMUX $MUX ""'-10=0 

AlU 

In the illustration above you see one of the more significant 2903 advantages. as compared to the 2901. The 2901 
allows a single operand to be taken from external RAM. and that reduces the effectiveness of external RAM as a means 
of implementing the two-port CPU registers in a 2901 configuration. It limits you to CPU architectures that include a 
group of secondary registers. only one of which can provide an ALU operand during the execution of any instruction. 
But the 2903. by allowing external data inputs to the Rand S ALU operands. allows you to implement CPU registers in 
internal local RAM. or in external RAM like the 29705. without compromising register logic associated with either im­
plementation. 
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The 2903 has local RAM addressing. The 2901 allows you to specify just two local RAM ad­
dresses within a single microcycle. The A and B addresses identify the two ALU operands while 
the B address also identifies the destination address for the ALU product. Thus the ALU operand 
specified by the B address must be overwritten if the ALU product is to be returned to local RAM. 
But the 2903 allows either two or three local RAM addl'ilsses to be specified within a single 
microcycle; you have the option of creating one. or two B addresses within a single microcycle. If 
you create one B address, timing may be illustrated as follows: 

CP \ I \'---~/ 
WRITE =WE \ ~-_____ -II 

AO - A4 I Operand R Address I 

80 - 84 I Operand S and Result Address I 

2903 
LOCAL RAM 
ADDRESSING 

2903 TWO­
ADDRESS 
TIMING 

\ 

A and B provide the two local RAM addresses. As described earlier. while CP is high the contents of these two local 
RAM locations are output to the A and B latches. Subsequently. when CP is low. data is written back to the local RAM 
location addressed by B. since WE is low. In the illustration above. we show WE being driven low at the proper time by 
the WRITE output. WE will usually be connected to the WRITE output from the least significant 2903 slice. 

We generate three local RAM addresses in a single 2903 microcycle by changing the B ad­
dress after reading an operand, and before writing back the result. Timing may be illustrated 
as follows: 

CP 

AO - A4 

80 - 84 I Operand S 
Address 

P-----... 
2903 THREE­
ADDRESS 
MICROCYCLE 

In the illustration above we delay lEN going low until the last quarter of the microcycle. This gives external logic suffi­
cient time to change the B address. While lEN is high. WRITE is held high. Thus. delaying the lEN low pulse delays the 
WRITE pulse - which in turn delays the WE low input until a new address is stable at B. You can generate three-ad­
dress timing. as illustrated above. by changing the lEN waveform from its normal two-address shape: 

\ 
cp ___ \ ___ ~ 
lEN i ~~-_\ 
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to the following continuous three-address shape: 

CP '''--__ '--'1 \ I \ 
I 
I 

I \ J I 
I I I 
I I I 

J.-ts~ I 
I 

4 T -I 
You cannot directly drive WE from external logic in order to create a three-address microcycle since external logic may 
not b~le to identify mi~ycles during which....!:!2 write operation~o occur-and WE should be held high. By 
using lEN. and connecting WE to WRITE. you use lEN logic to provide WE with its correct shape. while you use WRITE 
to discriminate between microcycles within which a write should. or should not. occur. 

You use instruction code bits 10 through 14 to distinguish between simple ALU functions and 
special 2903 functions. When the five instruction code inputs 10-14 are all low. 15 through 18 are 
interpreted by the 2903 as "special function" identifiers. If one or more of the five inputs 10-14 
are high. then simple ALU functions are interpreted as summarized in Table 8-6. These sim­
ple fLinctions are all self-evident and need no special discussion. 

Table 8-6. 2903 Simple ALU Function Specifications 

Instruction ALU Dependent Output Signals 

Code ALU Operation and 
P/OVR GIN 

Output C(N+4) 
1413121110 MSS Other MSS . Other 

00000 See Table 22-8 
00001 A" ALU outputs high 0 0 0 N G 
000 1 X S - R - 1 + CN C(N+4) OVR P N G 
001 0 X R - S - 1 + CN C(N+4) OVR P N G 
o 0 1 1 X R + S + CN C(N+4) OVR P N G 
o 1 OOX S + CN C(N+4) OVR P N G 
o 1 o 1 X S + CN C(N+4) OVR P N G 
o 1 1 0 X R + CN C(N+4) OVR P N G 
o 1 1 1 X R + CN C(N+4) OVR P N G 
1 OOOX A" ALU outputs low 0 0 0 N G 
1 001 X RAND S 0 0 0 N G 
1 o 1 0 X R EXCLUSIVE NOR S 0 0 0 N G 
1 o 1 1 X R EXCLUSIVE OR S 0 0 0 N G 
1 1 0 0 X RAND S 0 0 0 N G 
1 101 X R NOR S 0 0 0 N G 
1 1 1 OX R NAND S 0 0 0 N G 
1 1 1 1 X R OR S 0 0 0 N G 

R = R operand input 
S = S operand input 
Rand S are the complements of Rand S operand inputs. respectivelv 
CN = Carry in. C(N+4) = Carry out 
MSS = Most Significant Slice 

2903 
SIMPLE 
ALU 
FUNCTIONS 

Z 

0 
z 
z 
z 
z 
z 
z 
z 
1 
z 
z 
z 
z 
z 
z 
z 

Table 8-6 also summarizes output signal levels associated with each ALU operation. Additional signal levels more 
closely associated with the ALU destination specification are given in Table 8-7. 
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Table 8-7. 2903 Destination and Shift Specifications for Simple ALU Operations 

Instruction Shifter/Destination Summary Signal Detail 

Code Bits ALU Output o Register 

Result Y3 Y3 Y2 Y2 YO SI03 SI03 SIOO 0103 0103 0100 WRITE 
18 17 16 16 

Hex 
Shift (= Y if Shift Load MSS11 Other MSS1 Other All MSSlI Other All 

Code OEy = 01 

o 0 0 0 0 DA21 (F/2)A None Q F3 SI03 SI03 F3 F2 F1 I I FO Hi-Z Hi-Z 0 

000 1 1 DL3) (F/2IL None Q SI03 SI03 F3 F3 F2 Fl I I FO Hi-Z Hi-Z 0 

001 0 2 DA2) (F/2)A DL3) (Q/2)L F3 SI03 SI03 F3 F2 F1 I I FO I QO 0 

001 1 3 DL3) (F/2IL DL31 (Q/2IL SI03 SI03 F3 F3 F2 F1 I I FO I QO 0 

o 1 o 0 4 None F None Q F3 F3 F2 F2 Fl FO I I P Hi-Z Hi-Z 0 

o 1 o 1 5 None F DL31 (Q/2)L F3 F3 F2 F2 F1 FO I I P I QO 1 

o 1 1 0 6 None F None F F3 F3 F2 F2 F1 FO I I P Hi-Z Hi-Z 1 

o 1 1 1 7 None F None F F3 F3 F2 F2 F1 FO I I P Hi-Z Hi-Z 0 

1 000 8 UA4) (2F)A None Q F3 F2 Fl Fl FO SIOO F2 F3 I Hi-Z Hi-Z 0 

100 1 9 UL5) (2F)L None Q F2 F2 Fl Fl FO SIOO F3 F3 I Hi-Z Hi-Z 0 

CIO a. 
1 o 1 0 A UA4) (2F),A UL5) (2Q)L F3 F2 Fl Fl FO SIOO F2 F3 I Q3 I 0 

1 o 1 1 B UL5) (2F}L UL5) (2Q)L F2 F2 Fl Fl FO SIOO F3 F3 I Q3 I 0 
CIO 1 1 o 0 C None F None Q F3 F3 F2 F2 Fl FO F3 F3 Hi-Z Hi-Z Hi-Z 1 

1 1 o 1 D None F UL5) (2Q)L F3 F3 F2 F2 F1 FO F3 F3 Hi-Z Q3 1 1 

1 1 1 0 E None SIOO None Q SIOO SIOO SIOO SIOO SIOO SIOO SIOO SIOO I Hi-Z Hi-Z 0 

1 1 1 1 F None F None Q F3 F3 F2 F2 F1 FO F3 F3 Hi-Z Hi-Z Hi-Z 0 

1) MSS = Most Significant Slice I = Input pin 
2) DA = Down Arithmetic P = Parity of SI03, F3, F2, Fl, FO 
3) DL = Down Logical HI-Z = High impedance 
4) UA = Up Arithmetic F3, F2, F1 and FO are the four ALU output bits. F3 is the high-order bit. FO is the low-order bit. 
5) UL = Up Logical 

-



With regard to Table 8-6. note that the Carry Out signal. C(N+4). is active for arithmetic operations only. 

P/OVR generates an Overflow status (OVR) at the most significant slice. and a Carry propagate signal (P) at other slices. 
Like the Carry Out. P/OVR is active only for arithmetic operations. Unlike P/OVA. GIN is active for all ALU operations­
arithmetic and logical. The most significant slice outputs the Sign status (N) which is. in fact. the level of the high­

order ALU output bit. Other slices output the Carry generate signal @. 

For a discussion of the Carry generate and propagate signals (3 and P) refer to the 2902 description. 

The Zero status is active for all slices. during all simple ALU operations. The Zero status is output high when all four 
ALU output signals are low. The Zero status output is low otherwise. 

Let us now examine 2903 destination options. 

Table 8-7 summarizes destination and shift specifications implied by instruction code bits 
16 through 18 for the simple ALU operations summarized in Table 8-6. In Table 8-7 we show 
the ALU output and Q register operations. together with a detailed summary of associated 

2903 
DESTINATION 
OPTIONS 

signal levels. The detailed signal summary is given since slice significance and shift specifications combined make 
signal levels less than self-evident. If you look at the signal outputs shown in the signal detail section of Table 8-7. and 
compare these signal outputs with the illustrations of arithmetic and logic shifts given below. then the table will be 
easy to understand. 

Note that signals SIOO. 0100. and 0103 are frequently in a high impedance state. 

Selected destination specifications hold WRITE high. These specifications give you the option of not writing ALU out­
put into local RAM - assuming that the WE inputs are connected to the least significant slice WRITE output. 

Destination code E propagates the SIOO input across all Y outputs. This code is used to extend the sign of a binary 
number. as we will describe later. 

Destination codes 4. 6. 6. and 7 report parity of the ALU output at the SIOO pin. Parity is reported for the 5-bit bin­
ary number given by S103. F3. F2. F1. and FO. Odd parity generates a high output at SIOO while even parity generates a 
low output at SIOO. 

Parity logic of the 2903 is cascadable across chip slices since the SIOO parity output of each slice becomes the SI03 
input for the adjacent. less significant slice. The SIOO output from the least significant slice will always report the 
parity for the combined ALU output. We will demonstrate this multislice parity logic for the simple case of 8-bh data 
generated using two 2903 slices. This may be illustrated as follows: 

Most Significant 
Slice 

Least Significant 
Slice 

~~---------'~~--------" r A "' 
SI03 F3 F2 F1 FO S100/S103 F3 F2 F1 FO SIOO 

o 1 ~?O 0 1 1 0 0 '\J ~ ...... ---..... c/ 
Most Significant 

Slice 
Least Significant 

Slice 

~~---------,~~--------,,, 
~~--------,~~--------~, 
SI03 F3 F2 F1 FO S100/S103 F3 F2 F1 FO SIOO 

o 1 ~/1 0 1 1 0 1 \J ~ ...... ---.... v 
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The ALU shifter, but not the Q shifter, gives you the option of specifying either an 
arithmetic or a logical shift. The Q shifter allows you to specify logical shifts only. 

Logical shifts treat all bits in the same way. Thus. an 8-bit upshift may be illustrated as follows: 

7 6 5 4 3 2 o 4---Bit No. 

Before upshift 

After upshift 

An 8-bit downshift may be illustrated as follows: 

7 6 5 4 3 2 o 4--BitNo. 

Before downshift 

After downshift 

2903 
SHIFT 
LOGIC 

An arithmetic shift assumes that the high-order bit is a sign bit - which must be excluded from any shift. Thus an 8-
bit arithmetic upshift may be illustrated as follows: 

7 6 5 4 3 2 o .....-BitNo. 

Before upshift 

After upshift 

An 8-bit arithmetic downshift may be illustrated as follows: 

7 6 5 4 3 2 o 4---Bit No. 

Before downshift 

After downshift 

The 2903 can perform arithmetic shifts since you must identify the most significant. least significant. and intermediate 
2903 slices in a multislice configuration. Thus. when you specify an arithmetic shift. logic internal to the most signifi­
cant slice isolates the high-order bit from the shift. while intermediate and least significant slices perform simple logic 
shifts. 
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The 2903 ALU shifter is located on the ALU output, in front of the Y data input/output port. 
In contrast. the 2901 ALU shifter is located at the local RAM input. Also, the 2903 ALU shifter out­
put can be enabled or disabled via the OEy control signal. Thus you have a large number of 
microprogram-selectable options for handling ALU output, over and above the destination op­
tions summarized in Table 8-7. ALU output may be transmitted to local RAM: 

A 

YO - Y3 <. ;'';;,T ';;'f, "'>: .. ;:::." .; ..... ;:.:.:::;; . <>:<.:: :.:::\L~/:}!\·!;;··h:i>' .•••• M···.d <';';'::' ... 
.oil ~ U 

D 

Local RAM 

A B 

A Latch B Latch 

JJ-
;', DAO - DA3 It D, U ". 

it ~ .. ;, 

.. Shifter EA --- RMUX S MUX - -OEy =0 

.- • 
"< :r '< ~ 

ALU 

;:~l 
l'!;";:;, <'j':." .. . : •. \. /'; ";';':.:.>"'::0:.';. :; . ;: :: :> •... 
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-- WE=O 

-- CP = 0 

... 
) DBO - DB3 

"' 
0 QO - Q3 

- 10 

... 
) To Q Register 

p 



By holding WE high you can output data at the Y pins. but not write the output to local RAM: 

A 

YO - Y3 ~"\''';;:':';;, ;,V;':; 

} '" • ~ 

D 

Local RAM 

A B 

A latch B latch 

~I~ 

DAO - DA3 h D, U :, ~ > 

OEy=O - Shifter EA R MUX SMUX 

. > I 
~ ~ '< ;, 

> AlU 

:,' 

~l 
"h',)" ,,;:";,;:,'\, ";, ;kf',' ," :"', ,,';, ii :::'\~":;:;\;'" ",:;{, A.. 

--
-

.. 
} . 
II 

-

.. 
) 

WE=1 

CP = X 

OEB 

DBO - DB3 

00 - 03 

10 

To Q Register 

In either of the above cases the data may be shifted up or down. if so specified by instruction code bits 15-18 (see Table 
8-7). 
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You can also discard the ALU output and use the Y pins as the data input port to local RAM: 

YO - Y3 l:t.< .. :.> ...•. .> •... :. . '::.< .... .'.:.": . ....•..... : .. ".:'.:' .. : '\ . ~ U 
D 

Local RAM 

A B 

A Latch B Latch 

~~-~ 

DAO - DA3 h D, , ~\. ~ J 
-- Shifter EA R MUX S MUX -

.,.,.~ J '< 

ALU 

J l 
.A. 

If WE and OEy are both high. ALU output to YO-Y3 or local RAM is discarded 

You can use the last two ALU destination codes shown in Table 8-7 to extend a sign bit 
across one or more parallel 2903 devices within a single microcycle. Since the ALU destina­
tion code is used to generate sign extend logic, this operation can occur in conjunction with 
any compatible ALU operation specified by instruction code bits 14, 13, 12, and 11. 

---
--

-

CP = 0 

.. 
) 

r 

11 

DBO - DB3 

00 - 03 

10 

.. 
) To a Register 

2903 SIGN 
EXTEND 
LOGIC 

ALU destination code F transmits the ALU output to the Y pins. and pulses WRITE low Assuming that OEy and WE 
are both .Iow. the ALU output will appear at the Y pins. and will be written into local RAM while CP is low 

ALU destination code E transmits the 5100 input across all four ALU output lines Again. WRITE is pulsed low: if OEy 
and WE are both input low. then the 5100 level is output at all Y pins. and is wntten into local RAM while CP is low 
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You can use this pair of ALU destination codes to extend a sign bit by applying the level of the sign bit to the SIOO 
input of those 2903 slices that are to extend the sign. Consider a 16-bit Central Processing Unit where the sign for the 
low-order byte must be extended across the high-order byte. This may be illustrated conceptually as follows: 

Most 
Significant Intermediate 

Device Device 
3 2 

15 14 13 12 11 10 9 8 

I z I z I z I z z z 
I z I 

z 

15 14 13 12 11 10 9 8 

X = sign bit 
y = data bit 
Z = irrelevant bit 

Least 
Intermediate Si~nificant 

Device Device 
1 0 

7 6 5 4 3 2 o ....-BitNo. 

I X I y I y I y I y I y I y I y I Before sign extension 

6 5 432 o 4--Bit No. 

y y y I y I y I y I y I After sign extension 

A Central Processing Unit implemented using 2903 slices will automatically generate a sign extended ALU result for 
any arithmetic operation. You use sign extend logic to create data, rather than modify results of any computation. 
Suppose. for example. an 8-bit data input is received from an I/O port: if a 16-bit CPU is to interpret this data byte as a 
signed binary number. then the high-order bit must be propagated through the high-order byte of a 16-bit word as il­
lustrated above. 

This is easily done using the E and F ALU destination codes. This is illustrated in Figure 8-19. 

Let us examine Figure 8-19. The two low-order 2903 slices are generating real data. These two slices therefore receive 
an F ALU destination code via 18-15. This destination code causes the ALU output to appear at the Y pins. and the high­
order ALU output bit to appear at 5103. The two high-order 2903 slices generate the high-order byte across which the 
sign must be extended. These two 2903 slices therefore receive an E destination code via 18-15. The E destination code 
causes the 5100 input to be propagated across the ALU outputs. 
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Sign Out 

16-18 = 
111 

15(3) = 0 
15(2) = 0 
15(1) = 1 
15(0) = 1 

I I 
z z 

- 0103 MSS 0100 0103 0100 ... SI03 2903 SIOO - SI03 SIOO -
- C(N+4) CN C(N+4) CN 

IS - OVR W/MSS 

~ 2903 

- N W/MSS 

~ 
+5V 

~ 
LSS ~ I 

!e~ WE !e~ 

~ ~ j + 4 III 

-- I-

- I---
~"V'7 . ,,> 

Y3 - YO 

XXXX 

Y3 - YO 

XXXX 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 
Y = data bit 
X = sign bit 

LSS 
WE 

j 
-

_X 
-
+5V 
() 

f----1. 

t--

I 
z 

0103 0100 

SI03 SIOO 

C(N+4)· CN 
IS 

2903 

W/MSS 

~ 

!e~ 

I j 

t-

."V., 
Y3 - YO 

XYYY 

LSS 
WE 

! 

Figure 8-19. 2903 Sign Extend Logic 

2903 SPECIAL FUNCTIONS 

",,"-Y -
+5V 

() 

~~ 

~ 

I 
z 

0103 0100 ~ 

SI03 SIOO f4-
C(N+4) CN f--

LSS 
2903 

W/MSS 
~ 

!!!~ 

+~ 
~ 

~ 

'v~ 
Y3 - YO 

YYYY 

LSSQ 
WE 

t -:--

Let us now examine special 2903 functions. These functions are summarized in Table 8-8. 

Special functions are implied by instruction codes bits 15 through 18 when instruction code bits 10 through 14 are all O. 
Nine special functions are provided; seven special function codes are unused. You should be sure not to use any 
of the unspecified special function codes since the 2903 device's response to these unspecified function codes is not 
guaranteed. 

Table 8-8 summarizes signal outputs and exact ALU operations associated with each of the special functions. 
Wherever a signal's primary purpose is meaningful. the signal is so used by a special function. Where a signal's primary 
purpose is not meaningful. the special function may generate an output to meet its specific needs. 

Do not attempt to understand ALU operations or signal utilization merely by inspecting Table 8-8. Many of the ALU 
operations, although absolutely accurate representations of ALU logic, rely on specific external pin connections to 
generate the required net effect. Signals, likewise, are used in special ways that depend not only on the special func­
tion, but also on the required pin connections which have been arbitrarily selected by the 2903 designers. 

ALU logic and signal utilization is described in detail function by function. 

We will begin by examining the simpler 2903 special functions, since many of these simple special functions act as ac­
cessory commands to the more complex functions. 

There are two normalization functions: a single length and a double length normalization. The double length 
normalization function is also the first twos complement divide instruction. 
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Table 8-8. 2903 Special Functions Summary 

Instruction 
Associated Signals 

Code(l) ALU Operation ALU Function SI03 P/OVR GIN Z 
SIOO 0103 0100 WiiiTE C(N+4) 

18 17 16 15 MSS Other MSS Other MSS Other MSS IS LSS 

0 0 0 0 Unsigned multiply 
F = S + CN if Z = L 
F = R + S + CN if Z = H Hi-Z I FO I 00 0 C(N+4i OVR P N G I I 00 

0 0 0 1 Unused 

0 0 1 0 Twos' complement multiply 
F = S + CN if Z = l 
F = R + S + CN if Z = H 

Hi-Z I FO I 00 0 ON+4) OVA P N G I I 00 

0 0 1 1 Unused 

0 1 0 0 Increment F = 5 + 1 + CN I I P Hi-Z Hi-Z 0 C(N+41 OVR P N G Z Z Z 

0 1 0 1 
Sign/Magnitude twos F = S + CN if Z = l 

I I P Hi-Z Hi-Z 0 C(N+4' OVR P (2) G 53 I I 
complement F = S + CN if Z = H 

0 1 1 0 
Twos complement multiply. F = 5 + CN if Z = l 

Hi-Z I FO I 00 0 CIN+4) OVR P N G I I 00 last cycle F = S - R - 1 + CN if Z = H 

0 1 1 1 Unused 
CD 

m 
0> 1 0 0 0 Single length normalize F = 5 + CN F3 F3 Hi-Z 03 I 0 (3) 02(!)01 P 03 G (4) (4) (4) 

1 0 0 1 Unused 

1 0 1 0 Double length normalize F = S + CN R3@F3 F3 I 03 I 0 (5) F2~Fl P N G (6) (6) (6) 

1 0 1 1 Unused 

1 1 a a Twos complement divide 
F = S + R + CN if Z = l ~ F3 I 03 
F = S - R - 1 + CN if Z = H 

I a CIN+41 OVR P N G (7) I I 

1 1 a 1 Unused 

1 1 1 a 
Twos complement divide. 
final 

F = S + R + CN if Z = l F3 F3 Hi-Z 
F = S - R - 1 + CN if Z = H 

03 I 0 CIN+41 OVA P N G (7) I I 

1 1 1 1 Unused 

ao, a" a, ,,'" a' •• ,", '00' a .... ~ ,."" ""} 1) 10 - 14 must all be O. Hi-Z = Signal floated 
Fa. Fl. F2 and F3 are the four AlU output bits. Bit 3 is the high-order bit. 2) N if Z = O. S3 (i) F3 if Z = 1. I = Input signal 
RO. R 1. R2 and R3 are the four R operand bits. Bit 0 is the low-order bit. 3) o 3 (!) 02 at MSS. CiN+4; at other slices. P = Parity of S103. Y3. Y2. Yl. YO 
SO. S 1. S2 and S3 are the four S operand bits. 4) Zero status for 0 register output. MSS = Most Significant Slice 

5) F3 (!) F2 at MSS. CIN+41 at other slices. IS = Intermediate Slice 
6) Zero status for combined. a-bit 0 register and AlU outputs. lSS = least Significant Slice 
7) Sign compare output. Other = IS or LSS 



The normalization operation upshifts the contents of a data word until the two high­
order bits have different values. Zeros are shifted into low-order bit positions. Here are 
some normalization illustrations for 16-bit words: 

Initial 

0000001011000111 

1110101101000101 

0110101101011010 

0000000000000000 

1111111111111111 

Normalized 

0101100011100000 

1010110100010100 

0110101101011010 

Cannot be normalized 

1000000000000000 

2903 
NORMALIZE 
SPECIAL 
FUNCTIONS 

Each normalize instruction is executed in one microcycle. During this microcycle one upshift occurs if the two high­
order bits of the most significant slice S ALU operand are both O. or both 1. No operation occurs if the two high-order 
bits differ. In order to complete the normalization process for a multibit word that has many leading 0 or 1 bits. you 
must re-execute the normalize instruction the required number of times to shift out leading similar bits. If. for example. 
there are five leading 0 bits. followed by a 1 bit. you will have to execute a normalize instruction four times before the 
data is normalized. On the fifth execution of the normalize instruction the data will be left unaltered. 

Your logic must identify the point at which data has been normalized; the normalize instruction outputs appropriate 
status signals to identify normalization - as we will describe shortly, 

If binary data is being interpreted as a signed binary number. then a positive number. after normalization. will have a 0 
in the high-order bit and a 1 in the adjacent bit: 

01XXX----

After normalization a negative number will have a 1 in the high-order bit and a 0 in the adjacent bit. 

10XXX----

The single length normalization instruction generates a data word out of the Q registers of 
parallel 2903 slices. Thus. you would generate an 8-bit data word out of two parallel slices as 
follows: 

7 6 4 2 o ~BitNo. 

I I I I I I I 
~~ 

MSS LSS 
Q 

Register 

Q 

Register 

Four 2903 slices generate a 16-bit data word as follows: 

2903 
SINGLE 
LENGTH 
NORMALIZATION 

15 14 13 12 11 10 9 8 6 5 4 3 0 ~ Bit No. 

Ll.llllUJl!LWIJ 
MSS 

Q 

Register 

IS 
Q 

Register 

IS 
Q 

Register 

LSS 
Q 

Register 

MSS means Most Significant Slice. IS means Intermediate Slice. LSS means Least Significant Slice. 

The double length normalization instruction generates a data word out of the Q register and 
the local RAM location addressed by B. Two 2903 slices would generate a 16-bit word as 
follows: 

2903 
DOUBLE 
LENGTH 
NORMALIZATION 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o ~BitNo. 

MSS 
Local 
RAM 

LSS 
Local 
RAM 

MSS 
Q 

Register 
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Register 



There are some differences between the single and double length normalization instructions resulting from the 
fact that the double length normalization instruction must use local RAM, and the ALU, while the single length 
normalization instruction needs Q register logic only. We will therefore look at the single length normalization 
instruction first. 

The single length normalization instruction performs a number of upshifts until the most significant 2903 Q register 
has different values in its two high-order bits. Each upshift requires one microcycle. therefore the total execution time 
for the normalization instruction is variable. But the C(N+4) and OVR outputs are used to identify the last, and sec­
ond to the last microcycles of the single length normalization instruction. On the second to the last cycle the OVR 
signal is output high; OVR therefore outputs the Exclusive-OR of 02 and 01 at the most significant slice. C(N+4). 
likewise. outputs the Exclusive-OR of 03 and 02 at the most significant 2903 slice. This may be illustrated as follows: 

o Register of 
Most Significant Slice 
.~ 

103102101 J 00 1 
~ 

C(N+4) = 03 <±> 02 
~ 

OVR = 02 EE> 01 

Thus C(N+4) goes high on the last microcycle of the single length normalization instruction. while OVR goes high on 
the previous microcycle. 

You cannot normalize a data word that is initially all 0 bits. Since zeros are shifted into the low-order bit position 
with each upshift. the normalization operation would never end. The single length normalization instruction therefore 
outputs a high Signal on the 0 status line and terminates in a single microcycle. For this to be possible the single length 
normalization instruction uses Z status logic to indicate 0 register contents. rather than ALU output. That is to say. Z is 
output high when all Q register bits are 0, not when all ALU outputs are O. 

You will now understand the special information output via C(N+4). OVR. and Z signals. as shown in Table 22-8 for the 
single length normalization instruction. 

During each microcycle of a single length normalization instruction the Q register contents are recycled through 
Q shifter logic. ALU logic, which would otherwise be unused, adds the contents of CN to the S operand input. 
This logic allows you to count the number of microcycles - and therefore upshifts - performed by the single length 
normalization instruction. Assuming that WE. OEy. OEB. and 10 are all low and CN is high. then the RAM location ad­
dressed by B becomes a microcycle counter. This RAM location becomes the ALU S operand. and the destination for 
the ALU output. The ALU output is simply theS operand input incremented by 1. assuming that CN is indeed high. 

Single length normalization instruction pin connections are illustrated in Figure 8-20. 

You can. if you wish. maintain a microcycle counter in external memory by inputting the ALU S operand from DBO-083 
and outputting the ALU result at YO-Y3. This requires that WE and OEB be input high. 

If you execute the single length normalization instruction with 10 high. then the 0 register contents also become the 
ALU S input. Now on each microcycle the 0 register contents. before they are upshifted. are output by the ALU to YO­
Y3. and/or local RAM. optionally incremented by 1 if CN is input high. 

Let us now 4;txamine the double length normalization instruction. The RAM location ad­
dressed by B provides the high-order half of the word being normalized. 0103 from the most 
significant 2903 slice must therefore be connected to SIOO at the least Significant 2903 slice. 
Also, you cannot use ALU logic to count instruction microcycles since ALU logic con­
tributes to the normalization operation. Therefore CN must be input low, and if you wish 
to count microcycles you must use external logic or an extra microcycle per cycle. 

2903 
DOUBLE 
LENGTH 
NORMALIZATION 

The high-order half of the word being normalized can come from internal or external RAM. If it comes from internal 
RAM then the RAM location addressed by B must provide the S operand to the ALU. and must receive the ALU output. 

But you can also use external RAM to provide the high-order half of the word being normalized; now OBO-OB3 gener­
ates the ALU S operand and the ALU output is transmitted to YO-Y3. For this to occur OEB and WE must both be high. 

The C(N+4) and OVR statuses identify the last and second to the last microcycles of the double length nor­
malization instruction's execution - just as they do for the single length normalization instruction. The double 
length normalization instruction also terminates in a single microcycle when you attempt to normalize a word which is 
initially O. At this time the Z status is output high. For this to be possible double length normalization logic tests the 
combined contents of the 0 register and ALU output in order to generate a Z status - as indicated in Table 8-8. Dou­
ble length normalization pin connections are illustrated in Figure 8-21. 
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+5V 

Z = 00 • 01 ••• ON 

Z Z Z 
03 0100t----t 0103 0100 0103 0100 0103 0100 

SIOOt---~ SI03 SIOO SI03 SIOO SI03 SIOO 

CNt---~ C(N+4) CN C(N+4) CN C(N+4) CN 
IS +5V IS +5V LSS 

03¥02 

02¥01 OVR W/MSS 
2903 2903. 2903 

W/MSS W/MSS N 
MSS 
2903 

03 

LSS LSS LSS 
WE WE WE WE 

ALU output = [S] + CN. If WE. OEB. OEy and 10 are low. [B] = [y] = [B] + CN 
[0] = [a] upshifted one bit 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 

[S] = S ALU input 
[B] = Local RAM contents addressed by B 
[y] = y output 
[0] = 0 register contents 

Figure 8-20. 2903 Single Length Normalization Function Pin Connections 

Another simple 2903 special function is the Sign/Magnitude Twos Complement. This func­
tion converts negative twos complement numbers to this positive form, while leaving posi­
tive twos complement numbers alone. This may be illustrated as follows for 16-bit numbers: 

Initial 
After Sign/Magnitude 

Twos Complement 

-

2903 SIGN/ 
MAGNITUDE 
TWOS 
COMPLEMENT 
FUNCTION 

0110010111010010 

1110101111010101 

0110010111010010 

0001010000101011 

Unchanged positive number 

Twos complement of negative number 

The 2903 uses slightly devious logic in order to implement the Sign/Magnitude Twos Complement function. This is the 
actual ALU algorithm executed: 

ALU output = [S) + CN if Z status is 0 
ALU output = [S) + CN if Z status is 1 

[S) means ALU S operand. S is the complement of the S operand. 
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F3 

F2 

Z = FO • Pi . . . FN • QO • Q1 • ON -
z z z 

0103 0100 0103 0100 0103 0100 

F3 ... SI03 SIOO SI03 SIOO SI03 SIOO 

¥F2'" C(N+4) CN C(N+4) CN C(N+4) CN 
IS +5V IS 

¥F'4- OVR W/MSS r-4. 2903 () 2903 

F34-N 
MSS 

W/MSS W/MSS 2903 
1 .......... 0 

+5V 
LSS ~ LSS ~ LSS 

WE WE WE 

• I~ 

ALU output = [S] + CN. If WE. OEB. OEy. CN and 10 are low. [B] = [y] = 2 [B] 
ALU output is upshifted one bit 
[0] = [0] upshifted one bit 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 
[S] = S ALU input [B] = Local RAM contents addressed by B 
[y] = y output 
[0] = a register contents 

+5V 
() 

. ~ : . 
z -

QI03 0100 ~O 

SI03 SIOO ---
C(t-.J+4) CN -0 

+5V LSS 
C 2903 

~ W/MSS 

- LSS~ 
WE 

~ 

Figure 8-21. 2903 Double Length Normalization Function Pin Connections 

During execution of the Sign/Magnitude Twos Complement instruction. the Zero status at the most significant 2903 
slice directly outputs the high-order S operand bit - which is the sign bit for a twos complement number. The Zero 
status becomes an input to intermediate and least significant slices. which therefore receive the sign bit from the most 
significant slice. For a 16-bit number this may be illustrated as follows: 

Most Least 
Significant Intermediate Significant 

Slice Slices Slice 

15 14 13 12 11 10 9 8 6 5 4 3 2 0 4--BitNo. 

z=y z=y z=y 

z=y ! ! t 
Now you can connect pins of 2903 slices in any way to make use of the Sign/Magnitude Twos Complement 
ALU logic, but to use it for its intended purpose, the connections illustrated in Figure 8-22 are required. 
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+5V 
4) 

j= 
:~ 

S3 - - --
~ 

Z Z Z Z 

- 0103 0100 0103 0100 0103 0100 0103 0100 t--

- SI03 SIOO SI03 SIOO SI03 SIOO SI03 SIOO I--

- C(N+4) CN C(N+4) CN C(N+4) CN C(N+4) CN 
IS +5V IS +5V LSS ... OVR W/MSS 

~ 2903 () 2903 
C) 

2903 ... MSS 
W/MSS ~~ W/MSS 1----4 W/MSS N 2903 +5V 

LSS r---<> LSS ~ LSS ~ LSS~ 
WE WE WE WE 

j,. 
• 

ALU output = [S] + CN if Z = 0, or [5) + CN if Z = 1. If WE, OEB, OEy, CN and 10 are low, 

[B) remains unaltered if Z = 0, or [B) = [B) + 1 if Z = 1 

In either case [y) = ALU output 

Neither ALU nor a shifter function 

'OVR = 1 if ALU input is 1000····00, the most negative binary number. 
"N = F3 if Z = 0, or F3 E9 S3 if Z = 1 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 
[S) = S ALU input. 
(S) = complement of S ALU input 
[F) = ALU output 
[B) = Local RAM contents addressed by B 
[0) = a register contents 
F3 = High-order ALU output bit from most significant slice 
S3 = High-order ALU S operand input bit to most significant slice 

j,. 

