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INTRODUCTION

This is one of two books that replace An Introduction to Microcomputers: Volume 2 — Some Real Microprocessors. That
volume went through several printings and in 1978 was printed loose-leaf. Six bimonthly updates to the loose-leaf ver-
sion were published in 1979 and early 1980 to provide information on newly introduced microcomputer devices. The
loose-leaf version proved, however, to be quite unpopular with bookstores because of packaging and handling con-
siderations. It also became more and more difficult to maintain a timely flow.of the bimonthly updates. For these
reasons, Volume 2 is being replaced by two bound paperback books: the Osborne 4 & 8-Bit Microprocessor Handbook
and the Osborne 16-Bit Microprocessor Handbook. Together these handbooks include all of the information that was
contained in Volume 2 and the six updates. All known errors have been corrected and new data sheets have been
added to the two handbooks. We have divided Volume 2 into two separate handbooks because the single-volume ver-
sion would be over 1800 pages in length and rather difficult to bind. In addition, the devices lend themselves to this
grouping since the 16-bit microprocessors are generally much more powerful than the four- and eight-bit
microprocessors, and thus are directed toward different applications.

Volume 2 was part of a four-volume Introduction to Microcomputers series:

*  Volume O — The Beginner’s Book was written for readers who know nothing about computers.

«  Volume 1 — Basic Concepts provides a detailed explanation of microprocessor concepts including number
systems, addressing modes, typical instruction sets, input/output technigues, and so on. The device descrip-
tions in the 4 & 8-Bit Microprocessor Handbook and the 16-Bit Microprocessor Handbook assume that you
have a working knowledge of the general concepts presented in Volume 1, and we will occasionally make
references to material presented in Volume 1.

*  Volume 2 — Some Real Microprocessors, which is being replaced by these handbooks.

*  Volume 3 — Some Real Support Devices, which describes general support devices that may be used with
any microprocessor. Some dedicated support devices are the 4 & 8-Bit Microprocessor Handbook and the
16-Bit Microprocessor Handbook. We define a “dedicated” support device as one best used with its parent
microprocessor. We define a “general” support device as one that can be used with any microprocessor. We
will occasionally make reference in this book to some of the general support devices in Volume 3 When
designing a system based on one of the microprocessors described in this handbook, you should not auto-
matically assume that the dedicated support devices described in this book are the only ones or the best
ones to use with a particular microprocessor: you should always check the functionally equivalent parts de-
scribed in Volume 3. )

In addition to this Introduction to Microcomputers series, we have begun publishing other individual handbooks. The
first two handbooks of this series are: The 8089 //O Processor Handbook, which includes the 8289 bus arbiter, and the
CRT Controller Handbook, which describes five LS| CRT controller devices. This individual handbook approach will be
used in the future to maintain a convenient flow of detailed, objective information on new microprocessors and related
support devices.

SIGNAL CONVENTIONS

Signals may be active high, active low or active in two states. An active high signal is one which, in the high
state, causes events to occur, while in the low state has no significance. A signal that is active low causes
events to occur when in the low state, but has no significance in the high state. A signal that has two active
states will cause two different types of events to occur, depending upon whether the signal is high or low; this
signal has no inactive state. Within this book a signal that is active low has a bar placed over the signal name.
For example, WR identifies a ‘‘write strobe’’ signal which is pulsed low when data is ready for external logic to
receive. A signal that is active high or has two active states has no bar over the signal name.
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TIMING DIAGRAM CONVENTIONS

Timing diagrams play an important part in the description of any microprocessor or support device. Timing
diagrams are therefore used extensively in this book. All timing diagrams observe the following conventions:

1} A low signal level is equivalent to no voltage. A high signal level is equivalent to voltage present:

/

Voltage present

No voltage
2) A single signal making a low-to-high transition like this:

J

3) A single signal making a high-to-low transition is illustrated like this:

\ - low
4}  When using two or more parallel signals exist, the notation:

'/-—— signals change

high

low

high

states that one or more of the parallel signals change level, but the transition (high-to low or low-to-high) is
unspecified).