Figure 8-22. 2903 Sign/Magnitude Twos Complement Function Pin Connections 

By connecting Z to CN positive. twos complement numbers are passed unaltered through the ALU: 

[F) = [S] + CN if Z = 0 
CN = Z. therefore [S] = [S] + 0 

But a negative twos complement number is complemented and then incremented: 

[F) = [5] + CN if Z = 1 
CN = Z. therefore [S] = [5] + CN 

In other words. a twos complement number is twos complemented - which generates a positive number. (If you are 
unclear on this twos complement logic refer to Volume 1. Chapter 2.) 

8-71 



The negative status, N, is output high at the most significant slice if a negative twos complement number was 
converted to its positive form. This is the actual logic used by the most significant 2903 slice: 

If Z = 0, N = F3 
Z = 0 when S3 = 0, in which case [F) = [S] 
Therefore N = F3 = S3 = 0 

If Z = 1, N = F3 E9 S3 
Z = 1 when S3 = 1, in which case [F) = [S] + 1 
Therefore N = F3 ~ S3 = S3 e S3 = 1 

The Overflow status indicates the only overflow condition which can occur when a Sign/Magnitude Twos Comple­
ment conversion is performed. There is no twos complement positive representation for the most negative twos 
complement number which can be represented: 

If [S] = 1000·····0 
[F) =0111·····1 + 1, = 1000·····0 

If this most negative number is received at the S operand, it is passed through unaltered and the Overflow status from 
the most significant slice is output high. 

The Sign/Magnitude Twos Complement instruction places no restrictions on where the S operand may come from. Any 
of the three options - external memory, local RAM, or the Q register - may provide the S operand to the ALU. 

The third and last of the simple 2903 special functions is the Increment. This special func- 2903 
tion adds 1, plus the Carry In to the S operand. This algorithm may be illustrated as follows: INCREMENT 

[F) = [S] + 1 + CN FUNCTION 

[F) is the ALU output. [S] is the ALU S operand input. and CN is the Carry In. If CN is 0, you increment by 1; if CN is 1, 
you increment by 2. This is useful in byte/word machines if the Program Counter is kept in local RAM. 

Once again the S operand may come from external or local RAM or from the Q register. 

The increment special function makes no special use of status logic. 

Let us now look at the unsigned multiply special function. The algorithm used by the 2903 
to perform an unsigned multiply is exactly the same as the algorithm which we described 
earlier in this chapter, when showing how to program an unsigned multiply for the 2901. In-

2903 
UNSIGNED 
MULTIPLY 

itially the multiplier must be in the Q register and the multiplicand in the RAM location which provides the ALU R input. 
This may be external RAM connected to DAO-DA3, or local RAM addressed by A. The product will be generated in the 
RAM location that receives ALU output. and the Q register. The RAM location connected to ALU output may be exter­
nal RAM connected to YO-Y3, or local RAM addressed by B; it ultimately holds the upper half of the product. The Q 

register holds the lower half of the product. The RAM location that finally holds the upper half of the product must in­
itially contain O. Thus we can illustrate initial and final data locations as follows: 

Multiplicand Multiplier (0) 

Initial: R II S I Q I 
Product 

Multiplicand upper lower 

Final: R I I S I Q I 
The 2903 unsigned multiply operation will multiply two 16-bit numbers to generate a 32-bit product. If you 
wish to multiply larger numbers you must do so in 16-bit increments and add partial products using additional 
microcycles. 

If we compare the register utilization illustrated above with the unsigned multiply description given for the 
2901, the local RAM location addressed by B in the illustration above becomes the window into which the multipli­
cand is added whenever a 1 bit is shifted out of the multiplier; but 2903 logic tests this bit internally, outputting the 
least significant Q register bit from the least significant 2903 slice via the Z status. The Z status becomes an input to 
the most significant and intermediate slices, so that these 2903 devices can also tell whether the multiplicand is to be 
added into the product window. Thus the unsigned multiply consists of 16 microcycles. In each microcycle the low­
order bit of the Q register in the least significant slice is tested. If this bit is 1. the mu Itiplicand is added to the partial 
product. If this bit is 0, no addition is performed. Addition, if it occurs, consists of adding the ALU Rand S inputs, which 
probably means adding the contents of the RAM location addressed by A to the contents of the RAM location ad­
dressed by B. If A and B are the Rand S ALU inputs, respectively, with the sum returned to the RAM location addressed 
by B, then WE, OEB. OEy. EA. and 10 must all be O. 
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After the low-order bit of the Q register in the least significant slice has been tested. and a conditional addition has 
been performed. the product space (local RAM addressed by B. and the Q register) is downshifted one bit position dur­
ing the same microcycle. The Carry status following the addition is shifted into the high-order bit of the ALU output for 
the most significant slice. If no addition is performed. then the Carry will e_qual O. and 0 will be shifted into the high­
order ALU output bit of the most Significant 2903 slice. This may be illustrated as follows: 

Most Significant Slice 

R input 

~ 

'F2 

S input 

~ 

----I~--I~ C(N+ 1) = C 

\ \ \ \'----~. SIOO = FO 
C F3 F2 F1 

A single microinstruction performs the actual unsigned multiplication; however. preceding instructions must load the 
multiplier and multiplicand into their appropriate registers. and must zero the RAM location to be used for the running 
partial product. 

Necessary pin connections in a 2903 configuration that uses the unsigned multiply function are illustrated in 
Figure 8-23. 

The use of status by the unsigned multiply function is straightforward - with the exception of the Zero status which 
propagates the current low-order multiplier bit to all 2903 slices as we have already described. The Carry In, CN, 
must be O. If it is 1 you get the wrong answer when the multiplicand is added to the product window. The Carry Out, 
C(N+4}, the Overflow, and the Sign status are all output by the most significant 2903 slice to reflect the result 
of each partial product addition. However. these statuses are useless and should be ignored. 

The 2903 will also perform twos complement multiplication on two 16-bit signed binary 
numbers to generate a 32-bit signed binary resuft. The algorithm for performing twos com­
plement multiplication is essentially the same as the unsigned multiplication algorithm 
which we have already described; the same registers are used to hold the multiplier, the 
multiplicand, and results. 

There are two differences between signed and unsigned multiplication; they are: 

1) We must account for the sign bit of the multiplier. which is not a magnitude bit. 

2903 TWOS 
COMPLEMENT 
MULTIPLY 
FUNCTION 

2) Slightly different logic is needed to generate the bit which is shifted into the high-order ALU output from the most 
significant 2903 slice following each downshift. 

The logic of twos complement multiplication using Signed binary arithmetic is readily deducible from the unsigned 
multiplication algorithm which we described for the 2901. together with the discussion of Signed binary arithmetic 
given in Chapters 2 and 3 of Volume 1. Moreover. you the user cannot modify twos complement multiply logic in any 
way; therefore a detailed understanding of the algorithm is of academic interest only. The algorithms for Signed and 
unsigned binary multiplication remain the same until the last microcycle - at which time the sign bit of the 
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multiplier is in the low-order bit of the product space. This may be illustrated as follows: 

Local RAM 

MSS IS IS LSS 

Ix/x/xlxlxlxlxlxlxlxlxlxlxlxlxlx 
~ ...... ------.. ----~ ~----.. ------~~ - V 

Q Register 

window into which 
multiplicand is added 

generating partial 
product 

MSS IS IS LSS 

~~ 

I X I X I X I X I X I X I X I X I X I X I X I x·1 X I X I xl S I 
t 

sign bit. last 
bit of multiplier, 
which has been 
downshifted out 

of Q register 

If the sign bit is 0, then the multiplier is positive and the multiplicand need not be added again to the partial product; 
following the next downshift the multiplication is complete. But if the sign bit is 1, then on the last microcycle the 
mu ltiplicand must be subtracted from the partial product before the final downshift. 

When the Twos Complement Multiply function is executed, following each downshift, the Exclusive-OR of the 
Overflow and Sign statuses is moved into the high-order bit position of the most significant 2903 slice. This en­
sures that a 1 is shifted into the high-order bit position if addition generated a Carry, or if a negative result must have its 
sign extended. 
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OO,LSS - - -
Z Z - 0103 0100 0103 0100 . 

- SI03 SIOO SI03 SIOO 

- C(N+4) CN C(N+4) CN 
IS +5V 

OVA ... OVA W/MSS 

~ 2903 C) 

F3'" N MSS W/MSS ~ 
2903 +5V 

LSS r--o LSS ~ 
WE WE 

j h 

ALU output = [S) + CN if Z = 0, or [A) + [S) + CN if Z = 1 
[F) and [0) are downshifted one bit position 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 
[S) = S ALU input 
[A) = A ALU input 
[F) = ALU output 
(0) = 0 register contents 
00 = Low-order bit of 0 register 
FO = Low-order bit of F register 

+5V 
C) 

:: 
.~ 

-
4,.· 

Z Z 
0103 0100 0103 0100 ~OO 

FO, LSS 
SI03 SIOO SI03 SIOO 

C(N+4) CN C(N+4) CN ~O 
IS +5V LSS 

2903 () 2903 

W/MSS H W/MSS 

LSS I-- LSS~ WE WE 

j~ j~ 

Figure 8-23. 2903 Unsigned Binary Multiply Function Pin Connections 

Figure 8-24 illustrates pin connections needed to execute Twos Complement Multiply and Twos Complement 
Multiply Last Cycle special functions. 

The only non-obvious aspect of Figure 8-24 is the generation of the Carry In (CN) to the least significant 2903 slice. 
This Carry In must be 0 until the last microcycle. at which time it must receive the Zero status. We therefore show the 
Twos Complement Multiply Last Cycle instruction code uniquely generating an ENABLE signal which conditions an 
AND gate that generates the CN input The AND gate passes through the Zero status during the Twos Complement 
Multiply Last Cycle instruction's execution. but at other times the AND gate does not pass the Zero status. generating a 
o CN input This function is provided in the 2904 logic. 

You must execute twos complement multiply instructions in the proper sequence in order to perform twos complement 
multiplication using 2903 devices You execute the Twos Complement Multiply special function fifteen times. then you 
execute the Twos Complement Multiply Last Cycle special function. 

The two microinstructions which perform the twos complement multiply and the last cycle of the twos complement 
multiply must of course be preceded by microinstructions that correctly load registers and zero the memory word being 
used for the high-order half of the product 
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OV 

F3 

00, L5S --
Z Z .... 0103 0100 0103 0100 

- SI03 SIOO SI03 SIOO 

- C(N+4) CN C(N+4) CN 

ll.- lS +5V 
OVR W/MSS 14- 2903 () 

4- N MSS W/MSS ~ 
2903 +5V 

lSS r--o lSS ~ 
WE WE 

~ .~ 

AlU output, not last cycle, = [5] + CN if Z = 0, or 
[R] + [5] + CN if Z = 1 

-
Z 

0103 0100 

SI03 SIOO 

C(N+4) CN 
IS 

2903 

W/M5S 

l5S 
WE 

j ~ 

[F] and [0] are downshifted one bit position 

AlU output, last cycle, = [5] + CN if Z = 0 or 
[5] - [R] - 1 + CN if Z = 1 

[F] and [0] are downshifted one bit position 

ENABLE is high on last cycle only 

MSS means Most Significant Slice 
IS means Intermediate Slice 
l5S means least Significant Slice 
[S] = S AlU input 
[R] = R AlU input 
[F] = AlU output 
[OJ = a register contents 

00 = low-order bit of a register 
FO = low-order bit of F register 

+5V 
() 

~~ : ~ 

Z 
0103 0100 ~ 

SI03 SIOO 

C(N+4) CN ---0= +5V lSS 
C) 2903 

~~ W/M5S 

- LSS* WE 

ENABLE 

Figure 8-24. 2903 Signed Binary Multiply Function Pin Connections 
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We will now examine the 2903 Twos Complement divide special function. 

You divide a divisor into a dividend. The answer is called a quotient. and there will be a remainder. 
This may be illustrated as follows: 

Quotient r = Remainder 

Divisor ) Dividend 

2903 TWOS 
COMPLEMENT 
DIVIDE 
FUNCTION 

Conceptually the algorithm for performing binary division is very straightforward. As for decimal division. you begin at 
the most significant end of the dividend: 

1 0 1 ... 1 1) 1 00· .. 1 1 0 1 
110 ... 11 

But when you perform binary division the problem reduces to comparing the magnitude of the divisor and the current 
dividend field: 

~ .. 
. - . -. X .. - - . - - - DIvisor larger. X = 0 

( 101"'11)"-"-'-'-~ 
Divisor smaller. X = 1-1 0 1· .. 1 1 ~ 

When performing a twos complement divide we begin by subtracting the divisor from the high-order end of the divi­
dend: 

1 0 1 0 1 1 0 1 »):f'&it"Q;~;;1;(11 0 1 1 1 1 0 1 
/10101101 

Dividend most significant field 001 001 0 1--Partial remainder 

If the divisor is the smaller number. as it is in the illustration above. then the partial remainder is positive: we add the 
next dividend bit and subtract again: 

10101101)1101001010111101 
10101 101 

001001011 
10101101 

This is equivalent to upshifting the combined partial remainder and dividend residue one bit position. and then 
subtracting the divisor again: 

1 0 1 0 1 1 0 1) 1 1 01 00 1 0 1 0 1 11 1 0 1 
~10101101~ 

'--P-a-rt-ia-I-re-m---ainder-p 0 JJ?t 1 0 ~ I '--Dividend residue 

---~ 0010010110111101 
001 001 0 1 1 0 1 1 1 1 0 1-Upshift combined partial 

---------~ 11 i0!...1LQOJ1_1LQO~1 remainder and dividend 
residue 
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But what happens if you get a negative result after subtracting the divisor from the current dividend field? The answer 
is that you must add the divisor back to the partial remainder before upshifting the dividend one bit position: and then 
subtract the divisor again. But in binary logic this is what happens: 

(Partial remainder + Divisor) x 2 - Divisor 

t 
this is the equivalent of an upshift 

The sequence of operations is equivalent to: 

Partial remainder x 2 - Divisor 

Therefore when you subtract the divisor and get a negative result. you simply upshift the concatenated Partial re­
mainder and Dividend residue fields one bit position. then subtract the divisor on the next step. 

This is. in essence. the algorithm used by the 2903 to perform binary division. and is called "non-restoring" division. It 
is based on the Twos Complement Divide special function. which performs the following net operations: 

[F] = [S] + [R] if Z = 0 

[F] = [S] - [R] if Z = 1 

[Fl [S1. and [R] are the ALU output. S operand and R operand. respectively. 

The Zero status is generated by sign compare logic as the complement of the Exclusive-OR of most significant slice 
high-order ALU output and R operand input bits: 

Z = R3E9F3 

Additional required conditions are that lEN be low and one of the Twos Complement Divide special functions be ex­
ecuted. 

The sign compare level is output at the most significant 2903 Zero status and it is input to the Zero status of intermedi­
ate and least significant 2903 slices. In effect. the sign compare logic compares the sign of the partial remainder with 
the sign of the divisor. This generates the following logic sequence: 

1) If [F] and [R] signs are the same. the divisor had a smaller absolute magnitude than the dividend field from which it 
was subtracted. Z is therefore O. so on the next microcycle we get: 

[F] = [S] + [R] 

2) If [F] and [R] signs differ. the divisor had a larger absolute magnitude than the dividend field from which it was 
subtracted. Z is therefore 1. so on the next microcycle we get: 

[F] = [S] - [R] 

The quotient bits are also determined by comparing the sign of the partial remainder with the sign of the divisor. If the 
signs differ. the cu rrent quotient digit is 0 because the divisor has the larger absolute value: but if the signs are the 
same. the current quotient digit is 1 because the divisor has the smaller absolute value. 

Let us now look at the exact 2903 implementation of the binary division. The two steps defined above do not take 
into account the first step - at which time we have no partial remainder. or ALU output. 2903 division logic therefore 
demands that the absolute magnitude of the divisor be greater than the absolute magnitude of the most signifi­
cant half of the dividend. To ensure that the divisor does indeed have larger absolute magnitude, the algorithm 
illustrated in Figure 8-25 is recommended in Advanced Micro Devices' literature. We will describe this logic. 
even though other logic could achieve the same desired result. 

In order to compare the absolute magnitude of divisor and dividend. we need to work only with the most significant 
half of the dividend. Comparison instructions destroy the data. therefore we begin by moving the divisor and the most 
significant half of the dividend to temporary buffers - in all probability additional locations in local RAM. 

When moving the divisor to an alternate RAM location we can test the Zero status to see if the divisor is O. If it is. the 
division must be aborted. 

Next we use the Sign/Magnitude Twos Complement special function (which we have already described) to generate 
positive magnitudes for the copies of the divisor. and the most significant half of the dividend: now we can compare 
these magnitudes without bothering about sign. 

The Sign/Magnitude Twos Complement function. when executed. ijenerates a positive Overflow status if the data in­
put is the most negative binary number allowed - in our case _2 16-. We take advantage of this Overflow status when 
operating on the most significant half of the dividend. If the most significant half of the dividend is -216. then the 
divisor cannot possibly be larger. so we downshift the entire dividend one bit position and restart. We also check the 
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Overflow status when performing the Sign/Magnitude Twos Complement operation on the divisor. If the divisor is 
_2 16, then it must be larger than the dividend, which is not -216, since the dividend test was made first. We therefore 
go straight to the division operation. 

If neither the divisor nor the most significant half of the dividend is -2 16, we upshift both numbers one bit position to 
remove the sign bit. then subtract the most significant half of the dividend from the divisor. If the dividend is larger. it 
must be downshifted one bit position - and the test repeated. When the divisor is larger, we are ready to start the divi­
sion. 

If you scale the divisor or the dividend, then the quotient must be scaled in compensation. Divisor, dividend and quo­
tient scaling logic is entirely your responsibility. 

Combining the data preparation and division programs, the sequence of 2903 special functions shown in Table 
8-9 is recommended in v~ndor literature to perform binary division. Table 8-9 shows a 16-bit divisor divided into 
a 32-bit dividend to generate a 16-bit quotient and a 16-bit remainder. 

The instruction sequence preceding the actual division instructions implement Figure 8-26 logic. These instructions 
need no special discussion. But we do need to clarify the manner in which status signals output by the 2903 are 
handled. The 2903 outputs status and data at the same time. For timing details refer to the 2903 microcycle descrip­
tion given earlier in this chapter. Some 2903 functions require status output by one 2903 slice to be input to other 
2903 slices within the same microcycles; for an example of this look at the way Z is used by the Twos Complement 
Divide special function. Status is output early enough in the microcycle for an output to become an input to another 
2903 slice within the same microcycle. But external logic will not have time to process any 2903 status outputs in the 
process of generating 2903 inputs for the same microcycle. Status output in one microcycle must be processed by ex­
ternal logic during the next microcycle. In Table 8-9 the comments associated with each microinstruction identify 
relevant status, if any, which is generated during the microinstruction's execution. Comments make clear the fact that 
the generated status must be tested during the next microcycle's execution time. Status output by the 2903 is usually 
tested by microprogram address generation logic. Later in this chapter, when we describe microprogram address 
generation devices. the consequences of testing status while executing the next microinstruction will become self-evi­
dent. 

The three divide instructions use 2903 local RAM and Q registers as follows: 

Dividend Most 
Significant 

Half register 

Dividend Least 
Divisor register 

Divisor buffer 
Dividend Most 

Significant 
Half buffer 

Remainder 

Significant 
Half register 

., 
Q register 

Quotient I 
The divisor and dividend require initial memory locations identified as registers in the illustration above. The divisor 
and the most significant half of the dividend also require temporary buffers. The contents of these buffers are destroyed 
in the process of comparing the divisor and dividend magnitudes. 
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Move the divisor and 
most significant half 
of the dividend to 
temporarY buffers 

Perform twos comple­
ment sign/magnitude 
convention on divisor 
and most significant 
half of dividend in 
temporary buffers 

Downshift 
dividend one 
bit position 

YES 

NO 

Exit 

Subtract most 
significant half of 
dividend from divisor 

Move least significant 
half of dividend to 
Q register 

Downshift 
dividend one 
bit position 

YES 

YES 

Start division 

Figure 8-25. 2903 Binary Division Data Preparation Algorithm 

8-80 



Table 8-9. A Possible 2903 Twos Complement Binary Division Microprogram 

Microinstruction 
No EA CN AO - A3 BO - B3 Comment 

18 - 15 14-11 10 

1 4 6 0 0 0 Divisor register Divisor buffer Copy divisor to temporary buffer. 
(RO) (R3) 

2 4 6 0 0 0 Dividend (MS) Dividend (MS) Copy dividend most significant half to temporary buffer. 

register (R 1 ) buffer (R2) 

3 5 0 0 X .0 X Dividend (MS) Convert dividend (MS) from twos complement to sign/magnitude version. 
buffer (R2) Test OVR externally while next microinstruction is being executed. If OVR is 1, 

branch to subroutine that downshifts dividend. 

4 5 0 0 X 0 X Divisor buffer Convert divisor (MS) from twos complement to sign/magnitude version. 
(R3) Test OVR externally. If OVR is 1, branch to microinstruction 9. 

5 9 4 0 X 0 X Dividend (MS) Shift out sign bit of dividend (MS) half in temporary buffer. 
buffer (R2) 

6 9 4 0 X 0 X Divisor buffer Shift out sign bit of divisor in temporary buffer. 
(R3) 

7 F 2 0 0 1 Dividend (MS) Divisor buffer Subtract sign bit stripped divisor from sign bit stripped dividend (MS) half. 

buffer (R2) (R3) If Carry = 1 (dividend larger) branch to subroutine that downshifts dividend 
or upshifts divisor. 

8 6 6 0 0 0 Dividend (LS) X Copy dividend least significant half to Q register. 
register (R4) 

9 A· 0 0 0 0 Divisor register Dividend (MS) Double length normalize dividend in MS register and Q register. 
(RO) register (Rl) 

10 C· 0 0 0 Z Divisor register Dividend· (MS) Execute twos complement divide instruction fourteen times. 
(RO) register (R 1 ) 

11 E 0 0 0 Z Divisor register Dividend (MS) Twos complement divide final instruction. 
(RO) register (R 1 ) 

·CN is connected to Z status while these two special functions are being executed. 

Before the actual division begins, the least significant half of the dividend is moved to the 0 register. The quotient is 
ultimately returned in the 0 register and the remainder in the Dividend Most Significant Half register. Taking a simple 
case. if local RAM is used to implement Divisor and Dividend registers and buffers. then we can illustrate local RAM 
and 0 registers utilization as follows: 

Initial: 

RO - Divisor 

R1 - Dividend. most significant half 

R2 - Copy of R1. dividend most significant half 

R3 - Copy of divisor 

R4 - Dividend. least significant half 

o -Dividend. least significant half 

Final: 

R1 - Remainder 
o -Ouotient 

The 0 register. which initially holds the least significant half of the dividend. ultimately holds the quotient. As the divi­
dend is upshifted out of the Q register and into the Dividend Most Significant Half register. quotient bits get shifted into 
the 0 register via 00. 
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If you look again at Table 8-9, you will see that the actual division operation executes three functions: 

1) The Double Length Normalize function. which serves as the first divide function. 

2) The Twos Complement Divide function; this function is executed N-2 times. where N is the number of divisor and 
quotient bits. 

3) A final Twos Complement Divide Correction function completes the division. 

Necessary pin connections for the Double Length Normalize function are given in Figure 8-21. Figure 8-26 
shows necessary pin connections for the Twos Complement Divide and Twos Complement Divide Correction 
functions. 

Zero status logic is used to transmit sign compare information from the most significant 2903 slice to intermedi­
ate and least significant slices. The level transmitted is the complement of the Exclusive-OR of the most significant 
bits of the ALU output and R operand input. This may be illustrated as follows: 

R3 R2 R1 RO 53 52 51 50 

ALU 

F3 F2 F1 FO 

Z = R3 E& F3 

This Z status logic works only when an A or C special function code is input via 18-15, and iEN is simultaneously 
low. The Z status also becomes the CN input to the least significant slice in order to neutralize CN within the ALU 
functions performed. This may be illustrated as follows: 

[F] 
so [F] 

[F] 
so [F] 

[S] + [R] + CN if Z = 0 
[S] + [R] if CN = Z 

[S] - [R] - 1 + CN if Z = 1 
[S] - [R] if CN =Z 

The Q register and ALU register are connected so that an upshift causes the high-order bit of the Q register to be input 
to the low-order ALU bit. The high-order ALU bit is lost. and the next quotient digit is shifted into the least significant 
bit of the Q register. This may be illustrated as follows: 

Lost bit 

ALU register 

Q register 

The level actually output at SI03 is also R3 e F3. This becomes the next bit shifted into the quotient. 

The final Twos Complement Divide Correction function forces a 1 into the low-order quotient bit. leaving the remainder 
adjusted accordingly. 
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Q3, MSS 

F3 + R3 - - - --
Z Z Z 

.... 0103 0100 QI03 QIOO 0103 0100 

""'""- SI03 SIOO SI03 SIOO SI03 SIOO 

- C(N+4) CN C(N+4) CN C(N+4) CN-

IS +5V IS - OVR 
2903 

() 
2903 W/MSS 

-N MSS ~ W/MSS ~~ W/MSS 
2903 _ 

f-<> LSS LSS ~ 

WE +5V WE WE 

j j .~ 

ALU output = [S) + [R) + CN if Z = 0, or [S) - [R) + CN - 1 if Z = 1 
[0) is upshifted on all microcycles 

LSS 

[F) is upshifted on twos complement divide, but not on twos 
complement divide last microcycle. 

ENABLE is high on last cycle only 

MSS means Most Significant Slice 
IS means Intermediate Slice 
LSS means Least Significant Slice 
[S) = S ALU input 
[R) = R ALU input 
[F) = ALU output 
[Q) = a register contents 

+5V 
C) 

~ 

~ 

03, R3 and F3 are most significant bits of a register, R ALU input and ALU output 

+5V 
~) 

:~ 
•• 

,~ 

z 

kJ:: QI03 QIOO 

SI03 SIOO 

C(N+4) CN 
LSS 
2903 

W/MSS 

WE 
LSSQ 

ENABLE 

Figure 8-26. 2903 Signed Binary Twos Complement Divide Pin Connections 

Merely understanding the pin connections and functions shown in Figure 8-25 is quite straightforward. Understand­
ing how binary division is performed using these pin connections, and the three binary division functions, is not self­
evident. Let us therefore take a very simple example and analyze divide logic in conjunction with this example. Con­
sider the following simple division: 

1816 = 3 remainder 3 

~ 
We have a 4-bit divisor and an 8-bit dividend which generate a 4-bit quotient and a 4-bit remainder. We must therefore 
execute the Double Length Normalize function, followed by two Twos Complement Divide functions, and a Twos Com­
plement Divide Correction function. 
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For Step 1 we execute the Double Length Normalize function. This upshifts the dividend and generates the sign of the 
quotient at SI03 of the most significant slice. The quotient sign bit gets shifted into the low-order 0 register bit. Logic 
may be illustrated as follows: 

Step 1 [F] [R] [5] [a] 5103 z 
Initial a 1 1 1 a a a 1 1 a a a 

11II1I1 
Final a a a 1 a 1 1 1 a a 1 1 a a a 0-0 

SI03 is the Exclusive-OR of the most significant slice ALU output and R operand input bits. This may be illustrated as 
follows: 

Step 1 [F] [R] [5] [a] 5103 z 
Initial a 1 1 1 a a a 1 1 a a a 

This SI03 logic says that when the divisor and the dividend have the same sign, the quotient is positive; the quotient is 
negative when the divisor and the dividend have opposite signs. What is not self-evident is the fact that we have 
multiplied the dividend by two before starting to work with the divisor. In consequence, we must finally upshift the 
quotient and the remainder to generate answers that stand numerical comparison. 

Moving on to Step 2, we execute the Twos Complement Divide function for the first time. The Zero status is 1: 

Step 1 [F] [R] [5] [a] 5103 z 
Initial 011100011000 

Therefore, we subtract the divisor from the high-order four dividend bits. This may be illustrated as follows: 

Step 2 [F] [R] [5] [a] 

In;t;a~/ 7 00 
I ,/o;OjOlO 

( 0011 
100 1 

5103 

o 

Final 1 1 a a a 1 1 1 1 a a a a a a a - 0 

--'----7 

z 

a 

This step is very logical. It is equivalent to initially subtracting the divisor from the dividend in any decimal division: 

25)237642 
25 
-2 
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In our binary example the divisor is larger than the dividend. even though the dividend has been upshifted; therefore 
the next quotient bit shifted into the Q register is O. 0 is indeed output by the most significant slice at 5103: 

Step 1 [Fi [R] IS] [a] SI03 Z 

Initial 0001 01 1 1 0011 0000 0 

Final 

!;~r:::~~o 
0 

ED 

In Step 3 the Twos Complement Divide function is executed a second time. The Zero status is now 0: 

Step 2 [F) [R] IS] [a] SI03 z 

Initial 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 

Final 

Therefore. during Step 3 we add the divisor to the high-order four bits of the shifted dividend. This addition. and the 
subsequent upshift. may be illustrated as follows: 

Step 3 [F) [R] IS] [a] SI03 Z 

,nl"ac::;? 1 00/111 0 0 

Final 111101111110 0000-0 0 

~"--7 

Adding the divisor to the upshifted dividend is also self-evident. We got a negative answer during Step 2. therefore (as 
described earlier) we must now compensate by adding the divisor to the upshifted dividend. The dividend is still 
smaller than the divisor. so once again 5103 outputs 0 at the most significant 2903 slice: 

Step 3 [F] [R] [S] [a] 

Initial 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

Final 

and zero gets shifted into the Q register to become the next quotient bit. 
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Finally. in Step 4 we execute a Twos Complement Divide Correction function. Once again we test the Z status. which is 
O. therefore we add the divisor to the high-order four bits of the upshifted dividend. Together with the final shift this 
may be illustrated as follows: 

Step 4 [F] [R] [5] [0] 5103 z 

"'"8'''''7''' 0 c; 
Final 010'1 0 1 1 1 0 1 0 1 

0000 0 

III 
0001 

o 

-v-~ t 
Forced input 

During the final shift a 1 is forced into the quotient to become the quotient low-order bit. The four high-order dividend 
bits do not change. Thus our final answer is: . 

Quotient = 0001 

Remainder = 0101 

In order to test the numeric accuracy of our answer we must upshift one bit position: 

Quotient = 0010 

Remainder = 1010 

Thus. the answer is 2 with a remainder of A 16 - which is not 3 with a remainder of 3. but it is correct. 

You r external logic (2904) must upshift thequotient and the remainder. if your algorithm demands it. and must adjust 
the quotient and the remainder if your algorithm requires the remainder to be less than the divisor. 
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THE 2902 CARRY LOOK-AHEAD DEVICE 

This device serves just one function: when performing binary addition or subtraction using cascaded 2901 or 
2903 systems, it creates parallel carry inputs for 4-bit slices beyond the least significant slice. Carry Look· 
Ahead logic has been described in detail in Volume 1, Chapter 4. We will therefore provide a simple summary of 
the 2902 device in this chapter, stating its logic functions, but omitting Carry Look-Ahead theory. 

The 2902 is packaged as a 16-pin DIP. All signals are TTL-level compatible and a single +5V power supply is required. 
The 2902A is a faster version of the 2902. 

2902 PINS AND SIGNALS 
Figure. 8-27 illustrates pins and signal assignments for the 2902 Carry Look-Ahead device. Figure 22-28 shows 
a 2902 device connected to four parallel 2901 devices. If you replace the 2901 devices with 2903 devices, con­
nections between the 2902 and the 2901 or 2903 devices do not change. 

<IT 
P1 
GO 
PO 
G3 
P3 
P 

GND 
-.. 

Pin Name 

PO,P1,P2,P3 
GO, G1, <32, G3 
p 
G 
CN 

- 1 .. - 2 .. - 3 :.. 
4 - '5 - 6 --
7 
8 

C(N+ 1), C(N+2), C(N+3) 
VCC, GND 

16 
15 --
14 -.. 
13 -

2902A -12 
11 
10 
9 

Description 

Carry Propagate 
Carry Generate 
Carry Propagate 
Carry Generate 
Carry in 
Intermediate carry 
Power, Ground 

-.. 
-.. 

VCC (+5V) 
P2 
G2 
CN 
C(N+1) 
C(N+2) 
G 
C(N+3) 

Type 

Input 
Input 
Output 
Output 
Input 
Output 

Figure 8-27. 2902A Carry Look-Ahead Generator Signals and Pin Assignments 
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DO - 03 04 - 07" 08 - 011 012 - 015 

D D D D 
00 1/0- 00 03 t----.... OO 03 t-----IOO 03 t-----.... 00 03 -015 I/O 
RAMO- RAMO RAM3 RAMO RAM3 RAMO RAM3 RAMO RAM3 -RAM15 I/O 

110 G G G G-
2901 P - 2901 P ~ 2901 pI-- 2901 p-

Carry~ ... CN 
In 

C(N+4) -
OVR­
F3-

F=O-

D 
YO - Y3 

-CN 

C(N+4) ~ C(N+4) ~ C(N+4) - C 
OVR ~ OVR I-- OVR - V 

F3 I-- F3.1-- F3 - N 
F = 0 ~ - CN F = 0 ~ r- CN F = 0 .... I- Z 

D D 
Y4 - Y7 Y8 - Yl1 

II 

D 
Y12 - Y15 

OVCC 

.. :RL 
4~ 4700 

L-----------------~------~CN 2902 

Pr--
C(N+ 1) C(N+2) C(N+3) 

I 

Figure 8-28. Four 2901 s in a 16-Bit CPU Using the 2902 for Carry Look-Ahead 

GO. G1. G2. and G3 are Carry Generate inputs received from 2901 or 2903 slices. GO is the least significant slice and 
G3 is the most significant slice. These Ginputs are generated by 2901 and 2903 devices as shown in Table 8-10. 

PO. P1. P2. and P3 are Carry Propagate signals received from four 2901 or 2903 slices. These signals are gener- . 
ated as shown in Table 8-10. 

In a 2901 or 2903 configuration with four slices, G3 and P3 are unused, as illustrated in Figure 8-28. This is logical: 
there are no higher-order devices to receive Carry Look-Aheads, therefore generate and propagate outputs from the 
most significant 2901 or 2903 slice are not meaningful. In fact. the most significant 2903 slice does not output a Carry 
Generate or Propagate signal. 

If you have fewer than four 2901 or 2903 slices in a configuration, then you leave unconnected the high-order 2902 G 
and j5 inputs. For example, an 8-bit Central Processing Unit configured with two 2901 slices would receive PO and GO 
inputs from the least significant slice, and that is all. P1 and G 1 inputs would not be received from the most significant 
slice since the most significant slice j5 and IT outputs are always meaningless. 

C(N+11. C(N+2). and C(N+3) are the three Carry levels output by the 2902 device. These signals should be con­
nected to the CN inputsof the 2901 or 2903 slices as illustrated in Figure 8-29. 
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Table 8-10. P and G Generation Logic for 2901 and 2903 Devices 

1543 Function P G C(N+4) OVR 

G3 + P3G2 + P3P2G 1 
0 R+S P3P2P1PO C4 C3 (t) C4 

+ P3P2P1GO 

1 S-R Same as R + S equations, but substitute Ai for Ri definitions in definitions 
I I I 
I I I 

2 R-S Same as R + S equations, but substitute Sj for Si in definitions I 

3 RVS Low P3P2P1PO P3P2P1PO + CN P3P2P, Po + eN 

4 RAS Low G3 + G2 + G1 + Go G3 + G2 + G, + Go + CN G3 + G2 + G1 + Go + CN 

5 RAS Low Same as R + S equations, but substitute Ri for Ri in definitions 
I . 
I 

6 R(.t)S Same as R@S, but substitute Ai for Ri in definitions 

G3 + P3G2 + P3P2G, G3 + P3G2 + P3P2G1 

7 R(+)S G3 + G2 + G, + GO See note 
+ P3P2P1GO + P3P2P,PO (GO + CN) 

Note: (P2 + G2P , + G2G,PO + G2G,GOCN1@(P3 + G3P2 + G3G2P, + G3G2G,PO + G3G2G,GOCNl 

Definitions (+ = OR, (t) = Exclusive-OR) 

Po = RO + So GO = ROSO 

P1 = R1 + S, G, = R1S1 

P2 = R2 + S2 G2 = R2S2 

P3 = R3 + S3 G3 = R3S3 

C4 = G3 + P3G2 + P3P2G, + P3P2P1GO + P3P2P,POCN 

C3 = G2 + P2G1 + P2P,GO + P2P,POCN 

CN is an input signal. This is logical. since the least significant 2901 or 2903 slice can receive any Carry In. 

The P and G outputs from the 2902 device allow you to cascade more than one 2902 device, and thus compute 
look-ahead carries for more than four parallel 2901 or 2903 slices. Figure 8-29 shows pertinent pin connec­
tions for a 48-bit CPU generated using twelve 2901 or 2903 devices. 

Figure 8-30 illustrates the actual logic used by the 2902 device to generate its output signals from its input 
signals. 
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2901's 

------------------------------~~ ~ r 
CIN 

GO PO G1 Pi G2 P2 G3 P3 GO PO Gl PI G2 PO ~ P3~ HGO PO Gl PI G2 P2 G3 P3 P P P 
CN 2902 CN 2002 CN ~m 

G 
C(N+1) C(N+2) C(N+3) G C(N+1) C(N+2) C(N+3) G C(N+1) C(N+2) C(N+3) 

co To C4 To C8 To C12 To C20 To C24 To C28 I I I To C36 To C40 To C44 
W 
0 

GO PO G1 Pi G2 P2 

~--------------------------------~~ICN 2902 

C(N+ 1) C(N+2) C(N+3) 

To C16 L-----------~~------ToC48 

Figure 8-29. Carry Look-Ahead Scheme for 48-Bit CPU Using Twelve 2901 s 
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Figure 8-30. 2902 Carry Look-Ahead Signal Generation Logic 
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THE 2909 AND 2911 MICROPROGRAM SEQUENCERS 

These two devices control the sequence in which microinstructions are fetched from memory and transmitted 
to 2901 or 2903 microprocessor slices. The 2910, a more capable microprogram sequencer, is described later in 
this chapter. 

The 2909 Microprogram Sequencer is packaged as a 28-pin DIP. The 2911 Microprogram Sequencer is 
packaged as a 20-pin DIP. Both devices use bipolar technology and have TTL-level compatible signals. Both 
devices use a single +5V power supply. 

The 2911 Microprogram Sequencer is a subset of the 2909. The 2911 has one less data input option and no out­
put mask option. The two devices are otherwise identical. 

THE PURPOSE OF MICROPROGRAM SEQUENCER LOGIC 
Figure 8-31 functionally illustrates microinstruction generation logic that might precede 2901 or 2903 
microprocessor slices in a Central Processing Unit, or equivalent system. We will explain the purpose of 
microprogram sequencer logic before describing the devices themselves. This discussion of microprogram se­
quencer logic assumes that you understand the relationship between microinstructions, a microprogram, and 
macroinstructions. If you do not understand these relationships, then refer to Volume 1, Chapter 4. 

Beginning at the top of Figure 8-31, a macroinstruction will be received and stored in a Macroinstruction register. 
When describing microprocessors and Central ProceSSing Units in general. we refer to the Macroinstruction register 
simply as the "Instruction register". This register holds the assembly language instruction object code that is to be ex­
ecuted. 

A macroinstruction object code will normally have two components: an instruction definition, and associated data. 
The instruction definition, frequently referred to as an operation code (or op-code). identifies the actual CPU operations 
which are to occur. The additional data may be used in a variety of ways to identify sources and destinations, to con­
tribute external memory addresses, or to be interpreted as immediate data. 

Events which are to occur within the CPU in response to a macroinstruction's execution are defined as one or more 
microinstructions. These microinstructions will be held in a high-speed read-only memory (ROM) or programmable 
read-only memory (PROM). The op-code portion of a macroinstruction identifies the microinstruction(s) t,o be executed 
in response to the macroinstruction. The additional information portion of the macroinstruction is simply held available 
unti I required by logic operations resulting from microinstruction execution. This may be illustrated as follows: 

Macroinstruction 
Object Code 

Op Code Data 

Microprogram ROM 

Microinstructions ---­
to be executed 
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ZERO 

CN 
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Figure 8-31. Function of Microprogram Sequencer Logic in a 2901 or 2903 Based System 
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Macroinstruction object codes have been described in considerable detail in Volume 1. Chapter 7. This discussion 
emphasizes the fact that macroinstruction object codes are selected to optimize Central Processing Unit operations. 
without regard to microprograms. or how microprograms may be stored in a memory device. This being the case. there 
is no chance that the op-code portion of any macroinstruction will have a bit pattern that addresses the correct 
microinstruction. or initial microinstruction that must be executed in response to the macroinstruction's execution. In­
stead. a mapping read-only memory or a programmable logic array is used as an address translator. The mapping ROM 
or PLA treats the op-code portion of the macroinstruction as an input. In the ROM. the actual microprogram starting ad­
dress is stored at the location addressed by the op-code bit pattern. Conceptually. this may be illustrated as follows: 

Microprogram ROM 

Microinstructions 
to be executed 

Assembly Language 
Object Code 

I Op Code I Data 

This actual bit pattern 
is treated as a memory 
address in mapping ROM 

The contents of the 
addressed memory 
word is the address 
of the first microinstruction 
in microprogram ROM 

The size of the mapping ROM and the width of the address which it outputs depend on the size of the microprogram­
that is to say. the length of the microprogram in terms of the number of microinstructions. This may be illustrated as 
follows: 

Microinstruction 
bit width has no 

effect on mapping 
ROM size 

r~----~~~~--~--" 
P---------------~~~ 

.~ 

•• 

Number of 
microinstructions 
determines Size 
of mapping ROM 

--------_ .. ----
If. for example. 256 or fewer microinstructions constitute the entire microprogram. then an 8-bit address can be output 
by the mapping ROM. irrespective of whether the microinstructions are 16 bits wide. 64 bits wide or have any other bit 
width. But. if the total length of the microprogram were 1024 microinstructions. then a 1 a-bit address wou Id have to be 
output by the mapping ROM. 
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If every macroinstruction resulted in the execution of a single microinstruction. then there would be no need for 
290912911 Microprogram Sequencers. The mapping ROM could output a single address to the microprogram ROM. 
The contents of the addressed microprogram ROM would be output to the Microinstruction register - to become the 
microinstruction that enables operations requ ired by the macroinstruction. 

But it is most unlikely that the Central Processing Unit's assembly language will consist of instructions that are all pri­
mitive enough to be implemented via a single microinstruction. In particular. as Central Processing Units become more 
complex. an ever larger number of microinstructions may have to be executed in response to a single macroinstruction 
execution; and the sequence in which these microinstructions are stored may also become more complicated. The 
2909 and 2911 Microprogram Sequencers provide the logic which takes you from the initial microinstruction through 
the microprogram. 

There is one very important conceptual aspect of the 2909 and 2911 Microprogram Sequencers which must be clearly 
understood. These Microprogram Sequencer devices are. like the 2901 and 2903. cascadable 4-bit devices. But there is 
no relationship between the number of 2909/2911 devices which are cascaded. 2901 or 2903 devices are cascaded to 
give you the required CPU word width. Two 2901/2903 devices generate an 8-bit word; four 2901/2903 devices 
generate a 16-bit word; eight 290112903 devices generate a 32-bit word. etc. 2909 or 2911 devices are cascaded to 
address the required length of microprogram memory. The number of 2909 or 2911 devices cascaded together is in no 
way influenced by the width of the microinstruction. or the width of the CPU word. For example. if the microprogram 
has 256 or fewer microinstructions. two 2909 or 2911 devices cascaded together are sufficient. This holds true 
whatever the microinstruction width may be. and whatever the CPU word width may be. Thus the number of parallel 
2901 or 2903 slices has no bearing whatsoever on the number of parallel 2909 or 2911 devices. You cannot even 
generalize by stating that there will be a tendency to require more 2909/2911 devices as the number of parallel 
290112903 devices increases. Rather. the width of the microinstruction will increase with the number of 290112903 
devices and. as we have already stated. the width of a microinstruction has no bearing on the length of the 
microprogram. or the number of parallel Microprogram Sequencer devices that will be needed. 

2909/2911 MICROPROGRAM SEQUENCER PINS AND SIGNALS 
Pins and signal assignments for the 2909 and 2911 Microprogram Sequencers are illustrated in Figure 8-32. 
These signals are most easily understood in conjunction with the functional logic illustrations for the two 
devices which are given in Figures 8-33 and 8-34. 

Central to the logic of 2909aild 2911 Microprogram Sequencers is the Output Multiplexer, 
which receives four inputs. SO and S 1 are two control inputs that select an output as 
follows: 

SO S1 
o 0 
o 1 
1 0 
1 1 

Output Multiplexer Source 
Microprogram Counter 
Address register 
Stack 
Direct inputs (via 00-03) 

2909/2911 
OUTPUT 
SELECT 

We will for the moment ignore the Microprogram Counter and Stack. two data storage areas whose functions will be 
described shortly. 

00-03 are four data input lines. Data input via these four lines can be selectedVby the Output 
Multiplexer and output immediately (if SO and S1 are both high). 

Data input via RO-R3 is held in the Address register. Timing for Address register access may be 
illustrated as follows: 

CP 
-----~ 

RO - R3 

2909/2911 
IMMEDIATE 
DATA INPUT 
2909/2911 
ADDRESS 
REGISTER 

Address ADDR 
Register _______ ""' ____________________________ _ 
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RE 
R3 
R2 
R1 
RO 

OR3 
03 

OR2 
02 

OR1 
01 

ORO 
DO 

GND 

- 1 28 - VCC (+5V). CP 1 20 
2 27 .. 

- 3 26 --: - -
CP (+5V) VCC 2 19 
PUP RE 3 18 - 4 25 - - FE D/R3 4 17 - 5 24 --- 6 23 -- --
C(N+4) D/R2 5 2911 16 
CN D/R1 6 15 - 7 22 - 2909 - 8 21 .. - . 
OE DIRO 7 14 
Y3 GND 8 13 - 9 20 -- Y2 ZERO 9 12 - 10 19 -. Y1 SO 10 11 - 11 18 .. - YO - 12 17 --- -- 51 .. 13 16 -- - SO 

- 14 15 -- ZERO 

Pin Name Description Type 

RO - R3 Address register input Input 
DO - 03 Data input Input 
RIDO - R/D3 Combined Address register and data input Input 
YO - Y3 Address output Output, Tristate 
ORO - OR3 Address output mask Input 
ZERO Zero Address output control Input 
RE Address register input enable Input 
OE Address output enable Input 
FE Stack enable Input 
PUP Stack pushlpop select Input 
CN Program Counter Carry in Input 
C(N+4) Program Counter Carry out Output 
SO,S1 Output select Input 
CP System clock Input 
VCC,GND Power, Ground 

Figure 8-32. 2909 and 2911 Microprogram Sequencer Pins and Signal Assignments 
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RE----------------~ 

RO-R3~ ________ ~~1 

00-03 __________ , 

50 ----~ 

51~ 

Address 
Register 

Output Multiplexer 

OR3----------+------+------4---~ 
OR2----------+------+----~ 
OR1 ----------+---~ 
ORO -------..... 

ZERO ----------4H----... +-----~~--_ 

YO Y1 Y2 Y3 

Microprogram 
Counter 

Incrementer 

C(N+4) 

Figure 8-33. 2909 Microprogram Sequencer Functional Logic 
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RE ------------------~ 

RIDO - R/D3 '--________ ..... 

SO ---1" 

Output Multiplexer 

S1 

ZERO ----------~----~~----~~--~ 

YO Y1 Y2 Y3 

Stack 
Po.inter 

4x 
4-Bit 
Stack 

Microprogram 
Counter 

C(N+4) 

Figure 8-34. 2911 Microprogram Sequencer Functional Logic 
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As illustrated above. the Address register enable signal RE must be low before data can be written into the Ad­
dress register via RO-R3.lf RE is low. then data is written into the Address register when the clock signal CP makes its 
high-to-Iow transition. But RE has no effect on Address register output. Whether RE is low or high. the Address register 
contents are transmitted to the Output Multiplexer. 

The 2911 shares D and R inputs. Data input at RIDO-R/03 will be written into the Address register if RE is low. and 
will be output via the Output Multiplexer if SO and 51 are both high. 

Multiplexer output lines VO-V3 have their own enable signal OE. If this signal is high, VO-V3 
outputs are floated. This allows you to disconnect Microprogram Sequencer devices from the 
microprogram ROM. something you may do when switching to an external tester. 

The 2911 has one set of conditioning logic on the Y outputs. The 2909 has two sets of condition­
ing logic on the Y outputs. Both devices have a ZERO input which, when low, unilaterally 
forces the four lines VO, V1, V2, and V3 to output O. Frequently you will use the ZERO line as a 
restart -with an initialization microinstruction sequence origin at microinst~uction number a in 
the microprogram ROM. The 2909, but not the 2911, has four mask signals, ORO, OR1, OR2, 
and OR3, which can individually force VO, V1, V2, and V3, respectively, low. Typically you 
will use the mask signals to implement conditional logic. For example. we have already seen how 
the Overflow status (OVR), output by the most significant 2901 and 2903 slice. signals an over­
flow or "exceptional" condition. By tying the Overflow status to ORO. you can implement 

2909/2911 
DATA 
OUTPUT 

2909/2911 
OUTPUT 
ZERO 
CONTROL 

2909 
OUTPUT 
MASK 

microinstruction pairs. The Output Multiplexer outputs a 0 low-order microinstruction address via YO. which ORO can 
override and convert to 1. For an 8-bit microprogram address this may be illustrated as follows: 

,...-------Output by high-order 2909 1-*-,...----Output by low-order 2909 

XXXXYYYO 

+L. ___ ORO to low-order 2909 can change this address bit to 1 

~ ______ ~I X X X X Y Y YO .. M;c",;nstruct;on exec .. ed ;1 OVR ~ 0 

• X X X X Y Y Y 1 ....-- Microinstruction executed if OVR = 1 

Of course. having a mask line associated with every microinstruction address output line lets you generate more com­
plex conditional logic schemes than the simple illustration above. 

There are two internal locations within the 2909 and the 2911 which can hold addresses. These are the 
Microprogram Counter and the Stack. 2909/2911 

Let us first look at the Microprogram Counter. This location is equivalent to the typical Central MICROPROGRAM 
Processing Unit Program Counter. COUNTER 

When SO and S1 are both low. Microprogram Counter contents are read by the Output Multiplexer. and are output via 
YO-Y3. 

New data is written into the Microprogram Counter whenever data is input from the Output Multiplexer. whether or not 
the Microprogram Counter was selected as the Output Multiplexer input. Data written back to the Microprogram 
Counter is taken from the YO-Y3 path following the OR and AND gates. Therefore. if you use either of the output condi­
tioning gates. you will also modify the Microprogram Counter contents. This. of course. is no different to a Central Pro­
ceSSing Unit's Program Counter. which is also modified by a restart or jump instruction. 

Data being written back to the Microprogram Counter passes through an Incrementer. The Incre- 2909/2911 
menter adds the CN level to data which is on its way to the Microprogram Counter. Thus if INCREMENTER 
CN is low. the Incrementer passes data through unmodified; but the data is incremented if CN is 
high. An Incrementer overflow generates a high C(N+4) output. 

Let us look at the various ways in which you may use Microprogram Counter logic. 

In the simplest case, you may wish to sequentially access a number of microinstructions. 
You can begin the sequence by inputting the first microinstruction address to the Address register 
via RO-R3. or as immediate data via 00-03. Remember. 2909 and 2911 devices are cascadable; 
therefore we are not limited to 4-bit addresses. The initial address. when output by the Output 

2909/2911·· 
SEQUENTIAL 
ADDRESSES 

Multiplexer. also gets written to the Microprogram Counter. Assuming that CN is high. the address written into the 
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Microprogram Counter will be one more than the starting address input via RO-R3 or 00-03. For a number of subse­
quent microcycles. you will continue to select the Microprogram Counter. leaving CN high. so that Microprogram 
Counter contents are incremented on each microcycle. Selecting addresses arbitrarily. this sequence may be illustrated 
as follows: 

Microprogram 
00-03 SO .§.l CN YO-Y3 Counter Contents 

30 1 1 30 31 
XX 0 0 31 32 
XX 0 0 32 33 
XX 0 0 33 34 

etc. etc. 

XX represents "don't care" inputs. 

There are some non-obvious problems that can occur when you generate sequential microinstruction addresses using 
Program Counter logic as illustrated above. 

The next very simple microprogram counter sequence involves the re-execution of a single 
microinstruction - as you may do while performing a normalize or twos complement divide 
operation using the 2903 special functions. If the Output Multiplexer selects the Microprogram 
Counter contents while CN is input low. then the Microprogram Counter contents will not change 
on succeeding microcycles - and the same microinstruction will be executed repeatedly. 

You can skip a microinstruction with an even address within an otherwise consecutive in­
struction sequence. To do this you keep CN high. so that the Microprogram Counter increments 
on each microcycle. but you input a high ORO mask bit in order to skip an instruction. This may be 
illustrated as follows: 

Microprogram 
Sl CN ORO Counter Contents ----
o 0 34 
o 0 35 

2909/2911 
SINGLE 
INSTRUCTION 
RE-EXECUTION 

2909/2911 
INSTRUCTION 
SKIP 

SO 

o 
o 
o 
o 
o 

o 1 37 ORO forces low-order 
o 0 
o 0 

etc. 

38 address bit to 1. 
39 
etc. 

You can also use mask bits to jump between microprogram pages. For example. within a 256-
microinstruction program you can jump in sixteen microinstruction increments by inputting a 
high signal at the ORO mask bit of the high-order 2909 slice. This may be illustrated as follows: 

Both 2909's Most Significant 2909 Least Significant 2909 

Address Microprogram Microprogram 
SO S1 ORO 

Counter CN ORO 
Counter 

34 0 0 0 0010 1 a 0100 
35 0 a 0 0010 1 0 0101 
46 0 0 1 0011 1 a 01 10 
47 0 0 0 0011 1 0 01 1 1 
etc. 

By applying high inputs to other mask bits you can span almost any number of microinstructions in a Single jump. 

The 2909/2911 Stack has four locations. 

A Stack Pointer identifies the currently selected Stack location. If the Output Multiplexer 
receives SO low and S 1 high. then it reads the contents of the currently selected Stack location 
and outputs this data via YO-Y3. This output address. like all other output addresses. passes through the Incrementer 
and is loaded into the Program Counter. 
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You modify the Stack Pointer address using the FE and PUP signals. FE must be low in order to modify the Stack 
Pointer. FE does not have to be low in order to output data from the Stack to the Output Multiplexer. 

When FE and PUP are both low. the Stack Pointer decrements on the low-to-high transition of CPo Timing may be il­
lustrated as follows: 

CP 

PUP 

Decrement 
Sfack 

Pointer 

If FE is low and PUP is high. the Stack Pointer is incremented. then the contents of the Microprogram Counter are 
loaded into the newly addressed Stack register. Timing may be illustrated as follows: 

CP 

PUP 

Increment 
Stack 

Pointer 

contents to 
Stack 

The address in the Program Counter which gets written into the newly addressed Stack register will be the address 
which was output by the Output Multiplexer - incremented by one. assuming that CN is high. This enables traditional 
subroutine call and return logic. as we will see soon. 

The Stack Pointer is a roll-over counter. That is to say. it will decrement from 0 to 3: 

and it will increment from 3 to 0: 

This is normally not advantageous. 

Let us look at some of the address sequences which can be generated using the Stack. 
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Consider first a typical subroutine caU- in the classical assembly language sense. The 
microinstruction which causes the subroutine call increments the Stack Pointer. Assuming that 
CN is high, the address of the microinstruction which causes the subroutine call is incremented by 
one, written into the Microprogram Counter, and thence to the newly addressed Stack register, to 

2909/2911 
SUBROUTINE 
CALL 

the address of the microinstruction to which execution will return at the end of the subroutine. This sequence may be 
illustrated as follows: 

,II' , , , , , 

, , , 
, 

, 
I , 

With reference to the illustration above, the microinstruction which causes the subroutine call is arbitrarily assumed to 
reside in microprogram read-only memory location A216. Therefore the subroutine call begins with the Microprogram 
Sequencer outputting address A216, as illustrated above by CD 
For the microinstruction in location A216, only those bits that affect the Microprogram Sequencer are of interest to us. 
These bits cause the Microprogram Sequencer to receive high inputs at CN and PUP, with a low input at FE. This 
microinstruction will also provide the address for the next microinstruction, arbitrarily assumed to be 2E16 at @ in 
the illustration above. But this address will be output on the next microcycle. On the current microcycle, CN causes the 
currenfaddress (A216) to be incremented to A3...l..6. This is shown above at ® . The new incremented address A316 
is written to the Microprogram Cou nter; see C§) above. Since FE is low and PUP is high, the Stack Pointer is incre­
mented ( ® above) and the current Microprogram Counter contents, which is A316, is saved in the Stack. 

On the next microcycle the address 2E16 will be output. initiating the subroutine's execution. When the subroutine 
completes execution, it has the return address A316 stored at the Stack register identified by the Stack Pointer. 
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The final instruction of the subroutine must execute a Stack PUP and cause the Output Multiplexer to select the Stack 
as its input. This requires S1 to be high while SO. FE. and PUP are all low. The Output Multiplexer will read A316 from 
the Stack and output this address next. A316 is incremented to A416 and returned as the new Microprogram Counter 
contents. The Stack Pointer decrements. Thus a classical Stack-Oriented Return-from-Subroutine has been executed. 

A subroutine can consist of a single microinstruction. If you look again at the subroutine call illustration given earlier. 
the first instruction of the subroutine. which in our illustration will be the instruction stored at location 2E16. has 
nothing said about its Microprogram Sequencer bits. If this instruction causes a Return-from-Subroutine. then you have 
created a single-microinstruction subroutine. 

Using the Stack you can nest subroutines to a depth of four. In most microprograms. nesting 
to a depth of fou r is perfectly adequate. 

A computed multidestination jump is easily implemented using a 2909 or 2911 Microprogram 
Sequencer. A 16-way jump to individual instructions can be achieved by inputting data via ORO­
OR4 to the least significant 290912911. while generating more significant portions of the address 
from some other location. such as the Address register. 

2909/2911 SYNC/ENABLE LOGIC 

2909/2911 
SUBROUTINE 
NESTING 
2909/2911 
MULTIPLE 
JUMP 

There are innumerable ways in which the Sync/Enable logic portion of Figure 8-31 could be designed. At its 
most elementary level, 2909/2911 control signals will be generated (possibly from a read-only memory) based 
on Microinstruction register outputs which become a read-only memory address. This may be illustrated as 
follows: 

Enable/Select 

I 
FE --

PUP --
RE --
S1 --
SO Sync/Enable 

ZERO -- ROM 
eN -

ORO -
Microinstruction OR1 -

Register OR2 -
OR3 --

I l ROM Address 5J 
A 12-bit wide read-only memory would be required in the illustration above to generate eleven input signals needed by 
the 2909/2911. plus an Enable/Select signal for the R input 2-IN MUX. (The clock signal CP could not be generated by 
a ROM.) It would be possible to generate 4096 different combinations of 12 signals. Very few of these possibilities will 
ever be encountered. In all probability. a maximum of 32 different signal combinations may be seen. in which case a 32 
x 12-bit read-only memory will suffice. with a 5-bit address provided by the Microinstruction register. Each 
microinstruction stored in the microprogram ROM will then contain a 5-bit address field; the address field selects one 
of the 32 signal combinations that define the next step of Microprogram Sequencer control inputs. Thus we are able to 
achieve address continuity within a microprogram. In many applications. the 29811A provides this function. 

But in Figure 8-31 three sets of inputs to the Sync/Enable logic section are shown. 

The "logic sequence and enable" control emanating from the Microinstruction register becomes the 5-bit address 
which we have already described. 
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No 

1 

2 

3 

4 

& 

6 

7 

S 

9 

10 

11 

Table 8-11. The 2903 Twos Complement Binary Division Microprogram Subroutine from Table 8-9, 
with 2911 Addressing Microinstruction Fields Added 

Microinstruction 
EA CN AO-A3 80 - 83 Comment 

18-1& 14-11 10 

4 6 0 0 0 Divisor register Divisor buffer Copy divisor to temporary buffer. 
(RO) (R3) 

4 6 0 0 0 Dividend (MS) Dividend (MS) Copy dividend most significant half to temporary buffer. 
register (Rl) buffer (R2) 

5 0 0 X 0 X Dividend (MS) Convert dividend (MS) from twos complement to sign/magnitude version. 
buffer (R2) Test OVR externally while next microinstruction is being executed. If OVR is 1, 

branch to subroutine that downshifts dividend. 

5 0 0 X 0 X Divisor buffer Convert divisor (MS) from twos complement to sign/magnitude version. 
(R3) Test OVR externally. If OVR is 1. branch to microinstruction 9. 

9 4 0 X 0 X Dividend (MS) Shift out sign bit of dividend (MS) half in temporary buffer. 
buffer (R2) 

9 4 0 X 0 X Divisor buffer Shift out sign bit of divisor in temporary buffer. 
(R3) 

F 2 0 0 1 Dividend (MS) Divisor buffer Subtract sign bit stripped divisor from sign bit stripped dividend (MS) half. 
buffer (R2) (R3) If Carry = 1 (dividend larger) branch to subroutine that downshifts dividend 

or upshifts divisor. 

6 6 0 0 0 Dividend (LS) X Copy dividend least significant half to Q register. 
register (R4) 

A" 0 0 0 0 Divisor register Dividend (MS) Double length normalize dividend in MS register and Q register. 
(RO) register (Rl) 

C" 0 0 0 Z Divisor register Dividend (MS) Execute twos complement divide instruction fourteen times. 
(RO) register (Rl) 

E 0 0 0 Z Divisor register Dividend (MS) Twos complement divide final instruction. 
(RO) register (Rl) 

'CN is connected to Z status while these two special functions are being executed. 
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'7 

8 

9 

10 

'1 

Table 8-11. The 2903 Twos Complement Binary Division Microprogram Subroutine from Table 8-9, 
with 2911 Addressing Microinstruction Fields Added (Continued) 

Microinstruction bits covering 2903 and two 291 1 input 
(Bit positions are arbitrary and have no signlficancel 

2903 Bits 2911 Bits 2911 Addressing Operations 

18 17 16 16 14 13 12 11 10 EA CNA3A2A1AOB3B2B1 BO 
i ~ 

D7D6D6D4D3D2D1 DO RES1 SO I:l CNFE ~ 

o 1 o 0 0 1 1 0 0 0 0 000000 1 1 A A A A A A AA 0 0 0 1 1 1 X Select next sequential instruction. Load 
-....-'--.,- --.,---.,-~ --- abort address into Address register. 

4 6 0 0 0 RO R3 Abort Address 0 0 1 1 1 

o 1 o 0 0 1 1 0 0 0 0 0 o 0 1 o 0 1 0 X X X X X X X X 1 0 Z 1 1 1 X Select next sequential instruction, or abort 
--.,--....-' -....-'-....-' address if Z = 1 from microinstruction 1. 