6) A three-state single signal is shown floating thus:

Signal
floating

6) A three-state bus containing two or more signals is shown floating thus:
floating
7) When one signal condition triggers other signal changes, an arrow indicates the relationship as follows:
Condition

here

Causes
change
here
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Thus a signal making a low-to-high transition would be illustrated triggering another signal making a high-to-low
transition as follows:

A signal making a high-to-low transition triggering a bus change of state would be illustrated as follows:

s

8} When two or more conditions must exist in order to trigger another logic event, the foliowing illustration is used:

These
conditions

cause
change
here

Thus a low-to-high transition of one signal occurring while another signal is low would be illustrated triggering a

third event as follows:
____\ R [___

\

9) When a single triggering condition causes two or more events to occur, the following illustration is used:

This
condition

causes
these
changes

xiii



Thus a low-to-high transition of one signal triggering changes in two other signal levels would be illustrated as
follows:

10) Allsignal level changes are shown as square waves. Thus rise and fall times are ignored. These times are given in
the data sheets which appear at the end of every chapter.

INSTRUCTION SET CONVENTIONS

Every microcomputer instruction set is described with two tables. One table identifies the operations which
occur when the instruction set is executed, while the second table defines object codes and instruction times.

Because of the wide differences that exist between one instruction set and another, we have elected not to
use a single set of codes and symbols to describe the operations for all instructions in all instruction sets. We
believe any type of universal convention is like to confuse rather than clarify; therefore each instruction set
table is preceded by a list of symbols as used within the table alone.

A short benchmark program is given to illustrate each instruction set. Some comments regarding benchmark
programs in general are, however, in order. We are not attempting to highlight strengths or weaknesses of
different devices, nor does this book make any attempt to comparative analyses, since the criteria which make
one microcomputer better than another are simply too dependent on the application.

Consider an application which requires refatively high speed processing. The only important cri- |COMPARATIVE
terion will be program execution speed, which may limit the choice to just one of the microcom- |ANALYSIS
puters we are describing.

Execution speeds of all of the microcomputers may, on the other hand, be quite adequate for a second application; in
this case, price may be the only overriding factor. In a third application, a manufacturer may have already invested in a
great deal of engineering development expense, using one particular microcomputer that was available in quantity ear-
lier than any others; the advantages or disadvantages of using a different microcomputer, based on minor cost of per-
formance advantages, will likely be overwheimed by the extra expense and time delays involved with switching in
midstream.

And what about benchmark programs? . BENCHMARK
PROGRAMS

There have been a number of benchmark programs in the literature, purporting to show the
strengths or weaknesses of one microcomputer versus another; individual manufacturers
have added to the confusion by putting out their own competing benchmarks, aimed at showing their product to
be superior to an immediate rival.

Benchmark programs are misleading, irrelevant and worthless for these reasons:

1) In a majority of microcomputer applications, program execution speed, and minor variations in program
length, are simply overwhelmed by pricing considerations.

2) Even assuming that for some specific application, program length and execution speed are important, trivial
changes in the benchmark program definition can profoundly alter the results that are obtained. This is one
point we will demonstrate in this book, while describing individual instruction sets.