4 6 0 0 0 Al R2 1 1 1 1 

o 1 0 1 o 0 0 0 0 X 0 X X X X 0 0 1 0 X X X X X X X X 1 0 0 1 1 1 X Select next sequential instruction. --.,--...-.- -....-' ---5 0 0 0 A2 1 0 1 1 1 

o 1 0 1 o 0 0 0 0 X 0 X X X X 0 0 1 1 S S S S S S S S 1 0 0 1 1 1 X OVA = O. Select next sequential instruction. ----...-.- -....-' ~ OVA = 1. Call "scale dividend" subroutine. 
5 0 0 0 R3 Scale Dividend 1 1 1 1 1 0 1 

Subroutine 

1 o 0 1 0 1 00 0 X 0 X X X X 0 0 1 0 B B B B B B B B 1 0 0 1 1 1 X OVA = O. Select next sequential address. -...-.---.,- --.,-~ OVR = 1. Branch to microinstraction 8. 
9 4 0 0 A2 Microinstruction 1 1 1 1 1 1 X 

8 Address 

1 o 0 1 o 1 o 0 0 X 0 X X X X 0 0 1 1 X X X X X X X X 1 0 0 1 1 1 X Select next sequential instruction. 
-....-'-...-.- -....-' ---9 4 0 0 A3 0 

1 1 1 1 o 0 1 0 0 0 1 0 0 1 o 0 0 1 1 X X X X X X X X 1 0 0 1 1 1 X Select next sequential instruction. 
----....-' --.,--....-' ---F 2 0 0 1 A2 R3 0 

o 1 1 o 0 1 1 0 0 0 0 0 1 o 0 X X X X T T T T T T T T 1 0 0 1 1 1 X C(N+41 = O. Select next sequential instruction. -...---...-.- ~ ~ C(N+41 = 1. Call "scale divisor or dividend" 
6 6 0 0 0 R4 Scale divisor or 1 1 1 1 1 0 1 subroutine. 

Dividend Subroutine 

1 0 1 o 0 0 00 0 0 0 o 0 0 o 0 0 0 1 X X X X X X X X 1 0 0 1 1 1 X Select next sequential instruction. 
-....-'-....-' -....-'-...-- ---A 0 0 0 0 RO Rl 0 

1 1 000000 0 0 X 0 000000 1 X X X X X X X X 1 0 0 1 0/11 X Execute this instruction 14 times, then select 
----....-' --.,-~ --- next sequential instruction. 

C 0 0 0 RO Rl 0 

1 1 1 o 0 0 0 0 0 0 X 0 000000 1 X X X X X X X X 1 1 0 1 1 0 0 Return from subroutine. 
----....-' -...------ ---E 0 0 0 AO Rl 2 

X = "Don't Care" bits 
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Status outputs from the 2901 or 2903 devices have already been encountered; we have. for example. discussed the 
way in which the Overflow status may generate one of the OR mask lines. The most effective way of handling status 
outputs from 2901 or 2903 slices is to use the test input of 29811 A. This might be illustrated as follows: 

t + t , 
13 12 11 10 .. -... - 29811A .. -... .. - MUX TEST - -.. 

... -... 

+ 
OUTPUT ENABLE 

2909/2911 ADDRESSING EXAMPLE 

... 

.. -.. -.. -... 
... -... 

COUNTER LOAD 

COUNTER ENABLE 
MAP ENABLE 

PIPELINE ENABLE 

FE 
PUP 
51 
SO 

We will now complete our discussion of 2909 and 2911 operations by looking at a specific example - the twos 
complement binary division microprogram summarized in Table 8-9. Table 8-9 shows only those 
microinstruction bits required by the 2903 device. In Table 8-11 we add microinstruction bits for two 2911 
Microprogram Sequencers. We assume that the two 2911 Microprogram Sequencers address the 2903 twos comple­
ment binary division microprogram as a subroutine. within a 256-microinstruction microprogram memory. 

In the lower half of Table 8-11. RAM locations used by the twos complement binary division microprogram are iden­
tified using register designations "RO" through "R4". These designations represent RAM locations with addresses 0 
through 4. respectively. 

Additional microinstruction bits added in the lower half of Table 8-11 provide the two 2911 Microprogram Sequen­
cers with their data and control inputs. Eight data input bits are needed. four for each of the two 2911 Microprogram 
Sequencers. But since both 2911 Microprogram Sequencers will receive exactly the same control inputs. one set of 
control Signals is sufficient. Table 8-11 shows the six control signals RE. S1. SO. ZERO. CN. FE. and PUP being gener­
ated by individual microinstruction bits. But earlierwe generated these control codes out of a read-only memory. In the 
discussion which follows we will compare these two methods of generating control inputs. 

Microinstruction 1 in Table 8-11 copies the divisor into a temporary register. If the divisor is not O. the next se­
quential microinstruction must be executed. If the divisor is O. microprogram execution must be aborted. since you 
cannot divide by O. The most significant 2903 slice outputs Z high if the divisor is O. Z is output tow if the divisor is not 
O. The Z status is output at the end of the microinstruction 1 microcycle. too late to influence 2911 Microprogram Se­
quencer logic. Microinstruction 1. therefore. provides the 2911 with data needed to evaluate the Z status while 
microinstruction 2 is executing. SO and S 1 are both low while CN is high; therefore.while microinstruction 1 is execut­
ing. the 2911 Output Multiplexer selects the Microprogram Counter as its source. then increments the Microprogram 
Counter contents. Thus. the next sequential microinstruction. microinstruction 2. is selected. Simultaneously. 
microinstruction 1 inputs the abort address to the 2911 Address register. The abort address is input at DO-D7 while RE 
is low. 

If logic associated with execution of microinstruction 2 conflicted in any way with testing the Z status. then we would 
have to insert a dummy microinstruction in front of microinstruction 2. whose sole function would be to test the Z 
status. 

But microinstruction 2 has no such conflicting logic. so we can use its execution time to test the ZERO status generated 
by microinstruction 1. If this ZERO status is 1. then the abort address. input to the Address register by microinstruction 
1. will be selected; execution of microinstruction 2 becomes redundant insofar as 2903 logic events are concerned. 
but. providing execution of microinstruction 2 is inconsequential. no harm is done. 

The 2911 bits provided by microinstruction 2 can be quite simple. S1 is 0 and SO is connected to the ZERO status; if 
the ZERO status is O. the Output Multiplexer will select the Microprogram Counter - and thus the next sequential in­
struction. But if the ZERO status is 1. the Address register will be selected by the Output Multiplexer - and thus an 
abort will occur. In order to connect SO to a ZERO status we would probably include an additional enable bit. not shown 
in microinstruction 2. This enable bit. when high. will link SO to the ZERO status. but when low will cause SO to be 
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derived directly from its microinstruction bit. This may be illustrated as follows: 

SO Bit __ I:F_-so 
ENABLE -

ZERO----

Addressing logic for microinstructions 3 and 4 is similar to that which we have just described for microinstruc­
tions 1 and 2. 

Microinstruction 3 converts the most significant half of the dividend from twos complement to sign/magnitude form. If 
the dividend has the largest possible twos complement value. then the Overflow status is setand the dividend must be 
downshifted. If the dividend has any other twos complement value. the Overflow status is not set and the next sequen­
tial instruction must be executed. But as we found when examining microinstruction 1. the Overflow status is gener­
ated at the end of the microinstruction 3 microcycle. therefore the 2911 bits shown in Table 8-11 for microinstruction 
3 simply select the next sequential microinstruction - microinstruction 4. But while microinstruction 4 is being ex­
ecuted. 2911 logic tests the Overflow status generated by microinstruction 3. Now we can delay testing microinstruc­
tion 3 Overflow status until microinstruction 4 has been executed because execution of microinstruction 4 does not 
conflict with Overflow = 1. If it did. we would have to insert a dummy microinstruction between 3 and 4 which did 
nothing at the 2903. but gave the 2911 an additional microcycle time within which to test the Overflow status gener­
ated by microinstruction 3. and determine subsequent addressing based on Overflow status level. Since this additional 
dummy instruction is not needed. microinstruction 4 provides the address for the "Scale Oividend" subroutine via data 
bits 00-07. Two sets of control inputs are generated. If the Overflow status left over from microinstruction 3 is 0 then 
the control inputs to the 2911 simply select the next sequential microinstruction - microinstruction 5. But if the Over­
flow status left over from microinstruction 3 is 1 then control inputs cause the 2911 to push Microprogram Counter 
contents onto the Stack. then have the Output Multiplexer choose as its source the address input at 00-07. Thus the 
scale dividend subroutine is called. 

If you look at the 2911 control bits of microinstruction 4 in Table 8-11. you will see that three bits. SO. S1. and FE. 
must change. depending on the level of the Overflow status left over from the execution of microinStruction 3. PUP 
need not change. since its level is not significant when OVR is low. We could control all three bit levels using an enable 
bit. as described for the ZERO status in microinstruction 2. But it is probably simpler and cheaper to use a read-only 
memory device. as suggested earlier in this chapter. Consider the following possibility: 

Control 
Bits 

~ 
D7 D6' D5 D4 D3 D2 D1 DO A4 A3 A2 A 1 AO Microinstruction bits for 2911 

ZERO-----------------+-+--+-+--+---------} 
OVR-------------------------r--r--r-~~~------------­

C(N+4)---------------------------~~~~~~~--------------

;i~ess 

Instead of having seven separate 2911 control bits in every microinstruction. we now have five control bits. Three 
status bits (ZERO. OVR. and C(N+41. generated by the 2903) provide the three low-order bits for an 8-bit read-only 
memory address. The five microinstruction control bits. together with the three status bits generated by the 2903, 
create an 8-bit read-only memory address. The addressed read-only memory location outputs the seven signal levels 
required by the 2911. For microinstructions 1 through 4, read-only memory might arbitrarily be mapped as shown in 
Figure 8-35. 

Microinstruction 5 has 2911 addressing bits that are similar to microinstruction 4. Microinstruction 4 not only 
tests the Overflow status left over from microinstruction 3. but itself generates an Overflow status which must be 
tested while microinstruction 5 is being executed. In the event that the 2903 Overflow status generated by 
microinstruction 4 is low. the next sequential microinstruction. microinstruction 6. is selected. But if the Overflow 
status is high. then a branch to microinstruction 8 occurs. Since this is a simple branch. no push is required; therefore 
FE remains high in both cases. See Figure 8-35. 
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1 
2 
2 

3 
4 
4 
5 
5 
6 
7 

8 
8 
9 

10 
10 
11 

Address Bits from Status from 
Microinstruction 2903 

~ 

Sync/Enable 
ROM Map 

~ ~ IffiN A4 A3 A2 A 1 AO (j 0 X RE S1 SO I~ eN FE ~ 
o 0 0 
000 
000 
o 0 1 
000 
000 
o 0 0 
000 
001 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

o 0 X X X I-----------,~( o 1 X X 0 L-_______ ---. J 
o 1 X X 1 

o 0 X X X ~----
10XOX ~ 
1 0 X 1 X __ -11 XOX +_. 
1 1 X 1 X _ 

o 0 X X X ~------. 
o 0 X 
010 
o 1 1 
o 0 X 
1 0 X 
1 0 X 
1 1 X 

X X ~------. 
X X ~---
X X 1------, 

X X I----~_+. 

X 0 r---
X 1 I--

X X f-

------
--
-----------
--

o 
1 

7 

8 
9 
A 
B 
C 
D 
E 
F 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
1A 

1B 

1C 
1D 

1E 
1F 
20 

27 
28 
29 

- ~ 2A 
~ 2B 
/ 2C 
, 2D 

L-______ ~~ - ~ 2E 
2F 

---------~--.\~ 30 -- 31 
32 

- 33 

o 000 1 1 1 0 
00001110 

o 0 
o 1 

o 1 
o 1 
o 1 
o 1 

o 1 
o 1 

o 1 
o 1 

o 1 

o 1 

o 1 

o 1 
o 1 
o 1 
o 1 
o 1 

o 1 

o 1 

o 1 
o 1 

o 1 
o 1 
o 1 
o 1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

I I I 
I I I 
I I I 
I I I 

o 0 
o 0 
o 1 
o 0 
o 1 
a a 
o 1 
o 0 
o 1 
o 0 
o 0 
1 1 
1 1 
o 0 
o 0 
1 1 
1 1 

o 0 
a 0 
1 1 
1 1 
o 0 
o 0 
1 1 
1 1 

o 0 

o 
o 
a 
o 
o 
1 
1 
1 
1 

o 
o 
o 
o 

I I 
I I 
I I 
I I 

o 1 
o 1 

o 1 
o 1 

o 1 
1 1 
1 1 
1 1 
1 1 
o 1 
o 1 
o 1 
o 1 

1 
1 
1 
1 
1 
1 
1 
1 
1 

o 
1 
o 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
o 1 
o 1 
1 0 
1 0 
o 1 
o 1 

1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 

1 
1 
1 
1 
1 
o 
o 
o 
o 
1 

1 
1 

I 

I 
I 
I 

o 
o 
o 
o 
o 
1 
1 
1 
1 

o 
o 
o 
o .... -------~_=_~ 34 0 1 0 0 1 0 1 0 

... I----------~:-- 35 0 1 0 0 1 1 1 0 
L-_______ ~--~ 36 0 1 0 0 1 0 1 0 

L-________ ~~~ 37 a 1 0 0 1 1 1 0 

J 38 0 1 1 0 1 1 0 0 
, I • I I I I I L-_________ ~. • I I I I I I I 

- t 3F i 0 i 1 i 1 i 0 i 1 I 1 i 0 i 0 

Figure 8-35. 2911 Sync/Enable ROM for the 2903 Twos Complement Binary 
Division Microprogram Subroutine 
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Microinstructions 6 and 7 both have very simple 2911 addressing logic. Each microinstruction chooses the next 
sequential microinstruction. But the Carry status generated by the 2903 following execution of microinstruction 7 must 
be tested by address generation logic while microinstruction 8 is being executed. The fact that microinstruction 5 can 
branch directly to microinstruction 8 causes no problem since microinstruction 5 will always generate a low 2903 Carry 
status: thereforhe Carry status testing logic which we are about to describe does no harm. 

If the Carry status generated by the 2903 during execution of microinstruction 7 is low. then no further divisor or divi­
dend scaling is needed. and the next sequential microinstruction is selected. But if the 2903 generates a high Carry 
status while executing microinstruction 7. then a subroutine must be called to scale the divisor or dividend. Therefore 
microinstruction 8 provides the address of the scaling subroutine at the data inputs DO-D7; it generates the 
same two sets of 2911 control inputs which we described for microinstruction 4. However. the level of C(N+4) 
determines which set of 2911 control inputs are selected by microinstruction 8. See Figure 8-35. 

We now come to the last three microinstructions (9, 10, and 11) which together perform the actual twos com­
plement binary division. Microinstruction 9 must be executed once. followed by fourteen executions of microinstruc­
tion 10. and one execution of 11. Fourteen executions of microinstruction 10 are required because we are dividing a 
16-bit divisor into a 32-bit dividend. From our previous discussion of the twos complement binary division algorithm. 
recall that microinstruction 10 must be executed N times. where the divisor has N bits and the dividend has 2N bits. 
Our 2911 addressing logic implements this multiple execution requirement by keeping the CN input low for thirteen 
executions of microinstruction 10. But this requires an external counter. Here is one possibility: 

A4 
A3--..... _ 
A2 
A1--_--
AO 

ENABLE x, 4 Counter. 
advanced 

by ENABLE 

-.r-

ZERO--------~ 

There are innumerable ways (including the use of a 2910) in which the counting logic required to augment 
microinstruction 10 may be implemented. The one we have shown assigns one set of eight read-only memory ad­
dresses to a preloaded counter. This preloaded counter provides the level of the low-order address bit (zero) which must 
be input to the 2911 select ROM. The preloaded counter decrements once every time ENABLE goes high: it outputs 
COUNT low until it decrements to O. Upon decrementing to 0 the counter outputs COUNT high. 

Apart from the external counter required by microinstruction 10. microinstructions 9 and 10 generate simple next se­
quential address controls for the 2911. Microinstruction 11 causes the 2911 to pop its Stack - on the assumption that 
the entire twos complement binary division microprogram is itself a microprogram subroutine. Thus. if a read-only 
memory is used to generate 2911 control inputs Figure 8-35 illustrates the final read-only memory map and address­
ing bits required for the microinstruction sequence given in Table 8-11. 
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THE 2910 MICROPROGRAM SEQUENCER 

This device is an enhancement of the 2909/2911 Microprogram Sequencers which we have just described. 

Here is a summary of 2910 enhancements, as compared to the 2909 and 2911: 

1) The 2910 is a 12-bit device capable of addressing up to 4096 microinstructions. The 2909 and 2911 are 4-bit 
devices. Therefore the 2910 is equivalent to three parallel 290912911 devices. 

2) The 2910 has sixteen address generation sequences, selected individually via four instruction code inputs. Many of 
these sixteen address generation sequences have alternate forms that depend on the level of a condition code. The 
2909/2'911 has no such address generation sequences; rather. individual control signal levels (such as output 
selects SO and S 1. and output masks ORO-OR3) provide more primitive control of addressing logic. 

3) The 2910 has three enable signals. One of the three is output low on each microcycle. You can use these enable 
signals to selectively strobe data out of different sources to meet the specific needs of any microcycle. The 2909 
and 2911 have no such enable outputs. 

4) The Address register of the 290912911 becomes an Address register or a down counter within the 2910. As a 
down counter. the 2910 Address register controls loop iteration. 

5) The 2910 has a five-level Stack. as compared to the 2909/2911 four-level Stack. Also, the 2910 has slightly 
different Stack Pointer logic. 

The fact that the 2910 is an enhancement of the 2909/2911 does not necessarily mean that the 2910 is always 
the part of choice. The 2910 is more expensive. In most cases, a small microprogram consisting of 256 or fewer 
microinstructions is more economically served by two 2909 or 2911 devices. rather than a single 2910 device. 

The 2910 is packaged as a 40-pin DIP or a 42-pin flat package. The device is manufactured using bipolar technology. A 
single +5V power supply is required. All signals are TTL-level compatible. 

2910 MICROPROGRAM SEQUENCER PINS AND SIGNALS 
For an overview of Microprogram Sequencer logic, and how it is used within a 2900-based system. refer to our earlier 
discussion of this subject given for the 290912911 devices. The discussion which follows assumes that you understand 
how a Microprogram Sequencer fits into a 2900-based configuration. 

2910 pins and signal assignments are illustrated in Figure 8-35. Figure 8-37 illustrates 2910 functional logic. 
We will describe signals in conjunction with functional logic. 

The Output Multiplexer is central to logic of the 2910 Microprogram Sequencer. An in- 2910 
struction code input via 10-13 determines which of the four possible inputs will be MICROPROGRAM 
selected by the Output Multiplexer. In contrast. the 2909 and 2911 have two control inputs. COUNTER 
SO and S 1. that determine the source which the Output Mu Itiplexer selects. 

00-011 are twelve data input lines Which, like the 2911, can input data to the Address 
register, or to the Output Multiplexer. If RLO is low, then data input at 00-011 is loaded 
into the Address register on the low-to-high transition of clock signal CPo Data input via 00-
011 is selected by the Output Multiplexer when an appropriate instruction is input via 10-13. Timing for an Address 
register access may be illustrated as follows: 

CP 

DO - D11 

Address-----------v-------~'---------------
Data Register ___________ ,, ______________________ _ 

The 2910 outputs the microprogram address via VO-V11. These address output lines have 
their own enable signal OE. If this signal is high. YO-Y11 outputs are floated. This allows you to 
disconnect Microprogram Sequencer devices from the microprogram ROM. something you will 
likely do when switching to a test program. 
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Y4 1 40 03 03 1 42 Y3 
04 2 39 Y3 Y4 2 41 GNO 
Y5 3 38 02 04 3 40 02 
05 4 37 Y2 Y5 4 39 Y2 

VECT 5 36 01 05 5 38 01 
Pi:: 6 35 Yl VECT 6 37 Yl 

MAP 7 34 DO PL 7 36 DO 
13 8 33 YO MAP 8 35 YO 
12 9 32 CI 13 9 34 CI 

VCC 10 2910 31 CP 12 10 2910 33 CP 
11 11 DIP 30 GNO VCC 11 FLAT 32 GNO 
10 12 29 OE 11 12 PACKAGE 31 OE 

CCEN 13 28 Yll 10 13 30 Yll 
CC 14 27 011 CCEN 14 29 011 

RLD 15 26 Yl0 CC 15 28 Yl0 
FULL 16 25 010 RLO 16 27 010 

06 17 24 Y9 FULL 17 26 Y9 
Y6 18 23 09 06 18 25 09 
07 19 22 Y8 Y6 19 24 GNO 
Y7 20 21 08 07 20 23 Y8 

Y7 21 22 08 

Pin Name Description Type 

DO - 011 Combined Address register and data input Input 
YO - Yll Address output Output. Tristate 
VECT Vector address enable Output 
MAP Map address enable Output 
PI: Pipeline address enable Output 
RLO Address register input enable Input 
OE Output enable Input 
CI Carry in Input 
10 -13 Instruction code Input 
CC Condition code Input 
CCEN Condition code enable Input 
FULL Stack full error indicator Output 
CP System clock Input 
VCC.GNO Power. Ground 

Figure 8-36. 2910 Microprogram Sequencer Pins and Signal Assignments 

8-111 



~ 

~ Address Register/ 
~ Down Counter 

l----
Zero 

Stack 
Pointer 

i 

DO-Dll&~~ ________ __ , 
5-

_--------I.--f- by -~ 
_-------T"""""--I~ 12-Bit_1'r-­

Stack 

Output Multiplexer 

OE------------------~ •• ~ 

v' 
YO - Y11 

J'\. 

'" 

~ 

Microprogram 
Counter 

~ r 
Incrementer 
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Figure 8-37. 2910 Microprogram Sequencer Functional Logic 
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Note that the 2910 has no zero input control on the address output lines. nor does it have any OR mask inputs. The 
2909 and 2911 have such logic on the address output path. Instead. the 2910 uses its instruction codes to generate 
equ iva lent addressing logic. 

Like the 2909 and the 2911. the 2910 has two internal locations within which addresses can be held. These are 
the Microprogram Counter and the Stack. 

The 2910 Microprogram Counter logic is functionally identical to that of the 290912911 
Microprogram Counter. Any address output by the output multiplexer also passes through 
the incrementer, and is then stored in the Microprogram Counter. If CI is input high, then 
the address output by the multiplexer is incremented by 1 before being written to the 
Microprogram Counter. If CI is input low. then the address is written into the Microprogram 
Counter without being incremented. 

2910 
MICROPROGRAM 
COUNTER 

2910 
INCREMENT 

The 2910 incrementer generates no Carry Out. Thus if you connect two 2910 Microprogram Sequencers in parallel. you 
cannot increment the resultant 24-bit Microprogram Counter contents across the low- and high-order halves of the ad­
dress. But. given current microprogramming technology. this is unlikely to pose any problem. Few single 
microprograms have more than 4096 microinstructions. and you can use multiple 2910 Microprogram Sequencers to 
address large microprograms in discrete 4096-microinstruction blocks. 

The 2910 Microprogram Sequencer has a five-level Stack. The Stack is addressed by a Stack 
Pointer which initially addresses Stack Register O. Appropriate instruction codes. input via 10-13. 
generate Stack pushes or pops. A Stack push writes the Microprogram Counter contents to the 
currently selected Stack location and then increments the Stack Pointer. The Stack Pointer always points to the last 
word written. A Stack pop decrements the Stack Pointer. You must select the Stack as the output mu Itiplexer source in 
order to load the current top-of-stack plus one via the incrementer into the Microprogram Counter. 

If you execute more than five pushes. the Stack Pointer continues to address the last Stack location (number 4); the 
Microprogram Counter contents are written into this location. overwriting prior data. This will inevitably cause an error. 
The 2910 Stack Pointer does not wrap around. and will not increment from 4 to O. Stack full is indicated by the FULL 
signal. When either four words have been pushed and a fifth push is selected via 10-13 or five words have been pushed. 
FULL goes low. Thus it can be tested to see if the Stack is full. 

If you try to pop the Stack when the Stack Pointer is addressing location O. then the Stack Pointer continues to select 
location O. Since no data is written into the Stack following a pop. no prior information will be destroyed: however. in 
all probability you have a microprogramming error. No error signal is output at this time. 

The various addressing operations which the 2910 Microprogram Sequencer can perform 
are identified using an instruction code input at 10-13. CCEN (condition code enable) and CC 
(condition code) are two additional control inputs that in some cases modify the addressing 
operations which the 2910 Microprogram Sequencer will perform. These six 2910 signals-

2910 
INSTRUCTION 
CODES 

10-13. CC. and CCEN - together replace the 290912911 signals SO. S 1. ZERO. ORO-OR3. FE. and PUP. 
-~~-.... 2910 responses to 10-13 inputs are summarized in Table 8-12. As shown in this table. many 2910 

of the responses depend on the level of the CC and CCEN inputs. Vendor literature describes CC CONDITION 
as a "condition code" and CCEN as an enable: however. in effect. CCEN must be low while CC CODES 
is high to select a "fail" condition, while any other combination of CC and CCEN input levels 
select a "pass" condition. Your design logic can use CC as a pass/fail selector. with CCEN as an override. This logic 
may be illustrated as follows: 

CC ________ ~------- Condition Code 
CCEN --L./ 

In response to each instruction code input at 10-13.2910 logic performs operations which we will describe individually. 
Also. 2910 logic outputs low one of the three Signals PI.. MAP. or VECT. You can use these three signals as you see fit. 
however their intended purpose is to enable one of three possible inputs to 00-011. Figure 8-38 functionally illus­
trates timing for PL. MAP. and VECT as part of the 2910 microcycle response. 

VECT low will normally select a restart interrupt or other special address. 

MAP will normally enable the mapping ROM out of which a microprogram starting address is generated in response to 
a macroinstruction op-code. 

VECT and MAP are the exceptional enable outputs. PL is the enable signal which is usually output low. This signal will 
likely enable the Microinstruction register. or a connected Oata register. allowing the microinstruction to determine the 
next data input to appear at 00-011. With reference to Figure 8-31. Figure 8-~39 identifies how VECT. MAP and PL 
will likely be used. 
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Figure 8-38. 2910 Microcycle Eve:1t Sequences 

2910 MICROPROGRAM SEQUENCER INSTRUCTIONS 
We will now examine 2910 Microprogram Sequencer instructions in detail. First, we will describe each instruc­
tion individually, then we will look at the instructions functionally, showing when instructions are likely to be 
used, and in what combinations. 

Instruction 0 (JZ) is a Jump-to-Zero instruction. This instruction forces the address to be output at YO-Y11; 
therefore the Microprogram Counter will subsequently hold the address 0 or 1. depending on the level of the CI input 
The JZ instruction also resets the Stack Pointer to O. effectively clearing the Stack. Since this instruction restarts execu­
tion with the microinstruction stored at microprogram memory location O. JZ is frequently used as a power-up. reset. or 
Restart instruction code. 

Instruction 1 (CJS) is a Conditional Jump-to-Subroutine instruction. A "pass" condition pushes the current 
Microprogram Counter contents onto the Stack and takes the next microinstruction address from the 00-011 inputs. A 
"fail" condition causes the next sequential microinstruction to be executed. This may be illustrated as follows: 

M-Address HM" must be input 
at DO - 011. Address "N+ 1" 
is saved on the Stack. 
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Figure 8-39. 2910 Enable Signal Utilization 
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Table 8-12. 2910 Microprogram Sequencer Instruction Codes Summary 

Instruction Address 
Code Vendor Y Enable Stack Register! 

Comment ... Mnemonic Output Output Operation Counter 

13 12 11 10 U Operation 
(J 

0 0 0 0 X JZ 0 PL SP = 0 - Reset or restart 
0 0 0 1 0 } CJS 

DO - 011 PL PUSH - } Jump to subroutine if CC is "pass" 
0 0 0 1 1 [PC] PL - - Continue otherwise 
0 0 1 0 X JMAP DO - 011 MAP - - Start new microprogram 
0 0 1 1 0 } CJP DO - 011 PL - - } Jump if CC is "pass" 
0 0 1 1 1 [PC] PL - - Continue otherwise 
0 1 0 0 0 } PUSH 

[PC] PL PUSH DO - 011 Push Stack and load Address register 
0 1 0 0 1 [PC] PL PUSH - Push Stack 
0 1 0 1 0 } JSRP DO - 011 PL PUSH - } Jump- to-Subroutine 
0 1 0 1 1 [AR] PL PUSH -
0 1 1 0 0 } CJV DO - 011 VECT - - } Accept vector address if CC is "pass" 
0 1 1 0 1 [PC] VECT - - Continue otherwise 
0 1 1 1 0 } JRP DO - 011 PL - - } Jump 0 1 1 1 1 [AR] PL - -
1 0 0 0 X RFCT [S] PL - DEC Counter not O} Repeat subroutine until 

[PC] PL POP - Counter 0 Counter is 0 
1 0 0 1 X RPCT DO - 011 PL - DEC Counter not O} Repeat loop until 

[PC] PL - - Counter 0 Counter is 0 
1 0 1 0 0 } CRTN 

[S] PL POP - } Return from subroutine if CC is "pass" 
1 0 1 0 1 [PC] PL - - Continue otherwise 
1 0 1 1 0 } CJPP DO - 011 PL POP - } Jump and return if CC is "pass" 
1 0 1 1 1 [PC] PL - Continue otherwise 
1 1 0 0 X LDCT [PC] PL - DO - 011 Load Address register/Counter 
1 1 0 1 0 } LOOP 

[PC] PL POP - } End loop if CC is "pass" 
1 1 0 1 1 [S] PL - - Continue otherwise 
1 1 1 0 X CONT [PC] PL - - Continue with normal sequence 
1 1 1 1 0 } [PC] PL POP DEC Counter not 0 } If CC is "pass" 

TWB [PC] PL POP - Counter 0 decrement Counter to 0 
1 1 1 1 1 [S] PL - DEC Counter not 0 } Otherwise decrement Counter 

DO - 011 PL POP - Counter 0 to 0 and branch 

(1)0 represents CC is "pass" condition. CCEN = 1, or CCEN = 0 and CC = O. 
1 represents EC "fail" condition. CCEN = 0 and CC = 1. 

DO - 011 = data input at DO - 011. 
[PC] = contents of Microprogram Counter. 
[AR] = contents of Address register/Down Counter. 
[S] = contents ·of Stack register currently addressed by the Stack Pointer. 
SP = 0 means the Stack Pointer is reset to O. 
PUSH means write [PC] to [S] then increment Stack Pointer. 
POP means decrement Stack Pointer. 
DEC means decrement [AR]. 

Instruction 2 (JMAP) is a Jump Map instruction. This instruction outputs the address input at 00-011, together with 
a low MAP enable. The Microprogram Counter subsequently holds the address which was input at 00-011, or this ad­
dress incremented by 1, depending on the CI input. JMAP is usually the first code input to a 2910 Microprogram Se­
quencer at the start of a new macroinstruction's execution. That is to say, the last microinstruction implementing the 
Central Processing Unit's instruction fetch sequence will transmit a JMAP code to the 2910 Microprogram Sequencer. 
The MAP output will enable the mapping ROM which receives as its address input the macroinstruction op-code, and 
generates as its output the address for the first microinstruction to be executed in response to the macroinstruction 
(see Figure 8-40). We described this sequence in detail when discussing the 2909 and 2911 Microprogram Se­
quencer. We can illustrate the JMAP instruction code as follows: 

Nt --- --- -I M-Add",ss "M" must be ;nput + ,toO-o11 
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Instruction code 3 (CJP) is a Conditional Jump Pipeline instruction. If the condition code "passes", then DO-D11 
provides the next address output via Y. 

If the condition code "fails", then the next sequential instruction is executed. The address input to DO-D11 will come 
from the external location enabled by PL. As illustrated in Figure 8-40, this will probably be the Microinstruction 
register. This may be illustrated as follows: 

"f "" ,- - - - Nt _ ~.~~.~ __ M ...... dd .... s "M" must be ;nput " --N+'l ! at 00 - 011 

Instruction code 4 (PUSH) is a Stack Push instruction which also loads the Address register if the condition code 
passes. There are many ways in which you can use this instruction. At its most elementary level. it is a Subroutine Call 
(represented by the push) with an optional simultaneous data load into the Address register. The data loaded into the 
Address register will probably come from the microinstruction itself. since PL is output low by the push. 

Instruction code 5 is a Conditional Jump-to-Subroutine (JSRP). This instruction code pushes the Microprogram 
Counter contents onto the Stack, and calls one of two subroutines, depending on the condition code. If the condition 
code "passes", then the subroutine starting address is provided immediately at the DO-D11 inputs. If the condition 
code "fails", then the subroutine starting address is taken from the Address register. This may be illustrated as follows: 

Address "P" must 
have been loaded 

previously into 
the Address 
register. The 

return address 
"N+ 1" is pushed 

onto the Stack 

P[>.~~M Address "M" must be "fail" "pass" input at DO - 011. 
The return address 

N "N+ 1" is pushed + N+ 1 onto the Stack 

Instruction code 6 is a Conditional Jump Vector (CJV). It is significant principally because it is the only instruction 
code which generates a low VECT output. This low output usually enables a special Address register, out of which a 
direct memory access or interrupt address is fetched. 

If CC is in the "pass" condition, then the output multiplexer takes as its source DO-D11. If CC is in the "fail" condition, 
the next sequential instruction is executed. 

Instruction code 'is a Conditional Jump (JRP) which differs from the Conditional Jump-to-Subroutine (instruction 
code 5) only in that no push occurs. If the condition code "passes", then the microinstruction execution sequence 
jumps to the address which is input at DO-D11; otherwise, the microinstruction sequence jumps to the address held in 
the Address register. This may be illustrated as follows: 

"faW' I "pass" 
Address uP" must P - - - - - - - -+ -------- M 

have been loaded l N l 
previously into 

the Address register. . 

Address "M" must 
be input at DO - 0 11 . 

Instruction code 8 is a Repeat-Loop-Until-Counter-Is-Zero (RFCT) instruction. The purpose of this instruction code 
is to re-execute one or more microinstructions some fixed number of times. The microinstruction loop to be re-executed 
has its starting address stored in the Stack. The loop count is handled by the Address register. which must be 
preloaded with a number that is one less than the required count. For example, if the Address register is loaded with an 
initial value of 8, then the microinstruction loop will be executed 9 times. Thus, you can load into the Address register 
values ranging between 0 and 4095 to generate counts ranging between 1 and 4096. 
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When the 2910 receives an RFCT instruction code, it examines the Address register contents. If the Address register 
does not contain 0, then the output multiplexer takes as its source the currently addressed Stack location; the Address 
register contents are then decremented. If the Address register contents are 0, then the output multiplexer selects the 
Microprogram Counter as its source; also the Stack is popped. 

We can illustrate the RFCT instruction code as follows: 

onto the Stack. 

M~:=J Address "M" must 
have been pushed 

Address register <: - -- N 
contains O. -N+ 1 ~ 
Pop Stack. Address register does 

not contain O. Decrement 
Address register. 

Now the RFCT instruction, as illustrated above, re-executes a loop if the branch address M precedes N, where N is the 
microprogram location. But you can push any address onto the Stack prior to executing an RFCT code. For example, 
RFCT could be used to branch some fixed number of times without re-executing a loop. This may be illustrated as 
follows: 

Add"", "",;, ... C---- Nt ___ ---- M 
contains O. --N+ 1 ~ . 1 Address "M" must 

have been pushed 
onto the Stack. 

Po St ck. Address reg,st~r 
p a does not contain 

O. Decrement 
Address register 
and branch· to "M". 

Instruction code 9, the Repeat-Register-Until-Counter-Is-Zero (RPCT) instruction, is almost identical to instruc­
tion code 8. RPCT again uses the Address register as a counter. If when RPCT is executed the Address register does not 
contain 0, then it is decremented and the output multiplexer chooses as its source an immediate address input at 00-
011. If the Address register contents are 0, then the output multiplexer selects as its source the Microprogram Counter. 
The Stack is not used. 

If the microinstruction which generates the RPCT code supplies its own address at 00-011, then this microinstruction 
gets re-executed the number of times specified by the Address register contents. This may be illustrated as follows: 

Address register 
contains O. 
Pop Stack. 

C-- -- Nl---, Addn>ss "N+'" must 
--N+1+~--~N+1 be input at DO - 011. 

Address register does 
not contain O. Decrement 
Address register. 

But a microinstruction does not have to supply its own address at 00-011 when specifying the RPCT instruction code. 
It can input any address at 00-011. Thus, RPCT can be used to re-execute an instruction loop, or RPCT can be used to 
execute any other branch some fixed number of times, as illustrated for the RFCT instruction code. 

Instruction code A is a Conditional Return-from-Subroutine (CRTN).lf the condition code "passes", then a Return­
from-Subroutine occurs. The output multiplexer takes the currently addressed Stack register as its source, then pops 
the Stack. If the condition code "fails", then the next microinstruction address is taken from the Microprogram Counter. 
This may be illustrated as follows: 

"N+1" must be the address 
currently in the top of 

the Stack. 

I .~ 
N+~'M---~ "f T' 

N+'~ rw ' .0 
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Instruction code B is a Conditional Jump-and-Return instruction (CJPP). If the condition code "passes", then the 
Stack is popped, but the output multiplexer takes 00-011 as its source. This is equivalent to a subroutine return where 
the return address is not taken from the Stack, even though the Stack is popped: rather, the return address is taken 
from 00-011. If the condition code "fails", then normal sequential microinstruction execution occurs with the next 
microinstruction address being taken from the Microprogram Counter. 

Instruction code C is a Load Counter instruction (LDCC). When this instruction code is executed, microprogram ex­
ecution continues sequentially, with the output multiplexer taking the Microprogram Counter as its source: however, 
data input at 00-011 is loaded into the Address register. 

Instruction code 0 is a Conditional End-of-Loop (LOOP). As long as the condition code "fails", the output mUltiplex­
er selects the currently addressed Stack register as its source. When the condition code "passes", the Microprogram 
Counter is selected as the output multiplexer source and the Stack is popped. This may be illustrated as follows: 

M ~=:J Address "M" must 
have been pushed 
onto the Stack. 

"pass'<:'~: ~ l "faW' 

The LOOP instruction code is equivalent to the RFCT instruction code, with the condition code, rather than the Address 
register, determining the number of loop iterations. 

The LOOP instruction code does not have to be used to re-execute a loop. In the illustration above a loop is re-executed 
only because the address M is shown preceding N, the microinstruction address where the loop code is generated. If 
the address M does not precede N, then the LOOP instruction code becomes a simple conditional jump, where the 
jump address is held at the top of the Stack. 

Instruction code E is a Continue instruction (CONT). This is the normal default instruction code. It causes the next 
sequential microinstruction to be addressed. The output multiplexer selects the Microprogram Counter as its source. 
No other operations occur. 

Instruction code F is a three-way branch (TWB); it uses the condition code and the Address register. Whether the 
condition code "passes" or "fails", the Address register contents are decremented to O. If the condition code "passes", 
then the Stack is popped and the Microprogram Counter is selected as the output multiplexer source. If the condition 
code "fails", then the Stack is selected by the output multiplexer while the Address register is decrementing, but when 
the Address register has decremented to 0, the Stack is popped and the output multiple~er selects as its source data in­
put at DO-011. These options may be illustrated as follows: 

M~:=:J On "pass" decrement 
Address register to - - - - N "fail" 

"pass" 0, then pop <·"'N+1 I~' Stack. "fail" 

Address register does not contain O. 
Decrement address register. 
Address "M" must have been 
pushed onto the Stack. 

P Address register contains O. 
Address "P" must be 
input at DO - 011. 

The TWB instruction code is, in effect. a conditional loop execute. While the condition code is failing, the microinstruc­
tion sequence between M and N is re-executed a number of times, as defined by the Address register: microprogram 
execution then branches to an address input at 00-011. But any single loop iteration can be bypassed by a "pass" con­
dition code: moreover, when the Address register has decremented to 0, microprogram execution can continue se­
quentially, or it can branch to the address input at 00-011. 
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2910 MICROPROGRAM SEQUENCER ADDRESSING SEQUENCES 
Let us now examine some of the more common microprogram address sequences which you are likely to en­
counter, and how these address sequences will be generated using a 2910 Microprogram Sequencer. 

A simple sequence of consecutive microinstructions represents the simplest case: 

Address 2910 Instruction 
Sequence Code Sequence 

N CONT 
N+1 CONT 
N+2 CO NT 
N+3 CONT 
etc etc 

You generate sequential microinstruction addresses. as requ ired by the sequence above. using instruction code E. with 
the CI input high. 

You will likely initialize your microprogram in one of two ways: 

1) Following a restart or special condition. use instruction code 0 (JZ); this forces a 0 output 
at Y. 0 or 1 can be written to the Microprogram Counter - depending on the level of the 
CI input. 

2910 
MICROPROGRAM 
INITIALIZATION 

2) At the end of an instruction fetch. use instruction code 2 (JMAP) to take the microprogram starting address from a 
mapping ROM. We described this instruction code earlier. 

The 2910 Microprogram Sequencer gives you many ways of jumping within a 2910 
microprogram. Any instruction code that causes the output multiplexer to select 00-011 or the MICROPROGRAM 
Address register as its source can be used to generate a microprogram jump. Instruction code 3 ... J_U __ M_P ______ ~ 
(CJP) jumps to the address input at 00-011 if the condition code passes. So does instruction code 
6 (CJV). but instruction code 6 (CJV) outputs VECT low - and the VECT enable signal is commonly used to select a 
special OMA or interrupt address. Instruction code 7 (JRP) is a dual. unconditional jump; if the condition code 
"passes". the jump address is taken from 00-011. while the jump address is taken from the Address register if the con­
dition code "fails". 

A microprogram subroutine is called using instruction code 5 (JSRP). This instruction code 2910 
pushes the Microprogram Counter contents onto the Stack; the subroutine starting address is MICROPROGRAM 
taken from 00-011 if the condition code "passes". and from the Address register if the condition JUMP-TO-
code "fails". The Address register must have been preloaded with an appropriate starting address SUBROUTINE 
if the condition code "fails". Generally. instruction code C (LOCT) is used to load the Address 
register. 

A normal Return-from-Subroutine will use instruction code A (CRTN) with the condition code held "passing". 

There are two types of loop you may encounter in a microprogram. You may wish to re-execute a single 
microinstruction, or a sequence of microinstructions some number of times. 

The simplest way of re-executing a single microinstruction some fixed number of times is to load the Address register 
with a number one less than the required count. then issue instruction code 9 (RPCT). This may be illustrated as 
follows: 

N 

Address 
Sequence 

N+ 1 (M times) 
N+2 

2910 Instruction 
Code Sequence 

LOCT with M-1 to 00-D11 
RPCT with N+1 to 00-011 
CONT 

You can alternatively use instruction code 8 (RFCT) to re-execute a single microinstruction. but the microinstruction 
address must be preloaded onto the Stack. 
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... More frequently. instruction code 8 (RFCT) will be used at the end of a multi-microinstruction loop. This may be illus­
trated as follows: 

Address 
Sequence 

N 

[

N+1 
Re-execute N+2 

loop N+1 -
to N+M+1 -

P times -
N+M 
N+M+1 
N+M+2 

2910 Instruction 
Code Sequence 

PUSH with P-1 to DO-D11 and CC "passing" 
CO NT 
CO NT 

CO NT 
RFCT 
CO NT 

As illustrated above. the microinstruction preceding the loop must input instruction code 4 (PUSH) with the condition 
code passing. This simultaneously loads the count into the Address register while pushing the next sequential address 
onto the Stack. Subsequently instruction code 8 (RFCT) decrements the Address register. selecting the address which 
PUSH saved on the Stack. until the Address register has decremented to O. 

2910 ADDRESSING EXAMPLE 
As we did for the 2911 Microprogram Sequencer, we will now look again at the twos complement binary divi­
sion microprogram given in Table 8-9, adding address generation microinstruction bits needed by the 2910 
Microprogram Sequencer. See Table 8-13. 

We are going to treat the twos complement binary division microprogram as a subroutine. We assume. therefore. that 
microinstruction 1 is executed following a Jump-to-Subroutine instruction code input to the 2910 Microprogram Se­
quencer. 

Microinstruction 1 inputs a CONT instruction code to 10-13 of the 2910 Microprogram Sequencer. This causes the 
next sequential microinstruction to be executed. Since the 2910 does not sample its DO-D11 inputs. these bits are ir­
relevant. CI is input high since the 2910 Microprogram Counter contents must increment. RLD and CCEN are high 
since no data is to be written into the Address register. and the condition code is not used. 

Although microinstruction 1 itself transmits the simplest possible addressing logic to the 2910. the ZERO status output 
by the 2903 while microinstruction 1 is executed contributes to microinstruction 2 address generation logic. The bin­
ary division subroutine must be aborted if the divisor is O. This abort condition is indicated by a ZERO status output 
following execution of microinstruction 1. This ZERO status is output too late during microinstruction 1's microcycle to 
be considered by 2910 addressing logic during execution of microinstruction 1. Therefore, in the event that the 
subroutine must be aborted. microinstruction 2 gets executed gratuitously. but causes an abort exit from the 
subroutine after its gratuitous execution. The CJP instruction code is input to the 2910 Microprogram Sequencer 
by microinstruction 2 in order to achieve this end. This instruction code causes the next sequential microinstruction 
to be addressed if the condition code "fails", while the addressing input at DO-D11 is selected if the condition code 
"passes". The address of the microinstruction to be selected following an abort is therefore input via bits DO-D11. In 
order to enable the condition code. CCEN is low. CC must be connected to the complement of Z while microinstruction 
2 is being executed. This allows the ZERO status output by the execution of microinstruction 1 to generate the CC in­
put during microinstruction 2 - and thus generate an abort. if needed. We do not show the logic which causes CC to 
be connected to the complement of the 2903 Z status. There are many ways in which such "one time" connections can 
be made. Possibly the simplest technique is to add microinstruction bits which enable a specific NOR gate linking the 
2910 CC input with the 2903 Z output. This may be illustrated as follows: 

CC----~----~L_~ 

z----------~L_~ 
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No 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Table 8-13. The 2903 Twos Complement Binary Division Microprogram Subroutine from Table 8-9, 
with 2910 Addressing Microinstruction Fields Added 

Microinstruction 
EA CN AO -A3 80 - 83 Comment 

18 -15 14 -11 10 

4 6 a a a Divisor register Divisor buffer Copy divisor to temporary buffer. 
(Ra) (R3) 

4 6 a a a Dividend (MS) Dividend (MS) Copy dividend most significant half to temporary buffer. 
register (R 1 ) buffer (R2) 

5 a a x a x Dividend (MS) Convert dividend (MS) from twos complement to sign/magnitude version. 
buffer (R2) Test aVR externally w/lile next microinstruction is being executed. If OVR is 1, 

branch to subroutine that downshifts dividend. 

5 a a x a x Divisor buffer Convert divisor (MS) from twos complement to sign/magnitude version. 
(R3) Test aVR externally. If OVR is 1, branch to microinstruction 9. 

9 4 a x a x Dividend (MS) Shift out sign bit of dividend (MS) half in temporary buffer. 
buffer (R2) 

9 4 a x a x Divisor buffer Shift out sign bit of divisor in temporary buffer. 
(R3) 

F 2 a a 1 Dividend (MS) Divisor buffer Subtract sign bit stripped divisor from sign bit stripped dividend (MS) half. 
buffer (R2) (R3) If Carry = 1 (dividend larger) branch to subroutine that downshifts dividend 

or upshifts divisor. 

6 6 a a a Dividend (LS) X Copy dividend least significant half to Q register. 
register (R4) 

A* a a a a Divisor register Dividend (MS) Double length normalize dividend in MS register and Q register. 
(Ra) register (Rll 

c· a a a z Divisor register Dividend (MS) Execute twos complement divide instruction fourteen times. 
(Ra) register (R 1l 

E a 0 0 Z Divisor register Dividend (MS) Twos complement divide final instruction. 
(Ra) register (Rll 

'CN is connected to Z status while these two special functions are being executed. 
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Table 8-13. The 2903 Twos Complement Binary Oivision Microprogram Subroutine from Table 8-9. 
with 2910 Addressing Microinstruction Fields Added (Continued) 

21103BI .. 

Mlcrol •• tnlcdon bl .. covering ZII03 ond ZII10 Inpu" 
IBlt poold .... ore ..... ltr1Iry ond hove no .1 •• 111 ..... 1 

Z810 BI .. 

1817181111413 IZ 11 10 Ell eN A3A2Al AOB3 BZ Bl 80 13 IZ 11 10Dll Dl0 DII DB D7 D8 DII D4 D3 DZ Dl DO 

o 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 lOX X X X X X X X X X X X 1 1 1 Select .ext seque.tial instruction. -- _'-...--'-4 6000 RO R3 E=CONT 111 

0100011000000010010 0011A A A A A A A A 

~-e- 0 0 0 -;;;- -;;-~ ~'-""-----""V' 
Address for abort 

A A A :;,., 0 1 1 

o 1 1 

CC is generated by 2903 Z otatus ICC = ZI. Select next 
sequential microinstruction unless RO from microinstruction 
1 is O .. Then abort. 

o 1 0 1 0 0 0 0 0 X 0 X X X X 0 O' 1 0 1 1 lOX X X X X X X X X X X X 1 1 1 Select next sequential instruction. ----- --5 0 R2 E = CONT 1 1 1 

o 1 0 1 o 0 0 0 0 X 0 X X X X 0 0 1 1 ~~ S 5 5 5 5 5 5 5 5 5 ~ 0 1 1 CC is genarated by OVA st.tus. ICC = OVRI. 
---..,-.' --..,-.' 'V Select next sequential instruction unless 

5 0 0 R3 1 = CJ5 - 0 1 1 OVR = 1. Then call uscals dividend" subroutine. SC81e dividend subroutine 

1 o 0 1 o 1 o 0 0 X 0 X X X X 0 0 1 0 o 0 1 1 B B B B .!....B B B B B B ~ 0 1 1 CC is generated by OVA status. ICC = OVRI. -- --..,-.' 
_ ....... 

V Select next sequential instruction unless OVA = 1. 
9 4 R2 3 = CJP 

Microinstruction 8 address 
0 1 1 Then branch to microinstruction 8. 

1 0 0 1 () 1 0 0 0 X 0 X X X X 0 0 1 1 1 1 lOX X X X X X X X X X X X 1 1 1 5elect next sequential instruction. 

--..,-.' ---- '-...--' --..,-.' 
9 4 R3 E = CONT 1 1 1 

1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 lOX X X X X X X X X X X X 1 1 1 5elect next sequential instruction. 
---..,-.' '-...--' --..,-.' --..,-.' 

F 2 0 0 1 R2 R3 E = CONT 1 1 1 

o 1 1 o 0 1 1 0 0 0 0 0 1 0 0 X X X X ~-.!. T T T T T T T T T T ~ 0 1 1 CC is generated by CIN+41. ICC = CIN+4H. -- - V Select next sequential instruction unless 
6 6 0 0 0 R4 1 = CJ5 - Scale divisor or 0 1 1 C(N+4) = 1. Then call "scale divisor or dividend" subroutine. 

dividend subroutine 

1 o 1 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ~~ 0 0 0...2... 0 0......2.. 1 1 0 .J... 1 1 0 Load count into address register, push -- .-.-.' '-...--' 'V next sequential instruction address onto 
A 0 0 0 0 RO Rl 4 = PU5H Count = 13 1 1 0 Stack and select next sequential instruction. 

10 1 1 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 1 1 0 0 0 X X X X X X X X X X X X 1 1 1 Re-execute instruction addraosed by 5tack until count 
--..,-.'.-.-.' --..,-.' '-...--' - decrements to O. 

COO 0 RO Rl 8 = RFCT 1 1 1 

11 1 1 1 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 1 1 0 1 0 X X X X X X X X X X X X 1 1 1 Ratum from subroutine. 

---..,-.' - '-...--' -E 0 0 0 RO Rl A = CRTN 1 1 1 

x = "Oon't Care" bits 

While it may appear wasteful to dedicate a single microinstruction bit to enabling such a connection. perhaps only 
once in an entire microprogram. in fact the economics of microprogramming often favor wasting a single bit in this 
way. The alternative is to have additional logic which generates a particular input, from one of a variety of outputs. de­
pending on complex combinations of circumstances. To evaluate this reasonin~ look at Table 8-13. where CC may be 
connected at different times to a Zero. Overflow or C(N+4) status. You cannot guarantee that the CC generation logic 
will be a known function of any bit field within the microinstruction. since the same bit field may recur somewhere else 
in the microprogram without having the same CC logic requirements. Your only alternative to dedicating a 
microinstruction bit to each CC generation possibility would be to decode the microinstruction address itself; and that 
would not be simple. 

Microinstruction 3 is another example of a microinstruction that generates a status output which contributes to 
subsequent addressing logic - but not until the next microinstruction. Microinstruction 3 itself provides the 2910 
with a CaNT instruction code. which together with a high CI causes the next sequential microinstruction address to be 
output by the 2910. The data bits 00-011 are not used; RLO and CCEN are both high (i.e .. in the "off" state). At the 
2903. microinstruction 3 performs a twos complement to sign/magnitude conversion on the contents of RAM location 
R2. If this operation generates a high Overflow status. then R2. which contains the high-order half of the dividend. must 
be scaled by shifting down one bit position. The subroutine should be called. if needed. after microinstruction 3 has 
been executed. and before microinstruction 4 is executed. But microinstruction 3 outputs OVR too late in its microcycle 
for this status to contribute to the next microinstruction address. Therefore microinstruction 4 provides the 2910 with 
addressing logic that tests the OVR status from microinstruction 3's execution. CJS. the Conditional Jump-to­
Subroutine. is specified by inputting 1 as the 2910 instruction code. The address of microinstruction 1's subroutine is 
held in data field bits 00-011. CCEN is output low so that CC can be tested. CC must be connected to the complemen t 
of the 2903 OVR status output. If CC is low - and OVR is high - then the subroutine addressed by 00-011 will be 
called. Otherwise. since CI is high. the 2910 will output the next sequential microinstruction address - which is the 
address of microinstruction 5. RLO is output high since the address at 00-011 must not be written into the Address 
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register. As we did in instruction 2. again in microinstruction 4 an additional microinstruction bit will likely connect CC­
to-OVR via NOR gates. And once again we will choose to waste this CC-to-OVR connector bit for the vast majority of 
microinstructions where such a connection does not apply. 

While microinstruction 4 provides the 2910 with addressing inputs that test the Overflow status generated by 
microinstruction 3, the Overflow status itself is mQdified by the 2903 while microinstruction 4 is being ex­
ecuted. This presents no timing problems. since the 2910 has stopped sampling its CC input by the time microinstruc­
tion 4 modifies the Overflow status. See Figure 8-~8. 

Microinstruction 5 must provide the 2910 with addressing inputs that account for the Overflow status gener­
ated by microinstruction 4, just as microinstruction 4 had to provide the 2910 with addressing inputs that took into 
account the Overflow status generated by microinstruction 3. Microinstruction 5 causes the 2910 to execute a condi­
tional jump. rather than a conditional subroutine call. since a high Overflow status generated by the 2903 while execut­
ing microinstruction 4 requires microinstructions 5. 6. and 7 to be bypassed. We do not bypass microinstruction 5. 
since it is during this microinstruction's execution that the 2910 will test the Overflow status from microinstruction 
4 - and determine if a jump is required. This would present a problem if execution of microinstruction 5 upset the 
2903 logic sequence; but it does not. If executed unnecessarily no harm is done. But remember. there may be circum­
stances under which you may have to insert a dummy microinstruction that generates no operation at a 2903. but 
gives the 2910 time to test 2903 status from the previous microinstruction. 

In our present example microinstruction 5 inputs a CJP instruction code at 10-13 of the 2910 and the address of 
microinstruction 8 at DO-D11. CCEN is low so that 2910 condition code logic will sample CC. which remains connected 
to the 2903 OVR status. as it was during execution of microinStruction 4. RLD is high so that the address input at DO­
D11 does not get written into the Address register. CI is high since the next sequential microinstruction must be 
selected if OVR is low - and the condition code test "fails". 

If the condition code test "fails" at the 2910 during execution of microinstruction 5. then microinstructions 6 and 7 
are next executed sequentially. Each of these microinstructions provides the 2910 with a simple CONT input at 10-13. 
no data inputs. and CCEN and RLD disabled with CI high. so that the Microprogram Counter will increment 

Microinstruction 7 subtracts modified versions of the divisor from the dividend. If the Carry Out generated by the 2903 
at C(N+4) is 1. then the divisor must be upshifted (or the dividend must be downshifted) in order to guarantee that the 
divisor ultimately has the larger absolute value C(N+4) is generated by the 2903 at the end of the microinstruction 7 
microcycle - too late for the 2910 to take this status output into account until the next microcycle. during which 
microinstruction 8 is executed. In Table $~13 we show microinstruction 8 providing a Conditional-Jump-to­
Subroutine input to 10-13, with a subroutine address input to 00-011. This 2910 addressing logic is identical to 
that which we have already described for microinstruction 4. except that the condition code CC will now be connected 
to the 2903 C(N+4) output - again via a special enabling microinstruction bit The fact that microinstruction 5 might 
have caused the 2910 to generate a branch to microinstruction 8 is not a problem. since C(N+4) will be low following 
execution of microinstruction 5: therefore if microinstruction 8 is executed next. the condition code must fail 

Microinstruction 9 is executed after microinstruction 8 - possibly with a scaling subroutine executed in between 
Microinstruction 9 prepares the 2910 for execution of microinstruction 10. A PUSH Instruction code is Input at 10-
14. with a count input at DO-D11. RLD is low so that the count gets written into the Address register. The 2910 then 
outputs the address of microinstruction 10 since CI is high - so the Microprogram Counter gets incremented 

MicroinstrlJction 10 outputs an RFCT instruction code to the 2910 via 10-13:This Instruction code causes the 2910 
to output the address held at the top of the Stack until the Address register decrements to zero The push performed by 
the 2910 while microinstruction 9 was executing loaded microinstruction 10's address onto the Stack. therefore 
microinstruction 10 gets re-executed 13 times - for a total of 14 executions 

After the Address register has decremented 13 times to O. the RFCT instruction code causes the 2910 to output the 
next sequential instruction - that of microinstruction 11. This is the terminating microinstruction for the twos com­
plement binary division microprogram subroutine Therefore a Return-from-Subroutine code. CRTN. IS transmitted to 
the 2910 via 10-13 In order to force a pass condition. this being a Conditional Subroutine Return Instruction. code CCEN 
IS output high 
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THE 2930 AND 2932 PROGRAM CONTROL UNITS 

These two parts were designed to provide assembly language instructions with their memory address genera­
tion logic. The internal architecture of these two devices approximates II 2901 whose local RAM has been con­
verted into a Stack, while the Q register functions as a local data register. 

In reality. the 2930 series devices are hybrid parts that may substitute for 2909/10/11 Microprogram Sequen­
cers, or they may be used separately to implement assembly language instructions' memory addressing logic. 
The 2930 series devices are probably more effective as microprogram sequencers. In this role you need only make 
sure that timing requirements of the 2930 series devices are compatible with the 2901 or 2903 central logic you are 
using. But as assembly language memory address generators 2930 series devices leave a great deal to be desired. They 
cannot cope with indirect memory addreSSing. since by its very definition indirect memory addreSSing requires inter­
mediate access of external memory. Also. most minicomputer and microcomputer assembly languages depend on an 
external memory stack which cannot be implemented within the small. local stack provided by 2930 series devices. 
Therefore. 2930 series devices do little more than add indexes to base addresses. But the value of 2930 series devices 
increases dramatically when you are not building a general purpose central processing unit. If you are building dedi­
cated CPU-based logic that uses both microcode and higher level instructions. then you can probably avoid indirect ad­
dressing. and you can work with the limited 2930 series stack. 

The 2930 series devices are both 4-bit slices. The 2930 is the most advanced of the two devices; it is fully 
cascadable and packaged as a 28-pin DIP. The 2932 device is packaged as a 20-pin DIP and is also cascadable. 

These two devices differ only in their internal instruction logic. 

Both 2930 devices are manufactured using bipolar technology: they use a single +5V power supply and have TTL-level 
compatible signals. 

2930/32 DEVICE PINS AND SIGNALS 
We will describe pins and signal assignments for these two devices together, and in conjunction with their 
functional logic. Device pins and signals are illustrated in Figure 8-40. Functional logic is illustrated in Figure 
8-41. 

The Adder is central to 2930 series operations. The Adder accepts one or two operands as inputs. and generates a 
single output. The Adder can perform three different operations: 

1) It can add (with carry) the two operand inputs. CN determines the level of the carry during addition. 

2) It can increment a single operand by adding CN to the operand. 

3) It can output a single operand unaltered. 

Rand S in Figure 8-41 are the two Adder operands. The R operand can have one of three 
sources. The S operand can have one of four sources. An instruction code selects the source for 
the Rand S operands. together with Adder operations. The 2930 has a 5-bit instruction code, 
input at 10-14. The 2932 has a 4-bit instruction code, input at 10-13. These instruction codes do 

2930 SERIES 
INSTRUCTION 
CODES 

more than control logic around the Adder and its inputs. they also control the Stack Accumu lator and Program 
Counter. as summarized in Table 8-14 .. This table is keyed to the 2930. The set of 2932 instruction codes is a subset 
of the 2930 instruction code set. and is so identified. 

The 2930 allows you to enable or disable the Adder output using the output enable signal OE. The 2932 has no 
such output enable signal: Adder output from this device is always enabled. But when OE is input high to the 2930 the 
YO-Y3 outputs are floated. 

Data may be held in three different places within 2930 series devices: these three places are the Accumulator. the Pro­
gram Counter. and the Stack. 

The Accumulator is a single 4-bit location that can receive data input via 00-03, or it can 
receive output from the Adder. The instruction code determines which of the two inputs. if 
either. will be written into the Accumulator. The 2930. but not the 2932. has a separate Ac­

2930 SERIES 
ACCUMULATOR 

cumulator enable control signal RE. This enable control signal is subordinate to the instruction code. The level of RE is 
unimportant when the instruction code specifies that data will be written into the Accumulator. For other instruction 
codes. a low RE input causes immediate data at 00-03 to be written into the Accumulator. 
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10 

EMPTY 
CI 

OE 
C(I+4) 

CN 
YO 
Y1 
Y2 
Y3 
G 

C(N+4) 
GND 

. 
--- -.. 
--
----
.--

1 28 VCC (+5V) 10 - 1 20 -
2 27 -- 11 FULL -- 2 19 
3 26 ... - 12 CI .. 

3 18 -
4 25 -- 13 C(I+4) - 4 17 -
5 24 -- 14 CN -- 5 2932 16 
6 23 -- CC YO -- 6 15 
7 2930 22 ... - lEN Y1 7 14 -
8 21 ... - RE Y2 - 8 13 -
9 20 --- DO Y3 9 12 

10 19 -- 01 GND 10 11 
11 18 -- 02 
12 17 - 03 
13 16 - P 
14 15 ... - CP 

Pin Name Description Type 

DO - 03 Data input Input 
YO - Y3 Address output Output 
RE Register input enable Input 
OE Address output enable Input 
10 - 14/10 - 13 Instruction input Input 
lEN Instruction enable Input 
CC Instruction condition code Input 
CI Program Counter carry in Input 
C(I+4) Program Counter carry out Output 
CN Adder carry in Input 
C(N+4) Adder carry out Output 
G Adder carry generate Output 
P Adder carry propagate Output 
FULL Stack full indicator Output 
EMPTY Stack empty indicator Output 
CP Device clock Input 
VCC. GND Power. Ground 

Figure 8-40. 2930/32 Program Control Units Signals and Pin Assignments 

8-126 

--I 
---------
--

. --

VCC(+5V) 
11 
12 
13 
DO 
01 
02 
03 
C(N+4) 
CP 



DO - 03 h 

CN 

),~ 
(' ::: -

1 . > 

-----.. Accumulator 

0 0 

,,l, 
("< 

. ~ , 'Ii ~ ~ J 
R S 

3-IN MUX 4-IN MUX 

.1 '1\ ~ 

R S .. Adder ~ 

II 

YO - Y3 

These signals are present in the 2930, 

but not the 2932. 