3) Benchmark programs are invariable written by the smartest programmers in an organization, and they take
an enormous amount of time to ensure programming accuracy and excellence. This is not the level at which
any user should anticipate ‘‘run of the mill’’ programmers working; indeed, a far more realistic evaluation of
a microcomputer’s instruction set could be generated by giving an average programmer too little time in
which to implement an incompletely defined benchmark. This will more closely approximate the working
conditions under which real products are developed. Of course, defining the ‘‘average programmer,’” ‘‘too
little time’’ and an ‘‘incomplete specification’’ are all sufficiently subjective that they defy resolution.
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We will demonstrate the capriciousness of benchmark programs via the following benchmark program:

Raw data has been input to a general purpose input buffer, beginning at IOBUF. This raw data is to be moved to
a permanent table, which may be partially filled; the raw data is to be stored in the data table starting with the

first unfilled byte. The benchmark may be illustrated as follows:

I0BUF

Filled

Fill

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type. This has been done to help you
skip those parts of the book that cover subject matter with which you are familiar. You can be sure that
lightface type only expands on information presented in the previous boldface type. Therefore, only read boldface
type until you reach a subject about which you want to know more, at which point start reading the lightface type.
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Chapter 1 |
- THE NATIONAL SEMICONDUCTOR
PACE AND INS8900

PACE was developed by National Semiconductor as a single-chip implementation of its multi-chip IMP-16.
Since it was the first 16-bit, single-chip microprocessor, PACE is the first 16-bit microprocessor described in
this book. ‘ : ‘

As mfght be expected of an early entry product, PACE had a number of problems — both in design and fabrication
technology — which limited its acceptance. Therefore the INS8900 was recently introduced by National Semiconduc-
tor. The INS8900 is a redesigned, NMOS PACE, with internal logic problems resolved.

In this chapter we will describe both PACE and the INS8900. Specifically. we will identify the problems faced by a
PACE user, which have been eliminated in the INS8300.

PACE and the INS8900 are 16-bit microprocessors because they handle data in 16-bit units. In many ways, however.
the internal architecture of PACE and the INS8300 have an 8-bit orientation:; this is something you should keep in mind
while reading this chapter, because it does result in PACE and the INS8900 having program execution speeds that are
comparable to. rather than being significantly faster than, thé 8-bit microprocessors we have described in earlier chap-
ters. :

The only current manufacturer for PACE and the INS8900 is:

NATIONAL SEMICONDUCTOR, INC.
2900 Semiconductor Drive
Santa Clara, CA 95050

There are agreements between Rockwell International and National Semiconductor and between Signetics and
National Semiconductor to exchange microcomputer technical information and to produce each other's products. At
the present time, neither Signetics nor Rockwell International has elected to second source PACE or the INS8900, and it
is extremely unlikely that they will since both PACE and the INS8900 are products with limited futures. The amount of
support that National Semiconductor provides is rapidly declining as newer, more powerful 16-bit microprocessors
enter the marketplace.

As shown in Figure 1-1, a typical PACE microcomputer will consist of a mixture of special-purpose PACE support
devices and standard devices. The PACE microcomputer devices described in this chapter consist of:

« The PACE CPU
+ The System Timing Element (STE), which generates clock signals for PACE and the system.

- The Bidirectional Transceiver Element (BTE), which converts the MOS-level PACE signals to TTL-level signals
for other devices. The BTE is 8 bits wide.

The INS8300 needs a clock generator; a 2 MHz crystal and a 74C04 inverter are recommended. Otherwise, there are no
special INS8900 support devices; in fact. you can easily use any NMOS support devices described in Volume 3
with the INS8900. Specifically. the STE and BTE devices cannot be used with the INS8300, because they provide
MOS-to-TTL signal level conversions for PACE

PACE requires +5V. +8V and -12V power supplies. The +8V is a substrate vcitage require- | PACE/INS8900
ment of the CPU and can be derived from the +5V power using a few discrete components. | POWER SUPPLY
Therefore. a system can be implemented using only two primary power supplies: +5V and EXECUTION
-12V. The INS8900 also uses three power supplies: +12V, +5V and -8V. SPEED

The INS8900 uses a 500 nanosecond clock to provide typical instruction execution times in the range of 8 to 20
microseconds. PACE (IPC-16A/520D) uses a 750 nanosecond clock to provide typical instruction execution times in
the range of 12 to 30 microseconds.
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Before making direct comparisons of these instruction execution times with those of other devices. however. note
carefully that because of the 16-bit architecture of PACE and the INS8300, it may take many instructions.on another
microcomputer to perform the same operations as a single INS8900/PACE instruction.