A 

" ~ 

1 
17 x 4 

Bit 
Stack 

J 

. 7 

Program 
Counter 

" 
~ 7 

Incrementer 

j 

Instruction 
Decoder 

-

-
-

~ 

--

-

Figure 8-41. Functional Logic for 2930 Series Program Control Units 
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Table 8-14. 2930 Series Program Control Unit Instruction Codes Summary 

Instruction Accumulator 2932(4) 
Code Output New PC Contents Stack Instructions Comment 

atYO-V3 Contents (1) Operation 
No. 1413121110 No. 131211 10 

0 0000 0 0 CI [D) O-[SP) 0 o 0 0 0 Device resat 
1 0000 1 [PC) [PC) + CI [D) None 4 o 1 o 0 Output p.rogram Counter contents 
2 000 1 0 [R) [PC) + CI [D) None 8 1 0 0 0 Output Accumulator contents 
3 000 1 1 [D) [PC) + CI [D) None Output immediete data 
4 00 1 0 0 [R) + [D) + CN [PC) + CI [D) None Output sum of Accumulator contents and 

immediate data 

i 
5 001 0 1 [PC) + [D) + CN [PC) + CI [D) None Output sum of Program Counter and 

immediata data 
6 00 1 1 0 [PC) + (RI + CN [PC) + CI [D) None 9 1 0.,0 1 Output sum of Program Counter and 

Accumulator 
~ 7 00 1 1 1 [S) + [D) + CN [PC) + CI [D) None Output sum of Stack and immediate data 

1 8 o 1 00 0 [PC) [PC) + CI [PC)· None A 1 0 1 0 Output Program Counter contents and 
unconditionally loed Accumulator 

";: 
9 o 1 o 0 1 [R) + (D) + CN [PC) + CI [R) + [D) + CN· None Output sum of Accumulator and immediate 

1 data. and unconditionally loed Accumulator 
A o 1 o 1 0 [PC) [PC) + CI [OJ" None F 1 1 1 1 Output Program Counter contents. Uncondition-

;:, ally loed immediate data into Accumulator 
8 o 1 o 1 1 [PC) [PC) + CI [D) PUSH [PC) 6 o 1 1 0 Output and push Program Counter contents 
C o 1 1 0 0 [PC) [PC) + CI ~D) PUSH [0) 2 o 0 1 0 Output Program Counter contents and push 

immediate data 
0 01 1 0 1 [S) [PC) + CI [D) POP Pop and output Stack 
E o 1 1 1 0 [PC) [PC) + CI [D) POP 3 00 1 1 Output Program Counter and pop Stack 
F 01 1 1 1 [PC) [PC) [D) None Output and hold Program Counter 

10 1 000 0 [R) [R + CI [D) None 8 1 0 1 1 Jump to address in Accumulator 
11 1 000 1 [D) [D) + CI [D) None 5 o 1 0 1 Jump to address given by immediate data 
12 1 0 0 1 0 0 CI [D) None Jump to "0" 
13 1 00 1 1 [R) + [D) + CN [R) + [D) [0] None Jump to address given by sum of Accumulator 

+ CN + CI and immeidate data 
14 1 0 1 0 0 [PC) + [D) + CN [PC) + [D) [0] None Jump to address given by sum of Program Counter 

§ + CN + CI contents and immediate data 

i 15 1 0 1 0 1 [PC) + [R] + CN [PC] + [R] [0] None C 1 1 o 0 Jump to address given by sum of Program Counter 

i 
+ CN + CI and Accumulator contents 

16 1 0 1 1 0 [R) [R) + CI [0] PUSH [PC) 0 1 1 o 1 Jump to subroutine addrassed by Accumulator 
17 1 0 1 1 1 [0] [D) + CI [D) PUSH [PC) Jump to subroutine addrassed by immediate data 

~ 18 1 1 00 0 0 CI [0] PUSH [PC) Jump to subroutine origined at 0 

1 19 1 1 00 1 [R) + [0] + CN [R] + [D) [D) PUSH [PC) Jump to subroutine addressed by sum of 
+ CN + CI Accumulator contents and immediate data 

J lA 1 1 0 1 0 [PC) + [0] + CN [PC] + [0] [0] PUSH [PC) Jump to subroutine addressed by sum of 
+ CN + CI Program Counter and immediate data 

18 1 1 0 1 1 [PC] + [R] + CN [PC) + [R] [0] PUSH [PC) E 1 1 1 0 Jump to subroutine addressed by sum of 
+ CN + CI Program Counter and Accumulator contents 

lC 1 1 1 0 0 [S] [S] + CI [0] POP 7 o 1 1 1 Retum from subroutine 
10 1 1 1 0 1 [S) + [0] + CN [S) + [0] [0] None Retum from subroutine to retum eddress 

+ CN + CI plus immediate data 
IE 1 1 1 1 0 [PC) [PC) [D) None Output and hold Program Counter 
IF 1 1 1 1 1 Off 121 [PC) [D) None 1 o 0 0 1 High impedance output. Hold Program Counter 

(1 )The Accumulator is loaded only when Ai: is input low. Exceptions are the three instructions marked •. which cause the Accumulator to be loaded unconditionally. 

(2lThe YO - Y3 outputs are in the high impedance state. 

(3)Conditional instructions execute as described only when Cc is input low. Otherwise instruction 1 is executed. These instructions are unconditional for the 2932 which has no 
Cc input. 

(4)The 2932 has no R[ input. therefore only the three instructions marked· load the Accumulator. 
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The Program Counter normally receives the Adder output as its new input. The Adder output 
mayor may not be incremented, depending on the level of the CI input. When the Adder is 
not outputting the prior Program Counter contents. loading this different output into the Program 
Counter constitutes a program jump. Many instruction codes bypass this jump logic by recycling 

2930 SERIES 
PROGRAM 
COUNTER 

the Program Counter contents back through the incrementer while some other output is generated by the Adder. For 
example. one instruction code causes the Adder to output data input at 00-03. But the Program Counter contents are 
held unaltered. or incremented. depending on the level of the CI input. 

Both 2930 series devices have a 17-level Stack. Program Counter contents or data input at 
00-03 can be pushed onto the Stack. The 2930 series push operation is a little unusual. The 
Stack Pointer is incremented. then the selected data is written into the newly addressed Stack 
location. Thus. following a push. the Stack Pointer addresses the data most recently pushed onto 

2930 SERIES 
STACK, PUSH, 
POP 

the Stack. It is more traditional for the Stack Pointer to address the first free Stack location. When you pop a 2930 
series Stack, you decrement the Stack Pointer contents, and that is all. Thus. in order to read data off the top of 
the Stack. you select an instruction code which reads data from the Stack. then you pop the Stack. The more traditional 
Stack architecture requires that you pop the Stack. then read data from the top of the Stack. 

The 2930 series Stack Pointer is not wrap-around. If the number of pushes exceeds the 
number of pops by more than seventeen. the Stack Pointer continues to address the topmost 
Stack location. If you attempt to pop the Stack when the Stack Pointer is addressing location O. 
then it continues to address location O. 

2930 SERIES 
STACK POINTER 

When the Stack Pointer is addressing either of the two top Stack locations. the FULL signal is output low. When you 
execute a push while the Stack Pointer is addressing the top Stack location. data is written into this top location. over­
writing whatever was there before. 

The 2930. but not the 2932. has a Stack Empty indicator. This signal. EMPTY. is output low following a reset. or after 
the lowest level Stack location has been popped. 

2930 series devices are cascadable. However. the 2930 has more cascading logic than the 2932. Unlike the 2901 and 
the 2903. the 2930 series devices do not have Shifters along data paths. therefore the Accumulator. Stack. and Pro­
gram Counter do not need parallel interconnect signals. Parallel interconnect signals are needed only to cascade the 
Program Counter as it increments. or the Adder following an increment or addition. For the Program Counter there is a 
carry input. CI. and a carry output. C(I+4). The delay between CI being input and C(I+4) being output is very short. 
There is plenty of time for this ripple carry to propagate through four slices. for a 16-bit address. within one microcycle. 
For timing details see the data sheets at the end of this chapter. 

Both 2930 series Adders have a carry input, Ct,!, and a carry output, C(N+4). Only the 2930 
has is" and G outputs, the carry propagate and generate. Therefore only the 2930 allows you to 
use a 2902 carry look-ahead generator. When using the 2932 device. you must rely on ripple car­

2930 SERIES 
CARRY LOGIC 

ry. For a discussion of carry look-ahead and ripple carry. refer to the 2901 and 2902 device descriptions given earlier in 
this chapter. 

USING 2930 SERIES DEVICES 
You must be careful when deciding how to use 2930 device read/write locations. You should not use these loca­
tions to implement CPU registers if you are designing any type of general purpose minicomputer or microcomputer. 
That is because you will have to perform a sequence of pushes and pops. each requiring a single microcycle. in order to 
select an arbitrary location. Moreover. every time you perform a push in order to increment the address. you will 
simultaneously write into the newly addressed location - something you may not wish to do. Thus the Stack lets you 
have 17 levels of subroutine within the program logic that you use to generate addresses. 

You can use the 2930 series Accumulator to implement a CPU register. For example. 
many primitive Central Processing Units have a single Index register whose contents can con­
tribute to address generation logic. but not to CPU arithmetic or logic operations. The 2930 
series Accumulator would be an ideal location for such an Index register. 

2930 SERIES 
INDEX REGISTER 

If you are designing a special purpose Central Processing Unit using 2930 series devices. you may well be able to use 
the 17-level Stack to give you all the CPU registers you require. Knowing in advance the limitations of 2930 series 
Stack access. you can design your microprogram around these limitations so that addresses are stored in the proper 
serial sequence within the 2930 series Stack. 
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DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• Am2901. Am2901A and Am2901 B 
• Am2902A Carry Look-Ahead Generator 
• Am2903 Enhanced Microprocessor Slice 
• Am2910. Am2909. and Am2911 Microprogram Sequencers 
• Am2930 Program Control Unit 
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Am2901/ Am2901 A 

MICROCODE 
ALUSOURCE 
OPERANOS 

12 11 10 
Octal R S 
Code 

MICROCODE 
ALU 

0ctI01 Function Symbol 

16 14 13 Code 

L L L 0 A a L L L 0 RPlusS R+S 

L L H 1 A 8 L L H 1 SMinus R S-R 

L H L 2 0 a L H L 2 RMinu,S R-S 

L H H 3 0 8 L H H 3 RORS RVS 
H L L 4 0 A H L L 4 RANDS RA S 

H L H 5 0 A H L H 5 RANDS RI\S 

H H L 6 0 0 H H L 6 R EX-OR S R¥S 

H H H 7 0 0 H H H 7 R EX·NOR S R'VS 

Figure 2. ALU Source Operand Control. Figure 3. ALU Function Control. 

MICROCODE RAM a·REG. RAM a 
FUNCTION FUNCTION V SHIFTER SHIFTER 

18 17 16 0ctI01 Shift L .. d Shift Load OUTPUT 
RAMo RAM3 Clo 03 Code 

L L L 0 X NONE NONE F .... O F X X X X 

L L H 1 X NONE X NONE F X X X X 

L H L 2 NONE F .... 8 X NONE A X X X X 

L H H 3 NONE F .... 8 X NONE F X X X X 

H L L 4 DOWN F/2 .... 8 DOWN 012 .... 0 F FO IN3 00 IN3 

H L H 5 DOWN F/2 .... 8 X NONE F FO IN3 00 X 

H H L 6 UP 2F .... 8 UP 20 .... 0 F INO F3 INO 0 3 

H H H 7 UP 2F .... 8 X NONE F INO F3 X 03 

X= Don't care. Electrically, the shift pin is a TTL input Internally connected to a three·state output which is In the high· 
Impedance state. 

8 = Register Addressed by B inputs. 
Up is toward MSB, Down is toward LSB. 

Figure4. ALU Destination Control. 

~210OCTAL 0 1 2 3 4 5 6 7 

CI.~ 14 Source A,a A,B o,a O,B O,A D,A D,a 0,0 
L 3 ALU . 

Function 

Cn-L A+O A+8 a 8 A O+A 0+0 0 
0 R PlUI S 

Cn-H A+O+l A+8+1 0+1 8+1 A+l O+A+l 0+0+1 0+1 

Cn-L O-A-l 8-A-l 0-1 8-1 A-I A-D-l 0-0-1 -0-1 
1 SMinul R 

Cn - H O-A B-A 0 8 A A-O 0-0 -0 

Cn- L A-O-l A-8-1 -0-1 -8-1 -A-l D-A-l 0-0-1 0-1 
2 R MinulS 

Cn-H A-O A-8 -0 -8 . -A O-A 0-0 0 

3 RORS AVO Av8 a 8 A OVA OVO 0 

4 RANDS AMi Ai\8 0 0 0 Di\A 0110 0 

5 RANDS Ai\O Ai\8 0 8 A OIlA 0110 0 

6 R EX·ORS A"'O A"'8 0 8 A O"'A O¥O 0 

7 REX-NORS A¥O A¥ B Q ii A O"'A O¥O 0 

+ * Plus; - = Minus; V = OR; 1\ = AND; V = EX·OR 

Figure 5. Source Operand and ALU Function Matrix. 

Data sheets on pages 8-02 through 8-025 Copyright © 1978 by Advanced Micro Devices, Inc. Reproduced with permission of 
copyright owner. 
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Am2901 /2901 A 

SOURCE OPERANDS AND ALU FUNCTIONS 

There are eight source operand pairs available to the ALU as 
selected by the 10, 11, and 12 instruction inputs. The ALU can 
perform eight functions; five logic and three arithmetic. The 
13, 14, and 15 instruction input$ control this function selection. 
The carry input, Cn, also affects the ALU results when in the 
arithmetic mode. The en input has no effect in the logic mode. 
When 10 through 15 and en are viewed together, the matrix of 

Octal 

1543,1210 
Group Function 

40 A/\O 
41 A/\8 
45 

AND 
O/\A 

46 0/\0 

30 AVO 
31 

OR 
AV8 

35 OVA 
36 OVO 

60 AVO 
61 EX-OR 

AV8 
65 OVA 
66 OVO 

70 AVO 
7 1 Avo8 

75 
EX-NOR 

OVA 
76 OVO 

72 9 
73 

INVERT 
8 

74 A 
77 D 

62 0 
63 

PASS 
8 

64 A 
67 0 

32 0 
33 

PASS 
8 

34 A 
37 0 

42 0 
43 "ZERO" 0 
44 0 
47 0 

50 A/\O 
51 MASK A/\8 
55 D/\A 
56 0/\0 

Figure 6. ALU Logic Mode Functions. 

Figure 5 results. This matrix fully defines the ALU/source 
operand function for each state. 

The ALU functions can also be examined on a "task" basis, 
i.e., add, subtract, AND, OR, etc. In the arithmetic mode, the 
carry will affect the function performed while in the logic 
mode, the carry will have no bearing on the ALU output. 
Figure 6 defines the various logic operations that the Am2901 A 
can perform and Figure 7 shows the arithmetic functions of 
the device. Both c:arry-in LOW (en = 0) and carry-in HIGH 
(Cn = 1) are defined in these operations. 

Octal Cn = 0 (Low) Cn = 1 (High) 

1543,1210 Group Function Group Function 

0 0 A+O A+0+1 

0 1 ADD A+8 ADD plus A+8+1 

0 5 O+A one O+A+l 

0 6 O+Q 0+0+1 

0 2 Q Q+l 

0 3 PASS 8 Increment 8+1 

o 4 A A+l 

0 7 0 0+1 

1 2 0-1 0 

1 3 Decrement 8-1 PASS 8 

1 4 A-1 A 

2 7 0-1 0 

2 2 -Q-l -0 

2 3 1'5 Compo -8-1 2'sComp. -8 

2 4 -A-1 (Negate) -A 

1 7 -0-1 -0 

1 0 Q-A-l Q-A 

1 1 Subtract 8-A-1 Subtract 8-A 

1 5 (1'sComp) A-0-1 (2's Comp) A-O 

1 6 0-0-1 Q-O 

2 0 A-Q-l A-O 

2 1 A-8-1 A-8 

2 5 O-A-l O-A 

2 6 O-Q-l 0-0 

Figure 7. ALU Arithmetic Mode Functions. 
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Am2901 

MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential 

DC Voltage Applied to Outputs for HIGH Output State 

DC Input Voltage 

DC Output Current, I nto Outputs 

DC Input Current 

OPERATING RANGE 
PIN Ambient Temperature Vcc 

I Am2901PC. DC 10°C to +70°C I 4.75 V to 5.25 V I 
I Am2901DM. FM I -55°C to +125°C 1 4.50 V to 5.50 V 1 

STANDARD SCREENING 
(Conforms to MI L-STD-883 for Class C Parts) 

MIL-STD-883 

-0.5 V to +6.3 V 

-0.5 V to +VCC max. 

-0.5 V to +5.5 V 

30mA 

-30 mA to +5.0 mA 

Leyel 

Step Method Conditions Am2901 PC, DC Am2901DM. FM 

Pre-Seal Visual Inspection 2010 

Stabilization Bake 1008 

Temperature Cycle 1010 

Centrifuge 2001 

Fine Leak 1014 

Gross Leak 1014 

Electrical Test 

Subgroups 1 and 7 
5004 

Insert Additional Screening here for Class B Parts 

Group A Sample Tests 

Subgroup 1 

Subgroup 2 

Subgroup 3 
Subgroup 7 

Subgroup 8 

Subgroup 9 

5005 

100% 100% 

24-hour 
C 150°C 100% 100% 

C 
-65°C to +150°C 
10 cycles 

100% 100% 

B 10,OOOG 100% • 100% 

A 5 x 10 -8 atm-cc/cm3 100% • 100% 

C2 Fluorocarbon 100% • 100% 

See below for 
definitions of subgroups 100% 100% 

LTPD = 5 LTPD = 5 

LTPD = 7 LTPD = 7 

See below for LTPD = 7 LTPD = 7 
definitions of subgroups LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

'Not applicable for Am2901PC 
ADDITIONAL SCREENING FOR CLASS B PARTS 

Step 

Burn·ln 

Electrical Test 
Subgroup 1 
Subgroup 2 
Subgroup 3 
Subgroup 7 
Subgroup 9 

MI L·STD·883 
Method 

1015 

5004 

Conditions 

D 160 ~~~:~ min. 

Return to Group A Tests in Standard Screening 

ORDERING INFORMATION 

level 

Am2901DMB. FMB 

100% 

100% 
100% 
100% 
100% 
100% 

GROUP A SUBGROUPS 
(as defined in MIL·STD-883, method 5005) 

Package 
Type 

Molded DIP 
Hermetic 0 I P 
Hermetic 0 I P 

Hermetic Flat Pack 
Dice 

Temperature 
Range 

O°C to +70°C 
O°C to +70°C 

-55°C to +125°C 
-55°C to +125°C 

O°C to +70°C 

Order 
Number 

AM2901PC 
AM2901DC 
AM2901DM 
AM2901FM 
AM2901XC 

8-04 

Subgroup 

10 
11 

Parameter 

DC 
DC 
DC 
Function 
Function 

Switching 
Switching 
Switching 

Temperature 

25°C 
Maximum rated temperature 
Minimum rated temperature 
25°C 
Maximum and minimum rated 

temperature 
25°C 
Maximum Rated Temeperature 
Minimum Rated Temperature 



Am2901 
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 
(Group A, Subgroups 1, 2 and 3) 

Parameters Description 

VOH Output HIGH Voltage 

ICEX 
Output Leakage Current 
for F = 0 Output 

VOL Output LOW Voltage 

VIH Input HIGH Level 

VIL Input LOW Level 

VI Input Clamp Voltage 

IlL Input LOW Current 

IIH Input HIGH Current 

II Input HIGH Current 

10ZH Off State (High Impedance) 

10ZL Output Current 

lOS Output Short Circuit Current 
(Note 3) 

ICC Power Supply Current 

Test Conditions (Note 1) 

10H = -1.6mA 

YO, V" V2, V3 

10H z -1.OmA. Cn+4 

VCC = MIN. 10H = -800"A, OVR, P 
VIN = VIH or VIL IOH = -soo"A, F3 

10H = -soo"A 
RAMO, 3, 00, 3 

10H = -1.6mA, G 

VCC = MIN., VOH = 5.5V 

VIN = VIH or VIL 

10L = 16mA 

YO, V" V2, V3,G 

VCC· MIN., 10L = 10mA, Cn+4, FmO 

VIN = VIH or VIL 10L = S.OmA, OVR, P 

10L - 6.0mA, F3 

RAMO. 3. 00. 3 

Guaranteed input logical HIGH 
voltage for all inputs 

Guaranteed input logical LOW I Military 
voltage for,all inputs I Commercial 

VCC = MIN .• liN = -ISmA 

Clock.OE 

AO. A" A2, A3 

BO. B,. B2, B3 

VCC = MAX. 00,0,,02. 0 3 

VIN =0.5V 10,1,,12;16,IS 

13. 14. 15. 17 

RAMO, 3. 00, 3 (Note 4) 

Cn 

Clock,OE 

Ao. A" A2, A3 

BO. B,. B2. B3 

DO. 0,. 02. 03 
VCC = MAX. 
V IN = 2.7V 10.ll.12.16. IS 

13. 14. 15. 17 

RAMO. 3. 00. 3 (Note 4) 

Cn 

VCC = MAX .• VIlli = 5.5V 

YO. V,. Vo =2.4V 

V2. V3 Vo -0.5V 

VCC = MAX. Vo =2.4V 

RAMO. 3. (Note 4) 

00.3 Vo -0.5V 

(Note 4) 

YO. V,. V2. V3.G 

Cn+4 
VCC = 5.75V 

OVR.P 
VO=0.5V 

F3 

RAMO. 3. 00. 3 

VCC= MAX. 
Military 
Commercial 

Min. 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.0 

-15 

-15 

-15 

-15 

-15 

Typ. 
(Note 2) 

185 
185 

Max. Units 

Volts 

250 "A 

0.5 

0.5 
Volts 

0.5 

0.5 

Volts 

0.7 Volts 
0.8 

-1.5 Volts 

-0.36 

-0.36 

-0.36 

-0.72 

-0.36 
mA 

-0.72 

-O.S 

-3.6 

20 

20 

20 

40 

20 
,.A 

40 

100 

200 

1.0 rnA 

50 

-50 

100 "A 

-800 

-40 

-40 

-40 mA 

-40 

-40 

280 rnA 
280 

.. Notes: 1. For condItIons shown as MIN. or MAX .• use the appropriate value specified under Electricel Characteristics for the epplicable device type. 
2. Typical limits are at Vec = S.OV. 2S·C ambient and maximum loading. 
3'. Not more than one output should be shorted et a time. Duration of the short circuit test should not exceed one second. 
4. These are three-state outputs internally connected to TTL inputs. Input characteristics are measured with 167SIn a state such that the 

three·state outpu\ is OFF. 
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Am2901 
GUARANTEED OPERATING CONDITIONS 
OVER TEMPERATURE AND VOLTAGE 

TABLE I 

Tables I, II, and III below define the timing requirements of 
the Am2901 in a system. The Am2901 is guaranteed to 
function correctly over the operating range when used within 
the delay and set·up time constraints of these tables for the 
appropriate device type. The tables are divided into three 
types of parameters; clock characteristics, combinational delays 
from inputs to outputs, and set-up and hold time requirements. 
The latter table defines the·time prior to the end of the cycle 
(i.e., clock LOW-to-HIGH transition) that each input must be 
stable to guarantee that the correct data is written into one of 
the internal registers. 

CYCLE TIME AND CLOCK CHARACTERISTICS 

TIME Am29010C,PC Am2901 OM, FM 

The performance of the Am2901 within the limits of these 
tables is guaran~ed by the testing defined as "Group A, 
Subgroup 9" Electrical Testing. For a copy of the tests and 
limits used for subgroup 9, contact Advanced Micro Devices' 
Product Marketing. 

Read·Modify-Write Cycle 
(time from selection of 
A, B registers to end of 
cycle) 

Maximum Clock Frequency to 
Shift Q Register (50% duty 
cycle) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

TABLE" 

MAXIMUM COMBINATIONAL PROPAGATION DELAYS (all in ns, CL oE;; 15pF) 

105ns 120ns 

9.5MHz 8.3MHz 

30ns 30ns 

30ns 30ns 

105ns 120ns 

Am2901DC, PC (O°C to +70°C; 5V ±5%) Am2901DM, FM (-55°C to +125°C; 5V ±10%) 

~ 
Shift Shift 

F Output 
F=O Outputs F=O Outputs 

rom Y F3 Cn+4 G,P RL= OVR Y F3 Cn+4 G,P RL= OVR 
Input 470 RAMO 00 470 

RAMO 00 
RAM3 03 RAM3 03 

A,a 110 85 80 80 110 75 110 - 120 95 90 90 120 85 120 -
D (arithmetic mode) 100 70 70 70 100 60 95 - 110 80 75 75 110 65 105 -
D (I = X37) (Note 5) 60 50 - - 60 - 60 - 65 55 - - 65 - 65 -
Cn 55 35 30 - 50 40 55 - 60 40 30 - 55 45 60 -
1012 85 65 65 65 80 65 80 - 90 70 70 70 85 70 85 -
1345 70 55 60 60 70 60 65 - 75 60 65 65 75 65 70 -
1678 55 - - - - - 45 45 60 - - - - - 50 50 

OE Enable/Disable 40/25 - - - - - - - 40/25 - - - - - - -
A bypassing 

60 - - - - - -
ALU (I = 2xx) 

- 65 - - - - - - -

Clock I (Note 6) 115 85 100 100 110 95 105 60 125 95 110 110 120 105 115 65 

SET-UP AND HOLD TIMES (all in ns) (Note 1 ) TABLE III 

From Input Notes 
Am2901 DC, PC (O°C to +70°C, 5V ±5%) Am2901 DM,FM (-55°C to +125°C, 5'1£ ±10%) 

Set-UpTime Hold Time 'Set-Up Time Hold Time 

A,a 2,4 105 
0 

120 0 
Source 3,5 tpwL + 30 tpwL + 30 

B Dest. 2,4 tpwL + 15 0 tpwL +15 0 

D (arithmetic mode) 100 0 110 0 

D (I = X37) (Note 5) 60 0 65 0 
Cn 55 0 60 0 

1012 85 0 90 0 

1345 70 0 75 0 

1678 4 tpwL + 15 0 tpwL + 15 0 

RAMO, 3, 00, 3 30 0 30 0 

Not.: 1. Se. Figure 11 and 12. 
2. If the B addr ... i. used a. a source operand, allow for the "A, B source" set-up time; if it is used only for the destination addr ••• , use the 

uS dest." set-up time. 
3. Wh.r. two numbe .. are shown, both must be met. 
4. "tpwL" i. the clock LOW time. 
5. OVO is the fastest way to load the RAM from the 0 inputs. This function is obtained with I = 337. 
6. Using Q register as source operand in arithmetic mode. Clock is not nqrmally in critical speed path when Q is not a source. 
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Am2901A 

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 
(Group A, Subgroups 1,2, and 3) Data in bold face is changed from Am2901 

Typ. 
Parameters Description Test Conditions (Note 1) Min. (Note 2) Max. Units 

10H = -1.6mA 
2.4 

Yo. Yl. Y2. Y3 

VCC = MIN. 
10H = -1.0mA.Cn+4 2.4 

VOH Output HIGH Voltage 10H = -SOOI'A. OVR. P 2.4 
VIN.= VIH or VIL 

10H - -600IlA. F3 2.4 

Volts 

10H - -6001'A 
2.4 

RAMO. 3. QO. 3 

10H - -1.6mA. G 2.4 

ICEX 
Output Leakage Current VCC = MIN .• VOH = 5.5V 

250 
for F = 0 Output VIN = VIH or VIL 

I'A 

IOL - 20mA (COM'L) 0.5 

VCC= MIN .• 
YO. Yl. Y2. Y3 

10L = 16mA (MIL) 0.5 

VOL Output LOW Voltage VIN = VIH G. F =0 10L = 16mA 0.5 

or VIL Cn+4 10L = 10mA 0.5 
Volts 

OVR.P 10L = S.OmA 0.5 

F3. RAMO. 3. 

QO.3 
10L = 6.0mA 0.5 

VIH Input HIGH Level 
Guaranteed input logical HIGH 

voltage for all inputs (Note 7) 
2.0 Volts 

VIL Input LOW Level 
Guaranteed input logical LOW 

voltage for all inputs (Note 7) 
O.S Volts 

.. 
VI Input Clamp Voltage VCC = MIN .• liN = -ISmA -1.5 Volts 

Clock.OE -0.36 

AO. AI. A2. A3 -0.36 

SO. Bl. B2. B3 -0.36 

IlL Input LOW Current VCC = MAX .• VIN = 0.5V 
DO. 01. 02. 03 -0.72 

10.ll. 12.16. IS -0.36 
mA 

13. 14. 15. 17 -0.72 

RAMO. 3. 00. 3 (Note 4) -O.S 

Cn 
-~ 

Clock.OE 20 

AO. AI. A2. A3 20 

BO. Bl. B2. B3 20 

IIH Input HIGH Current VCC = MAX .• VIN = 2.7V 00. 0 1. 0 2. 0 3 40 

10. 11. 12. 16. IS 20 

13. 14. 15. 17 40 

RAMO. 3. QO. 3 (Note 4) 100 

Cn 200 

Input HIGH Current VCC = MAX .• VIN = 5.5V 1.0 mA 

YO. Yl. Vo = 2.4V 50 

Y2. Y3 Vo - 0.5V -50 

IOZH Off State (High Impedance) 
VCC = MAX. 

Vo - 2.4V 
100 

IOZL Output Current RAMO. 3 (Note 4) 

QO.3 Vo = 0.5V 
-BOO 

(Note 4) 

YO. Yl. Y2. Y3. G -30 -85 

lOS Output Short Circuit Current VCC = 5.75V. Vo = 0.5V Cn+4 -30 -85 

(Note 3) OVR.P -30 -85 
mA 

F3 -30 -85 

RAMO. 3. QO. 3 -30 -85 

TA-25°C 160 250 

TA=0°Cto+70°C 160 265 

Power Supply Current 
Am2901APC. DC 

TA-+70°C 160 220 
ICC VCC= MAX. 

(Note 6) (See graph) TC - _55°C to 

+125°C 
160 280 

Am2901AOM. FM 

mA 

TC-+125°C 160 190 

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Typical limits are at Vee = 5.0V, 2SoC ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
4. These are three~state outputs internally connected to TTL inputs. Input characteristics are measured with 1678 in a state such that the three-

state output is OFF. 
5. "MI L" = Am2901AXM. OM. FM. "COM'L" = Am2901AXC. PC. DC. 
6. Worst case ICC is at minimum temperature. 
7. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment. 
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Am2901A 

TABLE IV SWITCHING CHARACTERISTICS 
OVER OPERATING RANGE 

CYCLE TIME AND CLOCK CHARACTERISTICS 
Tables IV, V, and VI below define the timing characteristics of 
the Am2901 A at 25°C over the operating voltage and tempera­
ture range_ The tables are divided into three types of para­
meters; clock characteristics, combinational delays from inputs 
to outputs, and set-up and hold time requirements_ The later 
table defines the time prior to the end of the cycle (Le_, clock 
LOW-to-H IGH transition) that each input must be stable to 
guarantee that the correct data is written into one of the 
internal registers_ 

Measurements are made at 1.5V with VI L = OVand VIH = 3.0V. 
For three-state disable tests, CL = 5.0pF and measurement is 
to O.5V change on output voltage level. 

Commercial = Am2901APC, DC, XC 
O°C to +70°C 
4.75 to 5.25V 

Military = Am2901ADM, FM, XM 
-55°C to +125°C 
4.50 to 5.50V 

TIME 

Read-Modify-Write Cycle 
(time from selection of 
A, B registers to end of 
cycle) 

Maximum Clock Frequency to 
Shift Q Register (50% duty 
cycle) I = 432 or 632 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

TABLE V 

COMMERCIAL 

100 

15MHz 

30ns 

30ns 

lOOns 

COMBINATIONAL PROPAGATION DELAYS (all in ns, CL = 50pF (except output disable tests)) 

COMMERCIAL MILITARY 

~ 
Shift 

F Output 
F=O Outputs F=O 

rom Y F3 Cn+4 G,P RL= OVR Y F3 Cn+4 G,Y- RL= OVR 
Input 470 RAMO 00 470 RAM3 03 

A,B 80 80 75 65 90 85 95 - 85 85 80 70 100 90 

o (arithmetic mode) 45 45 45 35 60 55 65 - 50 50 50 40 65 60 

D (I = X37) (Note 5) 40 40 - - 55 - 60 - 45 45 - - 60 -

Cn 30 30 20 - 50 30 50 - 35 35 25 - 55 35 

1012 55 55 50 45 70 65 75 - 60 60 55 50 75 70 

1345 55 55 55 50 70 65 75 - 60 60 60 55 75 70 

1678 30 - - - - - 30 30 35 - - - - -

OE Enable/Disable 35/25 - - - - - - - 40/25 - - - - -
A bypassing 45 - - - - - - - 50 - - - - -
ALU (I = 2xx) 

Clock S (Note 6) 60 60 60 50 75 70 80 30 65 65 65 55 85 75 

SET-UP AND HOLD TIMES (all in ns) (Note 1) TABLE VI 

COMMERCIAL MILITARY 
From Input Notes 

MILITARY 

110 

12MHz 

30ns 

30ns 

110ns 

Shift 
Outputs 

RAMO 00 
RAM3 03 

100 -

70 -

65 -
55 -

80 -

80 -

35 35 

- -

- -

85 35 

Set-Up Time Hold Time Set-Up Time Hold Time 

A,B 2,4 100 0 
110 

0 
Source 3,5 tpwL+3O tpwL+3O 

B Dest. 2,4 tpwL+16 0 tpwL+16 0 

D (arithmetic mode) 70 0 75 0 

0(1 = X37) (Note 5) 60 0 65 0 
Cn 55 0 60 0 

1012 80 0 85 0 

1345 80 0 85 0 

1678 4 tpw L+3O 0 tpwL+3O 0 

RAMO, 3, 00, 3 25 0 25 0 

Notes: 1. See Figure 1" 
2_ If the 8 address is used as a source operand, allow for the "A, 8 source" set-up time; if it is used only for the destination address, use the 

"8 Dest" set-up time. 
3. Where two numbers are shown, both must be met. 
4. "tpwL" is the clock LOW time. 
5. D V 0 is the fastest way to load the RAM from the D inputs. This function is obtained with 1=337. 
6. Using Q register as source operand in arithmetic mode. Clock is not normally in critical speed path when Q is not a source. 
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Am2901A 

SET-UP AND HOLD TIMES (minimum cycles from each input) time prior to the clock until the hold time after the clock. The 
set-up times allow sufficient time to perform the correct 
operation on the correct data so that the correct ALU data 
can be written into one of the registers. 