MOS level signals are input and output by PACE. TTL level signals are input and output by the | PACE/INS8900
INS8900. LOGIC LEVEL

P-channel silicon gate, MOS/LSI technology is used with PACE. N-channel MOS technology is
used by the INS8900.

PACE AND INS8900 MICROCOMPUTER SYSTEM OVERVIEWS
Figure 1-1 conceptually illustrates a PACE system. Figure 1-2 conceptually illustrates an INS8900 system.

As with any mini- or microcomputer system, the CPU outputs data, address, and control signals. In the case of
PACE and the INS8900, the data and address signals use the same bus lines; therefore, they are said to be
multiplexed.

Timing signals needed by PACE are generated by the System Timing Element (STE). | SYSTEM TIMING
PACE signals are all MOS level; the STE therefore generates two sets of timing signals; | ELEMENT (STE)
one set are MOS level for PACE, the other set are TTL level for external logic. BIDIRECTIONAL

Since PACE signals are MOS level, Bidirectional Transceiver Elements (BTEs) must be | TRANSCEIVER

present to translate outgoing signals from MOS to TTL levels, and to translate incoming | ELEMENT (BTE)
signals from TTL to MOS levels. BTEs are quite indiscriminating in the signals they translate;
in either direction, any signal arriving at an input pin is faithfully reproduced at the corres-
ponding output pin. Control signal options allow a BTE to operate bidirectionally. to drive output signals only, or to
place both the MOS and TTL outputs in a high-impedance mode. Since the BTE is 8 bits wide, two BTEs operating
bidirectionally provide buffering for the 16-bit Address/Data Bus. A third BTE, operating in the drive-only mode, pro-
vides buffering for the PACE control signals (NADS, ODS, IDS, and Flags).

A complete TTL level bus is created by combining BTE outputs with the TTL level timing ]| TTL LEVEL
signals output by the STE. Remember, though, that the 16 address/data lines are multiplexed. | PACE BUS
External logic that can demultiplex these lines and that can respond to the PACE timing and con-
trol signal logic can connect directly to the TTL level address/data lines. For example, National Semiconductor provides
ROM and RAM devices with on-chip address latches; these devices can interface directly to the TTL level bus.

If memory devices or I/O ports are used that cannot demultiplex the address/data lines. you must | ADDRESS
provide separate logic to perform this function. No special PACE family devices are available for | LATCHES
this purpose; however, standard logic devices can be used. For example. two hex flip-flop devices | AND

and a quad flip-flop device would provide a latched 16-bit Address Bus. Two 8212 1/0 ports could | DECODERS
also be used to latch the 16 bits of address information. The PACE Address Data Strobe (NADS)
signal can be used as the CLK input to the flip-flops or as the STB input to the 8212s. The PACE Address Data Strobe
(NADS) signal can be used as the CLK input to the flip-flops. In many systems this is the most effective approach since
a latched Address Bus allows you to use simpler address decoding technigues to generate memory chip enable and |/0
port select signals.

Figure 1-2 illustrates an INS8900 microcomputer system. Logic is quite elementary — and equivalent to that
which you would expect with any other microcomputer. Control Bus, Data Bus, and Address Bus lines are buffered
using INS8208 bidirectional buffers. These are National Semiconductor standard catalog devices. recommended by
National Semiconductor and illustrated in their literature; however, any other buffer would do equally well. The
Data/Address Bus is shown being demultiplexed by 8212s to create separate Data and Address Busses. This again is
straightforward logic.
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Figure 1-1. A National Semiconductor PACE Microcomputer System
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INS8900 PROGRAMMABLE REGISTERS

The INS8900 (and PACE) has four 16-bit Accumulators and a 16-bit Program Counter; these registers may be il-

lustrated as follows:

ACO
AC1
AC2
AC3

Primary Accumulator
Secondary Accumulator
Secondary Accumulators
and Index Registers
Program Counter

Accumulator ACO may be likened to a pnmary Accumulator as described for our hypothetical microcomputer in

Volume 1.