Set-up and hold times are defined relative to the clock LOW-to­
HIGH edge. Inputs must be steady at ali times from the set-up 

30 
lOll 

A.B 

80 

Figure 11. Minimum Cycle Times from Inputs. Numbers Shown are Minimum Data 
Stable Times for Am2901ADC, in ns. See Table III for Detailed Information. 

Typical Icc Versus Temperature 

300 r---,----,-,-,---..., 

200 .............. , ____ 

1501---+--+---+"""'-+---l 
TYPICAL ICC ~ 
VCC~ 15.0 IV 

100 '------'-:---'--'----'_----' 
··55 0 25 70 125 

T - °c 
TEMPERATURE _ °c 

Figure 12. 
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Am2901B 

PRELIMINARY DATA 
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 

(Group A, Subgroups 1, 2, and 3) 
Typ 

Parameters Description Test Conditions (Note 1) Min (Note 21 Max Units 

10H = -1.6mA 
2.4 

Yo, Yl, Y2, Y3 

IOH = -1.0mA. Cn+4 2.4 

VOH Output HIGH Voltage 
VCC = MIN. 

10H = -8001lA, OVR, P 2.4 
VIN = VIH or VIL 

10H - -6001lA, F3 2.4 

Volts 

10H = -6001lA 
2.4 

RAMO, 3, QO, 3 

10H = -1.6mA, G 2.4 

Output Leakage Current VCC = MIN., VOH = 5.5V 250 ICEX for F = 0 Output VIN = VIH or VIL 
IlA 

~L - 20mA ICOM'L1 0.5 

VCC = MIN .. 
YO, Yl, Y2, Y3 

10L = 16mA (Mill 0.5 

VOL Output LOW Voltage VIN = VIH G, F = 0 10L = 16mA 0.5 
Volts 

or VIL Cn+4 10L = 10mA 0.5 

OVR,P 10L = 8.0mA 0.5 

F3, RAMO, 3, 
10L = 6.0mA 0.5 

QO,3 

VIH Input HIGH Level 
Guaranteed input logical HIGH 

voltage for all inputs (Note 71 
2.0 Volts 

VIL Input LOW Level 
Guaranteed input logical LOW 

voltage for all input~ (Note 7) 
O.S Volts 

VI Input Clamp Voltage VCC = MIN., liN = -lSmA -1.5 Volts 

Clock,OE -0.36 

AO, Al, A2, A3 -0.36 

BO, Bl, B2, B3 -0.36 

IlL Input LOW Current VCC = MAX., VIN = 0.5V 
DO, Dl, D2, D3 -0.72 

10,11,12,16, IS -0.36 
mA 

13,14,15,17 -0.72 

RAMO, 3, 00, 3 (Note 4) -O.B 

Cn -3.6 

Clock,OE 20 

AO, Al, A2, A3 20 

BO, Bl, B2, B3 20 

IIH Input HIGH Current VCC = MAX., VIN = 2.7V 
DO, Dl, D2, D3 40 

10,11,12,16. IS 20 

13,14,15,17 40 

RAMO, 3, QO, 3 (Note 4) 100 

Cn 200 
II Input HIGH Current VCC - MAX., VIN = 5.5V 1.0 mA 

YO, Yl, Vo = 2.4V 50 

Y2, Y3 Vo - 0.5V -50 

10ZH Off State (High Impedance) 
VCC = MAX. Vo 2.4V 

10ZL Output Current RAMO, 3 (Note 4) 
100 

QO.3 VO= 0.5V 
-SOO 

(Note 4) 

YO, Yl, Y2, Y3, G ~30 -85 

lOS Output Short Circuit Current VCC = MAX. + 0.5V, Vo = 0.5V 
Cn+4 -30 -85 

(Note 3) OVR,P -30 -85 
mA 

F3 -30 -85 

RAMO, 3, 00, 3 -30 -85 

TA-25°C 160 250 

Am2901 BPC. DC 
TA - O°C to +70°C 265 

ICC 
Power Supply Current VCC = MAX. TA - +70°C 220 
(Note 6) ISee Fig. 12) TC = -55°C to 

mA 

Am2901BDM. FM +125°C 265 

TC - +125°C 19S 

Notes: 1. For conditions shown as MIN. or M"AX .• USti the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Typical limits are at Vee = 5.0V, 25 C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
4. These are three-state outputs internally connected to TTL inputs_ Input characteristics are measured with 1678 in a state such that the three 

state output is 0 F F. 
5. "MIL" = Am29018XM, OM, FM. "COM'L = Am2901 axc,·pc, DC. 
6. Worst case ICC is at minimum temperature. 
7. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment. 
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Am2901B 

I. Typical Room Temperature Performance A. Cycle Time and Clock Characteristics. 

The tables below specify the typical performance of the Am2901 B 
at 25°C and 5.0V. All data are in ns, with inputs changing between 
OV and 3V at 1 V/ns and measurements made at 1.5V. For 
guaranteed data, see following pages. 

Read-Modify-Write Cycle (from selection of A, B registers 
to end of cycle.) 

Maximum Clock Frequency to shift a (50'7r duty cycle, 
I = 432 or 632) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

B. Combinational Propagation Delays. 

CL = SOpF 

~ RAMO 00 
From Input Y F3 Cn+4 G,P F=O OVR RAM3 03 

A, B Address 38 41 39 33 44 44 50 -

0 22 23 24 20 28 29 31 -

Cn 17 19 13 - 22 19 26 -

1012 30 30 29 27 34 34 38 -

1345 32 32 30 25 32 30 34 -

1678 17 - - - - - 16 16 

A Bypass ALU 
22 - - - - - - -

(I = 2XX) 

ClockS 29 31 29 23 33 35 40 19 

C. Set-up and Hold Times Relative to Clock (CP) Input. 

CP: -' 

~--~_-y-Input 

Set-up Time I Ho!d Time Set ... up Time Ho!d Time 
Before H -+L After H -+ L Before L -+ H After L -+ H 

A, B Source Address 8 o (Note 3j 45 (Note 4) 0 

B Destination 
Address 

0 

Cn 

1012 

1345 

1678 

RAMO, 3, QO, 3 

4 Do Not Change 

- - 35 

- - 26 

- - 37 

- - 38 

0 po Not Change 

- - 9 

D. Output Enable/Disable Times. 
Output disable tests performed with CL = SpF and 
measured to O.SV change of output voltage level. 

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist. 

0 

0 

0 

0 

0 

0 

0 

45ns 

33MHz 

lOns 

lOns 

SOns 

2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change". 
3. Source addresses must be stable prior to the clock H -+ L transition to allow time to access the source data before the latches close. The A 

address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Nonnally 
A and B are not changed during the clock LOW time. 

4. The set-up time prior to the clock L -+ H transition is to allow time for data to be accessed, passed through the ALU, and retumed to the RAM. It 
includes all the time from stable A and B addresses to the clock L -+ H transition, regardless of when .the clock H -+ L transition occurs. 
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Am29018 

I. Guaranteed Commercial A. Cycle Time and Clock Characteristics. 

Range Performance 
The tables below specify the guaranteed performance of the 
Am2901 B over the commercial operating range of O°C to + 70°C, 
with Vcc from 4.7SV to S.2SV. All data are in ns, with inputs 
switching between OV and 3V at 1 V/ns and measurements made 
at 1.SV_ All outputs have maximum DC load. 

Read-Modify-Write Cycle (from selection of A, B registers 
to end of cycte.) 

Maximum Clock Frequency to shift a (50'7. duty cycle. 
I = 432 or 632) 

Minimum Clock LOW Time 

This data applies to the following part numbers: Am2901BPC 
Am2901BDC 

Minimum Clock HIGH Time 

Minimum Clock Period 

B. Combinational Propagation Delays. 
CL = 50pF 

~ From Input V F3 Cn+4 G,P F=O OVR 

A. B Address 60 61 59 50 70 67 

0 38 36 40 33 48 44 

Cn 30 29 23 - 37 29 

1012 50 47 45 45 56 53 

1345 49 48 44 45 54 49 

1678 28 - - - - -

A Bypass ALU 
37 - - - - -

(I = 2XX) 

ClockS 49 48 47 37 58 55 

C. Set-up and Hold Times Relative to Clock (CP) Input. 

Input 

A. B Source Address 

B Destination 
Address 

0 

Cn 

1012 

1345 
r----

1678 

RAMO. 3, aD. 3 

CP: ~K:----~ _------:1 
Set-up Time Hold Time Set-up Time 
Before H'" L After H'" L Before L'" H 

20 o (Note 3) 69 (Note 4) 

9 Do Not Change 

- - 51 

- - 39 

- - 56 

- 55 

11 Do Not Change 

- - 16 

D. Output Enable/Disable Times. 
Output disable tests performed with CL = SpF and 
measured to O.SV change of output voltage level. 

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist. 

RAMO 00 
RAM3 03 

71 -

45 -

38 -

57 -

53 -

27 27 

- -

59 29 

L-

Hold Time 
After L'" H 

0 

0 

0 

0 

0 

0 

0 

0 

69ns 

16MHz 

30ns 

30ns 

69ns 

2_ Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This i" indicated by the phrase "do not change" 
3. Source addresses must be stable prior to the clock H ... L transition to allow time to access the source data before the latches close. The A 

address may then be changed. The B address could be changed if it is not a destination; i.e. if data is not being written back into the RAM. Normally 
A and B are not changed during the clock LOW time. 

4. The set-up time prior to the ~Iock L ... H transition is to allow time for data to be accessed, passed through the ALU, and retumed to the RAM. It 
includes all the time from stable A and B addresses to the clock L'" H transition, regardless of when the clock H'" L transition occurs. 
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Am29018 

II. Am2901 B Guaranteed Military A. Cycle Time and Clock Characteristics. 

Range Performance 
Read-Modily-Write Cycle (from selection of A, B registers 
to end of cycle. The tables below specify the guaranteed performance of the 

Am2901 B over the military operating range of -55°C to + 125°C, 
with V cc from 4.SV to S.SV. All data are in ns, with inputs switch­
ing between OV and 3V at 1 V/ns and measurements made at 
1.SV. All outputs have maximum DC load. 

Maximum Clock Frequency to shift a (50rl, duty cycle, 

This data applies to the following part numbers: Am2901 BDM 
Am2901BFM 

I ; 432 or 632) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

B. Combinational Propagation Delays. 
C L = SOpF 

~ RAMO QO 

From Input Y F3 Cn+4 G,P F=O OVR RAM3 Q3 

A. B Address 82 84 80 70 90 86 

D 44 38 40 34 50 45 

Cn 34 32 24 - 38 31 

1012 53 50 47 46 59 55 

1345 53 50 46 45 58 50 

1678 29 - - - - -

A Bypass ALU 
50 - - - - -

(I; 2XX) 

ClockS 53 50 49 41 63 58 
~-

C. Set-up and Hold Times Relative to Clock (CP) Input. 

Input 

A, B Source Address 

B Destination 
Address 

D 

Cn 

1012 

1345 

1678 

RAMO, 3, ao, 3 
L-_ 

CP: ~~-- ~r --
Set-up Time Hold Time Set-up Time 
Before H -+ L After H -+ L Before L -+ H 

20 o (Note 3) 88 (Note 4) 

9 Do Not Change 

- - 55 

- - 42 

- - 58 

- - 58 

14 Do Not Change 

- - 18 

D. Output Enable/Disable Times. 
Output disable tests performed with CL = SpF and 
measured to O.SV change of output voltage level. 

Notes: 1. A dash indicates a propagation delay path or set-up time constraint does not exist. 

94 -

48 -

39 -

58 -

55 -

27 27 

- -

61 31 

Hold Time 
After L -+ H 

0 

0 

0 

0 

0 

0 

0 

3 

88ns 

15MHz 

30ns 

30ns 

88ns 

2. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change". 
3. Source addresses must be stable prior to the clock H -+ L transition to allow time to access the source data before the latches close. The A 

address may then be changed. The B address could be changed if it is not a destination; Le. if data is not being written back into the RAM. Normally 
A and B are not changed during the clock LOW time. 

4. The set-up time prior to the clock L -+ H transition is to allow time for data to be accessed, passed through the ALU. and retumed to the RAM. It 
includes all the time from stable A and B addresses to the clock l-+ H transition. regardless of when the clock H -+ L transition occurs. 
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Am2902A 
MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential -O.5V·to +7.0V 

DC Voltage Applied to Outputs for HIGH Output State -0.5V to +VCC max. 

DC Input Voltage -O.5V to +5.5V 

DC Output Current, I nto Outputs 30 rnA 

DC Input Current -30 rnA to +5.0 rnA 

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted) 

Am2902Axe TA = oOe to +7oo e 

Am2902AXM TA = _55°e to +125°e 

Parameters Description 

VOH Output HIGH Voltage 

VOL Output LOW Voltage 

VIH Input HIGH Level 

VIL Input LOW Level 

VI Input Clamp Voltage 

IlL Input LOW Current 

IIH 
Input HIGH Current 

II Input HIGH Current 

ISC 
Output Short Circuit 
(Note 3) 

ICC Power Supply Current 

Vee = 5.0V ±5% (eOM'L) MIN. = 4.75V 

Vee = 5.0V ±10% (MIL) MIN. = 4.50V 

Test Conditions INote 1) 

Vcc = MIN., IOH = -lmA I MIL 

VIN = VIH or VIL 1 COM 

Vcc = MIN., IOL = 20mA 
VIN = VIH or VIL 

Guaranteed input logical HIGH 
voltage for all inputs 

Guaranteed input logical LOW 
voltage for all inputs 

Vee, = MIN., liN = -18mA 

Cn 

P3 

P2 
VCC = MAX., VIN = 0.5V 

PO, Pl, G3 

GO, G2 

Gl 

Cn 

P3 

P2 
VCC = MA;(., VIN = 2.7V 

PO, Pl, G3 

GO,G2 

Gl 

VCC = MAX., VIN = 5.5V 

VCC = MAX., VOUT = O.OV 

VCC= MAX. MIL 

All Outputs LOW COM'L 

VCC= MA". MIL 

All Ouputs HIGH COM'L 

MAX. = 5.25V 

MAX. = 5.50V 

Min. 

2.5 

2.7 

2.0 

-40 

Typ. 
(Note 2) 

3.4 

3.4 

69 

69 

35 

35 

Max. Units 

Volts 

0.5 Volts 

Volts 

0.8 Volts 

-1.2 Volts 

-2 

-4 

-6 
mA 

-8 

-14 

-16 

50 

100 

150 

200 
J.lA 

350 

400 

1.0 mA 

-100 mA 

99 
mA 

109 

mA 

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Typical limits are at VCC = 5.0V, 25°C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 

SWITCHING CHARACTERISTICS 
(T A = +25°C, Vee = 5.0V) 

Parameters Description 

tplH 
G"/Pi --+ Cn+i 

tpHL 

tplH 
Gi/Pi--+ G 

tpHL 

tplH 

tpHL 
Pi --+ j5 

tplH 
Cn --+ Cn+i 

tpHL 

Min. Typ. 

4.5 

4.5 

5 

7 

4.5 

6.5 

6.5 

7 
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Max. Units Test Conditions 

7 
ns 

7 

7.5 
ns 

I 10.5 CL = 15pF 

6.5 
ns 

I 
RL = 2800 

10 

10 
ns 
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Am2903 
Am2903 
OPERATING RANGE 

PIN Temperature Vce 
TA = O'C to + 70'e Vee= 5.0V ::!:5o/r (MIN. = 4.75V. MAX. = 5.25V) 

Te = -55'Cto +125'C Vee = 5.0V ±10o/r (MIN. = 4.50V. MAX. = 5.50V) 

DC CHARACTERISTICS OVER OPERATING RANGE Typ. 
Parameters Description Test Conditions (Note 1) Min. (Note 2) Max. 

10H = =-1.6mA 2.4 
YO-Y3• GIN 

VOH Output HIGH Voltage Vee = MIN. 10H = =-SOO/LA 
VIN = VIH or VIL OBO_3. PIOVA 

2.4 
SIOo. S103. 0100. 0103. 
WAITE. Cn+4 

ICEX 
Output Leakage Current Vee = MIN .• VOH = 5.5V 

250 for Z Output (Note 4) VIN = VIH or VIL 

Yo. Y,. Y2 IOL = 20mA (COM'L) 
0.5 

Y3. Z 10L = 16mA (MIL) 

DBa. DB,. 10L = 12mA (COM'L) 
0.5 

VOL Output LOW Voltage Vee = MIN. 
OB2. 0B3 10L = S.OmA (MIL) 

VIN = VIH = or VIL GIN 10L = lSmA 0.5 

P/OVA 10L = lOmA 0.5 

Cn+4• SIOo 
S103.0100 10L = S.OmA I 0.5 
0103. WRITE 

VIH Input HIGH Level 
. Guaranteed input logical HIGH 

2.0 
voltage for all inputs (Note '6) 

VIL Input LOW Level 
Guaranteed input logical LOW 

O.S voltage for all inputs (Note 6) 

VI Input Clamp Voltage Vee = MIN .• liN = -lSmA -1.5 

Cn 2.50 

Yo. Y,. Y2. Y3 LOS 

10• I,. 12• 13• 

VCC = MAX .• VIN = 0.5V 
14. OAo. OA,. 

IlL Input LOW Current OA2. OA3• SIOo (Note 4) 
S103. 0100. 0103. 

0.72 

MSS. DBa. DB,. 
OB2.OB3 
All other inputs 0.36 

--'". 

Cn 120 

Yo. Y,. Y2. Y3 110 

10-14. OAO-OA3 40 

IIH Input HIGH Current Vce = MAX .. VIN = 2.7V SIOo. S103• 0100. 
(Note 4) 0103. OBo_3• 90 

MSS 

All other inputs 20 

II In!'lut HIGH Current Vec = MAX .• VIN = 5.5V 1.0 

YO-Y3 
Vo = 2.4V 110 

10ZH 
Off State Vec = MAX .• Vo = 0.5V -1130 
(HIGH Impedance) 

10ZL Output Current 
(Note 4) 

OBO_3• 0100. 0100. Vo = 2.4V . 90 

SIOo• 8103. MS8/1S Vo = 0.5V -770 

los 
Output Short Circuit Vce = MAX + 0.5V 

-30 -85 
Current (Note 3) Vo = 0.5V 

TA = 25'C 220 335 

TA = 010 70'C 350 
Power Supply Current COM'L 

ICC (Note 5) Vee = MAX. TA = 70'C 291 

Te = -55 to 125'C 395 
MIL 

Te = 125'C 25S 

Notes: t. For conditions shown as MIN. or MAX .. use the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Typical limits are at vee ~ 5.0V. 25'C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 

Units 

Vo~s 

/LA 

I Volts 

Volts 

Volts 

Volts 

mA 

/LA 

mA 

/LA 

mA 

mA 

4. YO-3. 060-3. 5100.3. Q100.3 and WRITE/M5S are three state outputs internally connected to TTL inputs. Z is an open-collector output internally 
connected to a TTL input. Input characteristics are measured under conditions such that the outputs are in the OFF state. 

5. Worst case Icc is at minimum tenlperature. 
6. These input levels provide zero noise immunity and should only be tested in a static. noise-free environment. 
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Am2903 

SWITCHING CHARACTERISTICS (Typical Room Temperature Performance) 

TABLE I Tables I, II, and III define the nominal timing characteristics of 
the Am2903 at 25°C and 5.0V. The Tables divide the 
parameters into three types: pulse characteristics for the clock 
and write enable, combinational delays from input to output, 
and set-up and hold times relative to the clock and write 
pulse. 

Write Pulse and Clock Characteristics 

Time 

Minimum Time CP and WE both LOW 
to write 

Measurements are made at 1.5V with V1L = OV and V1H = 
3.0V. For three-state disable tests, CL '= 5.0pF and mea­
surement is to 0.5V change on output voltage level. 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

TABLE II 
Combinational Propagation Delays, All In ns. 

Outputs Fully Loaded. CL = SOpf (except output disable tests) 

~t From Input Y Cn+4 G,P Z N OVR DB WRITE QIOo, QI03 

A, B Addresses 
65 60 55 75 64 70 33 - -

(Arith. Mode) 

A, B Addresses 
56 - 46 67 56 - 33 - -

(Logic Mode) 

DA, DB Inputs 
39 - 25 48 38 - - - -

(Logic Mode) 

DA, DB Inputs 
39 37 26 52 38 51 - - -

(Arith. Mode) 

EA 44 38 29 54 44 53 - - -

Cn 25 21 - 39 20 38 - - --

10 39 35 24 48 37 48 - "15 -

14321 45 43 32 55 44 55 - "17 -

18765 25 - - 37 - - - 18 22 

lEN - - - - - - - 10 -

OEB Enable/Disable - - - - - - 7 - -

OEY Enable/Disable 10 - - - - - - - -

SIOo, SI03 13 - - - - - - - -

Clock 58 52 40 72 56 72 24 - 28 

'Applies only when leaving special functions. 

Input 

TABLE III 
Set-Up and Hold Times (All in ns) 

CAUTION: READ NOTES TO TABLE III. 
NA = Not Applicable; no, timing constraint. 

HIGH-ta-LOW LOW-ta-HIGH 

With Respect to ~--~ 
to this Signal Set-up Hold Set-up I Hold 

SIOo SI03 

61 69 

55 64 

36 47 

36 47 

42 52 

21 25 

41 46 

45 51 

24 27 

- -

- -

- -

- 12 

55 63 

Comment 

30ns 

30ns 

50ns 

SI03 
(Parity) 

87 

81 

56 

60 

48 

-

-

-

18 

76 

y Clock NA NA 10 0 To store Y in RAM or 0 
--

WE HIGH Clock 5 Note 2 Note 2 0 To Prevent Writing 
--

WE LOW Clock NA NA 30 0 To Write into RAM 

A,S as Sources Clock 20 0 NA NA See Note 3 

B as a Destination Clock and WE both LOW 0 Note 4 Note 4 0 
To Write Data only into 
the Correct B Address 

0100,0103 Clock NA NA 10 0 To Shift 0 

18765 Clock 30 Note 5 Note 5 0 

lEN HIGH Clock 10 Note 2 Note 2 0 To Prevent Writing 

lEN LOW Clock NA NA 10 0 To Write into 0 

8-016 



Am2910 
MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential -0.5V to +7.0V 

DC Voltage Applied to Outputs for High Output State -0.5 V to Vee max. 

DC Input Voltage -0.5V to +5.SV 

DC Output Current. Into Outputs 30mA 

DC Input Current -30 mA to +5.0 mA 

ELECTRICAL CHARACTERISTICS The Following Conditions Apply Unless Otherwise Specified: 

eOM'l T A = oOe to +70oe Vee = 5.0V ±5% MIN. = 4.75V MAX. = 5.25V 

Mil Te = -55°e to +125°e Vee = 5.0V 110% MIN. = 4.50V MAX. = 5.50V 

DC CHARACTERISTICS OVER OPERATING RANGE 
Typ. 

ParameJers Description Test Conditions (Note 1) Min. (Note 2) Max. Units 

vOH Output HIGH Voltage 
Vec = MIN .• IOH = -1.6mA 

2.4 Volts 
VIN = VIH or Vil 

.-f--

VOL Output LOW Voltage 
Vce = MIN. I YO-l1. IOl = 12mA 

0.5 Volts 
VIN = VIH or Vil I PL. VECT, MAP, FUll, IOl = SmA 

VIH Input HIGH Level (Note 4) 
-'+GUaranteed Input Logical HIGH 

2.0 Volts 
voltage for all inputs 

- 1--

Vil Input lOW level (Note 4) 
Guaranteed input logical lOW 

O.S Volts 
voltage for all inputs .-

VI Input elamp Voltage Vce = MIN., liN = -lSmA -1.5 Volts 
--

00-11 -0.S7 

el. CCEN -0.54 

III Input lOW Current VCC = MAX., VIN = 0.5V 10-3,~,R05 -0.72 mA 

CC -1.31 

CP -2.14 

00-11 SO 

CI, CCEN 30 

IIH Input HIGH Current Vec = MAX., VIN = 2.7V 10-3, OE. RlO 40 IJ.A 

CC 50 

CP 100 

II Input HIGH Current VCC = MAX., VIN = 5.5V 1.0 mA --_ ... _-_ .. _--- ----
Output Short Circuit Current 

ISC (Note 3) Vec=MAX. -30 -S5 mA 

IOZL 
Output OFF Current 

Vec = MAX. VOUT = 0.5V -SO 
IJ.A 

IOZH OE = 2.4V VOUT - 2.4V SO 

TA = 25°e 19S 320 

Am291 OPC, DC 
T A - o°c to +70°C 344 

ICC Power Supply Current Vec = MAX TA = +70·C 2S0 mA 

Te = -SSoC to 
340 

Am29100M, FM +125°C 

Te = +12Soe 227 

Notes: 1. For conditions shown as MIN. or M AX .. use the appropriate value specified under Electrical Characteristics for the appl icable devic.8 type. 

2. TYPical limits are at Vee = 5.0V. 25°e ambient and maximum loading. 
3. Not mort! than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 

4. These input levels provide no guaranteed noise immUnity and should only be tested In a static·, noise-free environment. 

INPUTS 

3.0" 

I 

L INPUT 

I 
TO -

CLOCK OUTPUT 
TO DELAY 

--OUTPUT 
DELAV 

Figure 2. Switching Waveforms. 

8-017 

See Tables A for ts and th for various 
inputs. See Tables B for combinational 
delays from clock and other inputs to 
outputs. See Figure 5 for timing of a 
typical CCU cycle. 



Am2910 

SWITCHING CHARACTERIST1CS 

The tables below define the Am291 0 switching characteristics. Tables A are set-up and hold times relative to the clock LOW-to-H IGH 
transition. Tables B are combinational delays. Tables e are clock requirements. All measurements are made at 1.5V with input levels 
at OV or 3V. All values are in ns. 

TYPICAL ROOM TEMPERATURE CHARACTERISTICS (T A = 25°C, Vee = 5.0V, CL = 50pF) 

A. Set-up and Hold Times B. Combinational Delays C. Clock Requirements 

Input 

Di~R 

Di~PC 

10-13 

CC 

CCEN 

CI 

RLD 

ts th Input 
9 3 

34 1 
DO-011 

64 0 
10-13 

46 0 
CC 

49 LI 
CCEN 

26 2 
CP(note) 
1= 8, 9,15 

18 2 CP 
All other I 

OE 

Y PL, VECr, MAP 

14 

40 27 

21 

23 

54 

26 

Full 

29 

29 

Minimum Clock LOW Time 30 

Minimum Clock HIGH Time 30 

Minimum Clock Period, 1=8.9, 15 

Minimum Clock Period, 1=14 

(Clock periods for other instructions a'e 
determined by external conditions'! 

Note: These instructions are conditional on the 
counter. Delays from CP to outputs will be 
longer if the instruction prior to the clock was 
4 or 12 or RLD was LOW. 

GUARANTEED ROOM TEMPERATURE CHARACTERISTICS lTA = 25°e, Vee = 5.0V, CL = 50pF) 

A. Set-up and Hold Times B. Combinational Delays C. Clock Requirements 

Input ts 

Di~R 

Di~PC 

10-13 

CC 

CCEN 

CI 

RLD 

th Input 

DO-Oll 

10-13 

CC 

CCEN 

CP(note) 
1= 8, 9, 15 

CP 
All other I 

OE 

Y Pl, VECr, MAP FiiIf Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period, 1=8,9,15 

Minimum Clock Period, 1=14 

(Clock periods for other instructions are 

determined by external conditions.! 

Note: These instructions are conditional 0:1 the 
counter. Delays from CP to outputs will b,~ 
longer if the instruction prior to the clock was 
4 or 12 or RLD was LOW. 

GUARANTEED CHARACTERtSTICS OVER COMMERCIAL OPERATING RANGE 
Am2910PC, DC (TA = oOe to+70°C, Vec = 4.75V to 5.25V, eL = 50pF) 

A. Set·up and Hold Times B. Combinational Delays C. Clock Requirements 

Input ts 

Di~R 15 

Di~PC 58 

10-13 100 

CC 80 

CCEN 85 

CI 45 

RLD 35 

th Input Y 

Do-D11 25 

10-13 65 

CC 45 

5 

3 

0 

ei!EN 40 
0 

CP(note) 
92 

1= 8, 9,15 

0 

5 

CP 
65 

All other I 

3 

OE 

Pl, VECT, MAP 

-

48 
-

-

-

-

-

Full 

-
-

-

-

-

50 

-

Minimum Clock LOW Time 50 

Minimum Clock HIGH Time 30 

Minimum Clock Period, 1=8, 9,15 

Minimum Clock Period, 1=14 

(Clock periods for other instructions are 
determined by external conditions.) 

Note: These instructions are conditional on the 
counter. Delays from CP to outputs will be 
longer if the instruction prior to the clock was 
4 or 12 or RLD was LOW. 

GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE 
Am2910DM, FM (TC = _55°C to +125°C, Vee = 4.5V to 5.5V, CL = 50pF) 

A. Set·up and Hold Times B. Combinational Delays C. Clock Requirements 

Input ts th Input 

00- 0 11 

10-13 

CC 

Di~R 

Di~PC 

10.13 

CC 
CCEN 

CCEN 
CP(note) 

CI 1= 8, 9, 15 

RLD CP 
All other I 

OE 

Y Pl, VECT, MAP Full 

8-D18 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period, 1=8,9, 15 

Minimum Clock Pellod, 1=14 

(Clock p~riods for other instructions are 
determined by external conditions. I 

Note: These instructions are conditional on the 
counter. Delays from CP to outputs will be 
longer if the instruction prior to the clock was 
4 or 12 or RLD was LOW. 



Am2909 • Am2911 

OPERATION OF THE Am2909/Am2911 

Figure 5 lists the select codes for the multiplexer. The two 
bits applied from the microword register (and additional com· 
binational logic for branching) determine which data source 
contains the address for the next microinstruction. The 
contents of the selected source will appear on the Y outputs. 
Figure 5 also shows the truth table for the output control and 

for the control of the push/pop stack. Figure 6 shows in detail 
the effect of So, S1, FE and PUP on the Am29Q9. These four 
signals define what address appears on the Y outputs and what 
the state of all the internal registers will be following the clock 
LOW-to-HIGH edge. In this illustration, the microprogram 
counter is assumed to contain initially some word J, the ad­
dress register some word K, and the four words in the push/ 
pop stack contain Ra through Rd. 

Address Selection Output Control 

OCTAL S, So SOURCE FOR Y OUTPUTS SYMBOL ORi ZERO OE Vi 

0 L L Microprogram Counter J,LPC X X H Z 
1 L H Register REG X L L L 

2 H L Push-Pop stack STKO H H L H 

3 H H Direct inputs Di L H L Source selected by So 5, 

Z = HIgh Impedance 

Synchronous Stack Control 

H = High 

L = Low 

X = Don't Care 

CYCLE S1, So, FE, PUP 

N o 0 0 0 
N+1 -

N 000 1 
N+1 -

N 001 X 
N+1 -

N o 1 0 0 
N+1 -

N o 1 0 1 
N+1 -

N o 1 1 X 
N+1 -

N 1 000 
N+1 -

N 1 001 
N+1 -

N 101 X 
N+1 -

N 1 1 0 0 
N+1 -

N 1 1 0 1 
N+1 -

N 1 1 1 X 
N+1 -

FE PUP 

H X 
L H 

L L 

J,lPC REG STKO 

J K Ra 
J+1 K Rb 

J K Ra 
J+1 K J 

J K Ra 
J+1 K Ra 

J K Ra 
K+1 K Rb 

J K Ra 
K+1 K J 

J K Ra 
K+1 K Ra 

J K Ra 
Ra+1 K Rb 

J K Ra 
Ra+1 K J 

J K Ra 
Ra+1 K Ra 

J K Ra 
D+1 K Rb 

J K Ra 
D+1 K J 

J K Ra 
D+1 K Ra 

x = Don't care, 0 = LOW, , = HIGH, Assume Cn = HIGH 
Note: STKO is the location addressed by the stack pointer. 

PUSH-POP STACK CHANGE 

No change 
Increment stack pOil'lter, then 
push current PC onto 5TKO 
Pop stack (decrement stack pointer) 

Figure 5. 

STK1 STK2 STK3 YOUT COMMENT 

Rb Rc Rd J Pop Stack Rc Rd Ra -

Rb Rc Rd J Push J,lPC 
Ra Rb Rc -

Rb Rc Rd J Continue Rb Rc Rd -

Rb Rc Rd K Pop Stack; 
Rc Rd Ra - Use AR for Address 

Rb Rc Rd K Push J,lPC; 
Ra Rb Rc - .Jump to Address in AR 

Rb Rc Rd K Jump to Address in AR 
Rb Rc Rd -

Rb Rc Rd Ra Jump to Address in STKO; 
Rc Rd Ra - Pop Stack 

Rb Rc Rd Ra Jump to Address in STKO; 
Ra Rb Rc - Push J,lPC 

Rb Rc Rd Ra Jump to Address in STKO 
Rb Rc Rd -

Rb Rc Rd D Pop Stack; 
Rc Rd Ra - Jump to Address on D 

Rb Rc Rd D Jump to Address on D; 
Ra Rb Rc - Push J,lPC 

Rb Rc Rd D Jump to Address on D Rb Rc Rd -

Figure 6. Output and Internal Next-Cycle Register States for Am2909/Am2911. 
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PRINCIPLE 
USE 

End 
Loop 

Set-up 
Loop 

Continue 

End 
Loop 

JSR AR 

JMP AR 

RTS 

Stack Ref 
(Loop) 

End 
Loop 

JSR D 

JMP D 



Am2909 • Am2911 

Figure 7 illustrates the execution of a subroutine using the 
Am2909. The configuration of Figure 3 is assumed. The 
instruction being executed at any given time is the one con­
tained in the microword register (J.tWR). The contents of the 
IlWR also controls (indirectly, perhaps) the four signals So, S1, 
FE, and PUP. The starting address of the subroutine is applied 
to the 0 inputs of the Am2909at the appropriate time. 

In the columns on the left is the sequence of microinstructions 
to be executed. At address J+2, the sequence control portion 
of the microinstruction contains the comand "Jump to sub-

CONTROL MEMORY 
Execute Cycle To T, 

routine at A". At the time T 2, this instruction is in the IlWR, 
and the Am2909 inputs are set-up to execute the jump and 
save the return address. The subroutine address A is applied to 
the 0 inputs from the IlWR and appears on the Y outputs. The 
first instruction of the subroutine, I(A), is accessed and is at 
the inputs of the IlWR. On the next clock transition, I(A) is 
loaded into the IlWR for execution, and the return addr~ss 
J+3 is pushed onto the stack. The return instruction is exe­
cuted at T 5. Figure 8 is a similar timing chart showing one 
subroutine linking to a second, the latter consisting of only 
one microinstruction. 

T2 T3 T4 Ts T6 T7 Ta Tg 
Execute 

Microprogram 

Cycle 
Address 

Sequencer 
Clock rL rL rL n-rL rL ru rL ru ru Signals -

TO 
T, 

T2 
T6 
T7 

J-1 

J+1 
J+2 
J+3 

J+4 

A 
A+1 
A+2 

Instruction 

JSR A 

I(AI 

RTS 

CONTROL MEMORV 

Execute 
Microprogram 

Cycle Address 
Sequencer 
Instruction 

J-1 -
TO J -
T, J+1 -
T2 J+2 JSR A 
Tg J+3 -

- -
- -
- -
- -

T3 A -
T4 A+1 -
T5 A+2 JSR B 

T7 A+3 -
TS A+4 RTS 

- -
- -
- -
- -

T6 B RTS 
- -

- -

Am2909 S,.50 0 0 3 0 0 2 0 
Inputs FE H H L H H L H 
(from PUP X X H X X L X 
/lWR) D X X A X X X X 

/lPC J+1 J+2 J+3 A+1 A+2 A+3 J+4 
5TKO - - - J+3 J+3 J+3 -

Internal 5TK1 - - - - - -Registers -
5TK2 - - - - - - -
5TK3 - - - - - - -

Am2909 V J+1 J+2 A A+1 A+2 J+3 J+4 Output 

ROM (V) I(J+1) JSR A I(A) I(A+1) RTS I (J+3) I (J+4) Output 

Contents 
of/lWR 

(Instruction /lWR I(J) I(J+1) JSR A I(AI I(A+1) RTS I(J+3) 
being 

executed) 

Figure 7. Subroutine Execution. 

Execute Cycle TO T1 T2 T3 T4 TS TS 
Clock n.J IlJ IlJ rL ru ru ru Signals -

Am2909 5,.50 0 0 3 0 0 3 2 

Inputs FE H H L H H L L 
(from PUP X X H X X H L 
/lWR) D X X A X X B X 

/lPC J+1 J+2 J+3 A+1 A+2 A+3 B+1 
5TKO - - - J+3 J+3 J+3 A+3 

Internal 5TK1 - - - - - - J+3 
Registers 

5TK2 - - - - - - -
5TK3 - - - - - - -

Am2909 
V J+1 J+2 A A+1 A+2 B A+3 

Output 

ROM (V) I(J+1) JSR A I(A) 1(A+1) JSR B RTS I(A+3) 
Output 

Contents 
of/lWR 

(I nstruction /lWR I(J) I(J+1) JSRA I(A) I(A+1) JSR B RTS 
being 

executed) 

Figure 8. Two Nested Subroutines. Routine B is Only One Instruction. 

8-020 

0 
H 
X 

X 

J+5 
-
-
-
-

J+5 

I (J+5) 

I (J+4) 

en = HIGH 

T7 Ta Tg 

ru ru ru 
0 2 0 
H L H 
X L X 
X X X 

A+4 A+5 J+4 
J+3 J+3 -
- - -
- - -
- - -

A+4 J+3 J+4 

RTS I(J+3) I (J+4) 

I(A+31 RTS I(J+3) 

cn = HIGH 



Am2909/ Am2911 

MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential 

DC Voltage Applied to Outputs for HIGH Output State 

DC Input Voltage 

DC Output Current, Into Outputs 

DC Input Current 

OPERATING RANGE 
PIN Ambient Temperature Vcc 

Am2909/29110C, PC 4.7SV to S.2SV 

Am2909/2911 OM, FM 4.S0V to S.SOV 

STANDARD SCREENING 
(Conforms to MI L-STD·883 for Class C Parts) 

MIL·STD·883 Level 

-0.5 V to +7.0 V 

-0.5 V to +Vcc max. 

-0.5 V to +7.0 V 

30mA 

-30 mA to +5.0 mA 

Step Method Conditions Am2909/Am2911PC. DC Am2909/Am2911DM. FM 

Pre·Seal Visual Inspection 2010 B 100% 

24·hour 
Stabi lization Bake 1008 C lS0°C 100% 

Temperature Cycle 1010 C 
-6SoC to +lS0°C 

100% 
10 cycles 

Centrifuge 2001 B 10,000 G 100% • 

Fine Leak 1014 A S x 10-8 atm·cc/sec 100% • 

Gross Leak 1014 C2 Fluorocarbon 100% • 

Electrical Test 
SOO4 

See below for 
100% 

Subgroups 1 and 7 definitions of subgroups 

Insert Additional Screening here for Class B Parts 

Group A Sample Tests 

Subgroup 1 

Subgroup 2 

Subgroup 3 
Subgroup 7 

Subgroup 8 

Subgroup 9 

• Not applicable for 
Am2909PC or 
Am2911PC. 

LTPD = S 

LTPD = 7 

See below for LTPD = 7 
SOOS definitions of subgroups LTPD = 7 

LTPD = 7 

LTPD = 7 

ADDITIONAL SCREENING FOR CLASS B PARTS 

MI L·STD·883 Level 
Step Method Conditions 

Am2909/Am2911DMB. FMB 

Burn·ln 1015 D 12SoC 100% 160 hours min. 

Electrical Test SOO4 
Subgroup 1 100% 
Subgroup 2 100% 
Subgroup 3 100% 
Subgroup 7 100% 
Subgroup 9 100% 

Return to Group A Tests in Standard Screening 

GROUP A SUBGROUPS 
(as defined in MIL·STD-883, method 5005) 

Subgroup 

10 
11 

Parameter 

DC 
DC 
DC 
Function 
Function 

Switching 
Switching 
Switching 

Temperature 

2SoC 

Maximum rated temperature 
Minimum rated temperature 
2SoC 

Maximum and minimum rated 
temperature 

2SoC 
Maximum Rated Temeperature 
Minimum Rated Temperature 

8-D21 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

LTPO = S 

LTPD = 7 

LTPD = 7 

LTPD = 7 

LTPD = 7 

LTPD=7 



Am2909 • Am2911 

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 

Typ. 
Paramatars Description Test Conditions (Note ,) Min. (Note 2) 

Vcc= MIN., MIL I 10H = -1.0mA 2.4 
VOH Output HIGH Voltage 

VIN = VIH or VIL COM'L I 10H = -2.6mA 2.4 

10L =4.0mA 

Output LOW Voltage 
VCC = MIN., 10L =S.OmA 

VOL VIN = VIH or VIL 10L = 12mA 

(Note 5) 

VIH Input HIGH Level 
Guaranteed input logical HIGH 

2.0 
voltage for all inputs 

Guaranteed input logical LOW I MIL 
VIL Input LOW Level 

voltage for all inputs I COM'L 

VI Input Clamp Voltage VCC = MIN., liN = -lSmA 

Cn 

IlL Input LOW Current 
VCC = MAX., 

Push/Pop, OE 
VIN =0.4V 

Others (Note 6) 

Cn 

IIH Input HIGH Current 
VCC= MAX., 

Push/Pop 
VIN = 2.7V 

Others (Note 6) 

VCC= MAX., Cn, Push/Pop 
II Input HIGH Current 

VIN = 7.0V Others (Note 6) 

lOS 
Output Short Circuit Current VCC = MAX. I YO-Y3 -30 
(Note 3) 

1 C n +4 -30 

ICC Power Supply Currr.nt VCC = MAX. (Note 4) SO 

10ZL VCC= MAX., VOUT=0.4V 
Output OF F Current 

10ZH 0E=2.7V VOUT=2.7V 

Max. Units 

Volts 

0.4 

0.45 
Volts 

0.5 

Volts 

0.7 Volts 
O.S 

-1.5 Volts 

-LOS 

-0.72 rnA 

-0.36 

40 

40 JJA 

20 

0.2 
rnA 

0.1 

-100 
rnA 

-S5 

130 rnA 

-20 
JJA 

20 

Notes: ,. For conditions shown as MIN. or MAX .• use the appropriate value specified under Electrical Characteristics for the applicable device tYpe. 
2. Typical limits are at VCC = 5.0V. 25°C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
4. Apply GNO to Cn , RO. R" R2. R3, ORO. OR" OA 2• OR3. DO, 0,. 02. and 03' Other inputs open. All outputs open. Measured after a 

LOW-to-HIGH clock transition_ 
5. The 12mA guarantee applies only to YO, Y 1, y 2 and Y 3' 
6. For the Am29", 0i and Ri are Internally connected. Loading is doubled (to same values as Push/Pop). 

f--IT::L~ Il---j I(T~~ 11---1 

3,1,- ~\\\\\\\\\~t I,-----J·ov 
CP CLOCK H TO L OCCURS _____ 1.5V 

I 
- ,,\t\\ \\\ \ ·1'------ ov 

ALL INPUTS 
(EXCEPT DEI 

Y OUT 
Cn + 4 

I ITAB~~ 1111 -----t----+I-(TA~~E III) 

I~ :&m:::: 
~ 

1 I INPUTSTOYorCn + 4 

CLOCK TO Y; 0' Cn +4 (TABLE III 

(TABLE III 

------------- ::: 
________ -L _______________ ~~~~~~~~~~~~~__________________________ VOL 

Figure 12. sWitching Waveforms. See Tables for Specific Values. 
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Am2909 • Am2911 

SWITCHING CHARACTERISTICS 
OVER OPERATING RANGE 
Tables I. II. and III below define the timing characteristics of 
the Am2909 and Am2911 over the operating voltage and 
temperature range. The tables are divided into three types of 
parameters; clock characteristics. combinational delays 
from inputs to outputs. and set-up and hold time require­
ments. The latter table defines the time prior to the end of 
the cycle (Le .• clock LOW-to-HIGH transition) that each 
input must be stable to guarantee that the correct data is 
written into one of the internal registers. 

MAXIMUM COMBINATIONAL PROPAGATION DELAYS 
(all in ns. CL = 50pF (except output disable tests)) 

Measurements are made at 1.5V with V IL = OV and VIH = 

3.0V. For three-state disable ~ests. CL =5.0pF and measure­
ment is to O.5V change on output voltage level. 

TABLE I 
CYCLE TIME AND CLOCK CHARACTERISTICS 

TIME COMMERCIAL MILITARY 

Minimum Clock LOW Time 30 35 

Minimum Clock HIGH Time 30 35 

Operating Range Part Numbers 

Commercial Am2909PC. DC 
Am2911 PC. DC 

Military Am2909DM. FM 
Am2911DM 

COMMERCIAL 

.~ Input Y Cn+4 

~- 17 30 

50. 51 30 48 

ORi 17 30 

Cn - 14 

ZERO 30 48 

OE LOW (enable) 25 -

DE HIGH (disable) 25 -

Clock t 5150 = LH 43 55 

Clock t 5150 = LL 43 55 

Clock t 5150 = HL 80 95 

Power Supply Temperature Range 

5.0V ± 5% TA = O°C to +70°C 

5.0V ± 10% Tc = -55°C to +125°C 

TABLE III 
GUARANTEED SET-UP AND HOLD TIMES (all in ns) (Note 1) 

COMMERCIAL MILITARY 
From Input Notes 

Set-Up Time Hold Time Set-Up Time 

RE 22 5 22 

Ri 2 10 5 12 

PU5H/POP 26 6 30 

FE 2!3 5 30 

Cn 28 5 30 

Di 2 30 0 35 

ORj 30 0 35 

50. 51 45 0 50 

ZERO 45 0 50 

Notes: 1. All times relative to clock LOW-to-HIGH transition. 

MILITARY 

Y Cn+4 

20 32 

40 50 

20 32 

- 16 

40 50 

25 -

25 -

50 62 

50 62 

90 102 

Hold Time 

5 

5 

7 

5 

5 

3 

3 

0 

0 

2. On Am2911. Ri and OJ are internally connected together and labeled OJ. Use Rj set·up and hold times when 0 inputs are used to load register. 

26 

27 

28 

Am2909 
25 24 23 22 21 20 19 18 

Metallization and Pad Layout 

13 

DIE SIZE 0.110" X 0.160" 
Numbers correspond to DIP pin-out 

8-D23 

Am2911 
17 16 



Am2930 

MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature -65 to +150°C 

Temperature (Ambient) Under Bias -55 to +125°C 

Supply Voltage to Ground Potential -0.5 to + 7.0V 

DC Voltage Applied to Outputs for High Output State -0.5V to Vee max. 

DClnputVolta~g~e _______________________________________________________________________ -_O_.5 __ to __ +_5_.5 __ V 

DC Output Current, Into Outputs 30mA 

DC Input Current -30 to +5.0mA 

OPERATING RANGE 
Part Number Temperature Vee 

4.75V to 5.25V 

TC = -55 to +125°C 4.50V to 5.50V 

DC CHARACTERISTICS OVER OPERATING RANGE 
Typ 

Parameters Description Test Conditions (Note 1) Min (Note 2) Max Units 

Yo, Y" Y2, Y3 

Vec = MIN., 
G, Cn+4, IOH = -1.6rnA 2.4 

VO H Output HIGH Voltage 
VIN = V IL or V IH 

Ci+4 Volts 

P, FULL, 
IOH = -1.2rnA 2.4 

EMPTY 

IOl = 20rnA 
0.5 

YO' Y" Y 2, Y3 
(COM'L) 

IOl = 16rnA (MIL) 0.5 

VOL Output LOW Voltage 
Vec = MIN. G,Cn+4 

IOl = 16rnA 0.5 Volts 
VIN = VIL or V IH Ci+4 

P, FULL, 
IOL = 12rnA 0.5 

EMPTY 

V IH Input HIGH Level (Note 4) 2.0 Volts 

Vil Input LOW Level (Note 4) 0.8 Volts 

VI Input Clamp Voltage Vec = MIN., liN = -18rnA -1.5 Volts 

DO-3 -.360 
~-"~ -~-~ 

_ ... _"-_._,." .. f--
10-.4, RE, lEN, 

-.702 

IlL Input LOW Current Vec = MAX., VIN = 0.5V 
CP,5E 

rnA 
CC -.657 

Ci -2.31 

Cn I -3.25 

DO-3 .. --t- 20 

10- 4• RE, lEN, 

I Vee ~ MAX •• V" ~ 2.7V 
CP,5E 

40 

IIH Input HIGH Current 
CC 50 

/LA 

Ci 90 

Cn 250 

II Input HIGH Current Vec = MAX., VIN = 5.5V 1.0 rnA 

IsC 
Output Short Circuit Current 

Vee = MAX. -30 -85 rnA 
(Note 3) 

IOZl 
Vee = MAX., DE = 2.4V 

VOUT = 0.5V -50 

IOZH 
Output OFF Current 

VOUT = 2.4V 50 
/LA 

I Vee = 5.0V TA = 25°C 150 205 

Te = -55 to +125°C 239 
Power Supply Current _._._--

lee Te = +125°C 170 rnA 
(Note 5) Vee = MAX. 

TA = 0 to 70°C 220 

TA = 70°C 185 

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 
2. Typical limits are at Vee = 5.0V, 25'C ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
4. These input levels provide no gtlaranteed noise immunity and should only be tested in a static-, noise·free environment. 
5. Minimum ICC is at maximum temperature. 
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Am2930 

Am2930 SWITCHING CHARACTERISTICS 
Tables A, B, e and' 0 define the timing characteristics of the Am2930. Measurements are made at 1.5V with VIL ~ OV and 
VIH = 3.0V. For three-state disable tests, CL = 5.0pF and measurement is to O.5V change on output voltage level. 

TABLE IA 
Clock Characteristics. 

Minimum Clock LOW Time 18ns 
Minimum Clock HIGH Time 20ns 

TABLE IB 
Output Enable/Disable Times. 

All in ns. 
CL = 5.0pF for output disable tests. 

From To Enable Disable 

OE y 18 17 
CC y 39 27 (Nole 1) 

14•0 Y 57 41 (Nole 1) 

I. Typical Room Temperature Performance. 
Vec = 5.0V, TA = 25°C 

TABLE IC 
Combinational Propagation Delays. 

All in ns. 
Outputs fully loaded. CL = 50pF. 

I~ Output 
From Ci+4 CiH 
Input , Y G,P Cn+4 14=L 14=H Full 

14.0 61 50 57 61 69 52 
CC 46 32 39 53 29 
Cn 25 17 32 

C; 14 14 

CP 52 40 46 33 58 40 
0 37 23 30 43 
lEN 27 

Note 1: "Suspend" instruction. 

Empty 

40 

TABLE 10 
Set-up and Hold Times. All in ns. 

All relative to clock 
LOW-to-HIGH transition. 

CP: r-
---' 

Set-up Hold 
Input Time Time 

14. 0 68 
cc 53 
lEN 39 
Cn 28 
C; 18 

o (RE = L, 
I 14•0 = 0-8 or 10-15) 

14 

o (All other conditions) 44 
RE t3 

II. Guaranteed Performance Over Commercial Operating Range. 

TABLE IIA 
Clock Characteristics. 

Minimum Clock lOW Time 31ns 
Minimum Clock HIGH Time 33ns 

TABLE liB 
Output Enable/Disable Times. 

All in ns. 
CL = 5.0pF for output disable tests. 

From To Enable Disable 
OE y 27 26 
CC y 55 37 (Note 1) 

14 •0 y 80 55 (Note 1) 

Vee = 4.75 to 5.25V, TA = 0 to 700 e 

TABLE IIC 
Combinational Propagation Delays. 

All in ns. 
Outputs fully loaded. CL = 50pF. 

~ Output 
From Ci+4 Ci+4 
Input y G,P Cn+4 14=L 14=H Full 

14•0 81 67 77 80 91 69 
CC 63 45 55 72 42 
Cn 32 25 45 
C; 22 22 
CP 69 53 61 43 78 55 
0 49 33 40 59 
lEN 40 

Note 1: "Suspend" instruction. 

Empty 

55 

TABLE 110 
Set-up and Hold Times. All in ns. 

All relative to clock 
LOW-to-HIGH transition. 

~r-­

Set-up Hold 
Input Time Time 

14. 0 114 

CC 75 
lEN 55 
Cn 43 
C; 32 5 

-
o (RE = L, 25 14. 0 = 0·8 or 10·15) 
o (All other conditions) 66 
RE 24 

III. Guaranteed Performance Over Military Operating Range. 

TABLE iliA 
Clock Characteristics. 

Minimum Clock LOW Time 35ns 
Minimum Clock HIGH Time 35ns 

TABLE IIIB 
Output Enable/Disable Times. 

All in ns. 
CL = 5.0pF for output disable tests. 

From To Enable Disable 
OE y 32 31 

CC y 60 42 (Note I) 

14•0 y 85 60 (Note 1) 

Vce = 4.5 to 5.5V, Te = -55 to +125°e 

TABLE IIIC 
Combinational Propagation Delays. 

All in ns. 
Outputs fully loaded. CL = 50pF. 

~ output 
From CiH Ci+4 
Input y G,P Cn+4 14=L 14=H Full 

14. 0 88 74 82 87 97 78 
CC 68 52 60 78 47 
Cn 37 30 46 
C; 23 23 
~. 74 58 66 48 84 60 

55 38 45 - j 65 
lEN 45 

Note 1: "Suspend" instruction. 

8-025 

Empty 

60 

TABLE 1110 
Set-up and Hold Times. All in ns. 

All relative to clock 
LOW-Io-HIGH transition. 

, Set-up Hold 
Input Time Time 

14.0 124 
CC 80 
lEN 69 
Cn 52 

~ 37 
o (RE ~ L. 30 
~0.8 or 10·15) 

o (All other conditions) 72 

RE 29 





CP1600 
direct addressing. 2-3 
implied addressing. 2-4 
I/O port pin characteristics. 2-30 
stack addressing. 2-5 

8086 
AX register. 5-5 
base relative. indexed addressing. 5-15 
BCD addition. 5-49 
BCD division. 5-51 
BCD multiplication. 5-51 
BCD subtraction. 5-49 
Bus Interface Unit (BIU). 5-30 
BX register. 5-5 
Code Segment register. 5-8 
Control signals. simple and complex. 5-28 
CX register. 5-5 
data memory base relative addressing. 5-16 
Data Segment register. 5-11 
Destination Index register. 5-10 
direct memory addressing. 5-13 
dual bus complexity. 5-28 
DX register. 5-5 
-8080A register compatibility. 5-5 
Execution Unit (EU). 5-30 
external memory addressing. 5-24 
Extra Segment register. 5-10 
hold. in min. and max. mode systems. 5-39 
implied memory addressing. 5-14 
indirect addressing. 5-22 
instruction queue. 5-31 
interrupt return. 5-46 
interrupt vector table. 5-44 
I/O port addressing. 5-21 
maskable interrupt. 5-44. 5-45 
non-maskable interrupt. 5-44. 5-45 
program counter. 5-8 
program relative addressing. 5-21 
reset. 5-27 
Segment registers. 5-7 
software interrupts. 5-44. 5-45 
Source Index register. 5-10 
Stack Pointer register. 5-9. 5-11 
Stack Segment register. 5-9 

8212. used in INS8900 system 
as input port. 1-39. 1-40 
as output port. 1-41 

8251 US ART. used in INS8900 system. 1-43 
8253 Programmable Counter/Timer. 

used in INS8900 system. 1-43 
8288 Bus Controller 

interrupt signals. 5-110 
I/O bus mode. 5-109 
memory protect. 5-109 
write control signals. 5-109 

INS8900. See a/so PACE/INS8900 
address/data lines. demultiplexing. 1-38 
control signal polarity considerations. 1-39 
8251 and 8253 used with. 1-43 

INDEX 

xvii 

8255 PPI devices used with. 1-42. 1-43 
6800 support devices not compatible with. 1-44 

INS8900/PACE. See PACE/INS8900 

MC68000 
absolute data addressing. 7-30 
address registers. 7-3 
autovector interrupt response. 7-27 
bus and address error exception processing. 7-25 
data registers. 7-2 
exception priorities. 7-23 
exception vector table. 7-23 
externally generated exceptions. 7-23 
immediate data addressing. 7-37 
implied register addressing. 7-32 
internally generated exceptions. 7-22. 7-23 
interrupt request exception processing. 7-26 
memory interface. 7-9 
operating modes. 7-22 
program counter relative addressing. 7-32 
read timing. 7-13 
register direct addressing. 7-30 
register indirect address. 7-30 
reset exception processing. 7-25 
spurious interrupt. 7-27 
Stack Pointer. 7-4 
Status register. 7-5 
wait state. 7-14 
write timing. 7-14 

MicroNova I/O busA-12 

Nova 
addressing. 4-6-9 
address space. 4-23 
busy status. 4-21 
done status. 4-21 
registers. 4-22 

9440 
initialization. 4-16 
instruction fetch. 4-24 
I/O wait states. 4-28 
memory read. 4-24 
system bus. 4-14 

PACE. See a/so PACE/INS8900 
clock signals. 1-11 
level 0 interrupt problems. 1-24 
stack interrupt problems. 1-22 
substrate bias voltage. generating. 1-35 
TTL-level bus. 1-2 

PACE/I NS8900 
address latches and decoders. 1-2 
bidirectional transceiver element (BTE). 1-2 
BTE mode control signals. 1-37 
busses. floating. 1-15 
CONTIN signal. 1-15 
CPU-initiated DMA block data transfers. 1-16 
cycle-stealing DMA. 1-17. 1-18 
data input cycle. 1-12 
data output cycles. 1-13 
direct addressing options. 1-24 



PACE/INS8900 (Continued) 
direct indexed addressing. 1-7 
OMA block data transfers. 1-16. 1-17 
execution speed. 1-1 
Extend signal for slow I/O operations. 1-13 
Extend used to suspend I/O during DMA operations. 

1-17 
Halt state. 1-14 
interrupts. 1-21-23 
logic level. 1-2 
machine cycle. 1-12 
NHAL T signal. 1-15 
power supply. 1-1 
processor stall. 1-15 
registers. saving during interrupts. 1-22 
return from interrupt. 1-21 
signal differences. 1-10 
split base page. 1-6. 1-7 
stack interrupts. 1-5 
STE clock frequency. 1-35 
system timing element (STEl. 1-2 

TMS 9900 
context switch. 3-5. 3-6 
memory addresses. 3-3 
direct addressing. 3-6 
indexed addressing. 3-6 
instruction execution sequences. 3-18 
internal operations machine cycle. 3-15 
interrupt vector map. 3-27 
multiple interrupt hardware considerations. 3-30 
program memory addressing. 3-8 

TMS 9902 
break. 3-91 
break logic. 3-86 
Control register. 3-86 
device initialization. 3-84 
error flags. 3-93 
internal clock signal. 3-88 
interrupts. 3-86. 3-87 
receive logic. 3-92 
receiver status. 3-87 
register addressing. 3-84 
reset. 3-86 
Status register. 3-87 
test mode. 3-86 
timer status. 3-87 
Transmit/Receive Data Rate register. 3-88 
transmit event sequence. 3-90 
transmitter status. 3-87 

TMS 9903 
asynchronous break logic. 3-103 
asynchronous receive. 3-110 
asynchronous transmit. 3-109 
bisync logic. 3-105 
clock rate option. 3-106 
Control register. 3-100 
CRC options. 3-106 
device intialization. 3-109 
device reset. 3-100 
external sync logic. 3-104 
HOLC abort. 3-104 
initialize CRC. 3-100 
initialize transmit/receive. 3-100 
interface signal. 3-97 
interrupt enable/disable. 3-102 
modes. 3-97 
monosync logic. 3-105 
NRZI select. 3-106 
Parameter register. 3-103 

xviii 

parity options. 3-105 
Read register addressi ng. 3-100 
receive eRe. 3-102 
received character size. 3-106 
register select. 3-100 
SDLC configurations. 3-105 
SDLC loop. 3-111 
SDLe receive logic. 3-104 
serial I/O signals. 3-98 
Status register. 3-106 
sync strip. 3-105 
test mode. 3-102 
transmit controls. 3-102 
transmit operation. 3-104 
Write register addressing. 3-101 

TMS 9940 
CRU bit utilization. 3-59 
hold logic. 3-64 
idle logic. 3-64 
expansion mode. 3-60 
multiprocessor system interface. 3-61 
simple CRU I/O mode. 3-59 
sync mode. 3-64 

TMS 9980 series clock logic. 3-49 
2901 

ALU logic. 8- 13 
carry status. 8-24 
data input. 8-33 
half-carry status. 8-25 
local RAM. 8-7 
microcode. sample. 8-25 
microinstruction. 8-9 
multiply. 8-35 
overflow status. 8-24 
Q register. 8- 12 
RAM and CPU registers. 8-10 
rotate operation. 8-25 
sample microcode. 8-25 
shift operation. 8-25 
sign status. 8-24 
status logic. 8-24 
zero status. 8-24 

2903 
ALU functions. 8-57 
ALU input. 8-48 
ALU input options. 8-44 
ALU operand options. 8-49 
ALU output destinations. 8-61 
ALU shifter. 8-61 
Arithmetic and Logic Unit (ALUl. 8-49 
destination options. 8-59 
double length normalization. 8-67. 8-68 
increment function. 8-72 
local RAM addressing. 8-56 
normalize special functions. 8-67 
shift logic. 8-60 
sign extend logic. 8-63 
signal/magnitude twos complement function. 8-69 
single length normalization. 8-7 
slice significance select. 8-45 
status signals. 8-46 
three-address microcycle. 8-56 
two-address timing. 8-56 
twos complement divide function. 8-77 
twos complement multiply function. 8-73 
unsigned multiply. 8-72 

2909 output mask. 8-99 
2909/2911 

Address. 8-95 



data output. 8-99 
immediate data input. 8-95 
incrementer. 8-99 
instruction skip. 8-100 
jump. 8-100 
microprogram counter. 8-99 
multiple jump. 8-103 
output select. 8-95 
output zero control. 8-99 
sequential addresses. 8-99 
single instruction reexecution. 8-100 
stack. 8-100 
subroutine call. 8-102 
subroutine nesting. 8-103 

2910 
add ress output. 8- 11 0 
condition codes. 8-113 
data input. 8-110 
increment. 8-113 
instruction codes. 8-113 
microprogram counter. 8-110. 8-113 
microprogram initialization. 8-120 
microprogram jump. 8-120 
microprogram jump-to-subroutine. 8-120 
stack. 8-113 

2930 series 
accumulator. 8-125 
carry logic. 8-129 
Index register. 8-129 
instruction codes. 8-125 
Program Counter. 8-129 
Stack Pointer. 8-129 
Stack. Push. Pop. 8-129 

Z8000 
auto-increment. 6-18 
auto-decrement. 6-18 
base relative addressing. 6-15 
block transfer instructions. 6-40 
byte registers. 6-9 
conditional jump instructions. 6-40 
divide instruction. 6-38 
implied indexed addressing. 6-15 
implied memory addressing. 6-11 

xix 

indirect memory addressing. 6-18 
instruction fetch machine cycle. 6-23 
I/O instructions. 6-36 
LDPS instruction. 6-39 
M 1 and MO instructions. 6-41 
memory interface logic. 6-20 
memory read machine cycle. 6-23 
memory write machine cycle. 6-23 
multiply instruction. 6-39 
New Program Status Area pointer. 6-8 
normal mode. 6-3 
primary memory reference instructions. 6-37 
principal memory addressing modes. 6-37 
Program Counter 6-6 
Refresh Counter. 6-28 
secondary memory reference instructions. 6-37 
shift instructions. 6-41 
sixteen-bit registers. 6-9 
software traps. 6-32 
Special I/O instructions. 6-37 
stack. 6-18 
stack instructions. 6-41 
Stack Pointer. 6-3 
status. 6-6 
subroutine call. 6-40 
system call. 6-40 
system mode. 6-3 
thirty-two-bit registers. 6-9 
wait state. 6-23 

Z8001 
address representation. 6-3 
base address. 6-9 
long segmented base relative addressing. 6-17 
long segmented direct memory addressing. 6-13 
long segmented indexed addressing. 6-15 
program relative addressing. 6-18 
segmented mode. 6-7 
short segmented base relative addressing. 6-16 
short segmented indexed addressing. 6-14 

Z8002 
direct memory addressing. 6-12 
indexed addressing. 6-14 
program relative addressing. 6-17 
short segmented direct memory addressing. 6-13 
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