Accumulator AC1 is a secondary Accumulator.

Accumulators AC2 and AC3 are equivalent to a combination of secondary Accumulators and Index registers.

Recall from Volume 1, Chapter 6 that an Index register differs from a Data Counter in that the Index register contents
are added to a displacement (which is provided by a memory reference instruction) in order to determine the effective

memory address.

The Program Counter serves the same function in an INS8900 system as it does in our hypothetical microcom-

puter described in Volume 1.

Figure 1-3 illustrates that part of our general microcomputer system logic which has been implemented in the

INS8900 microprocessor.
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Figure 1-3. Logic of the INS8300 Microprocessor

INS8900 STACK

A Stack is provided on the INS8900 (and PACE) chip. The Stack is 16 bits wide and 10 words deep. The Stack is
not a cascade stack, as described in Volume 1. Chapter 6; rather. chip logic maintains its own Stack Pointer to identify
the next free Stack word. The Stack Pointer is automatically incremented and decremented in response to Push and
Pull operations. Stack Push and Pull operations are initiated by CPU logic during execution of Jump-to-Subroutine
(JSR) and Return-from-Subroutine (RTS) instructions, and during interrupt processing. to automatically save and
restore the Program Counter.

In addition. the Stack can be used for temporary storage of data or status information. There are instructions
which allow you to transfer words between the Stack and any Accumulator. or the Status and Control Flag register.
This capability can significantly reduce the number of memory accesses required (thus increasing system speed) and
can also reduce read/write memory requirements since intermediate values can be stored on the Stack.

Whenever the Stack becomes completely filled or emptied, an Interrupt Request is § INS8900 AND
generated on the INS8900 chip. If you have enabled Stack Interrupts, program execution will § PACE STACK
be suspended. allowing you to deal with the situation. A Stack Full condition will indicate that | INTERRUPTS
it is time to dump data accumulated on the Stack out to read/write memory.
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INS8900 AND PACE ADDRESSING MODES

Most INS8900 (and PACE) memory reference instructions use either direct or direct, indexed addressing. A few
instructions also offer indirect addressing and pre-indexed, indirect addressing. Refer to Volume 1, Chapter 6 for a
description of these addressing modes.

All memory reference instructions have the following object code format:

1514131211109 8 7 6 5 4 3 2 1 0O ~=— Bit No.

Lt el TETTITT]
i

Address displacement

Addressing mode selection
00 = Base Page address
l 01 = Program relative address

10 = Indexed (AC2-relative)
11 = Indexed (AC3-relative)

Instruction operation code

The 2-bit XR field lets you specify with each instruction the type of direct addressing you want used: base page. pro-
gram relative or indexed (AC2- or AC3-relative). Since the address displacement is an 8-bit field in the instruction word,
direct addresses are paged and each page consists of 256 words. Indexed and paged addressing variations have been
described in Volume 1, Chapter 6.

In addition, the INS8900 {and PACE) offers a variation of base page addressing, which is | INS8900 AND
not described in Volume 1, Chapter 6. There.is a control input signal (BPS) which allows | PACE SPLIT
the base page to be split between the top and bottom 128 words of memory, as follows: | BASE PAGE

Normal Base Page MEMORY  Split Base Page

through FF,, 007F

0OFF

. 0000 0000
Displacement =00 { Base Page } Displacement = 00 through 7F

FF80 Displacement = 80 through FF
Base Page i Frequently these addresses are
FFFF i
. reserved for external devices

BPS high splits the base page; BPS low keeps the base page as the bottom 256 words of
memory.

Depending on how an INS8900 system has been configured, the base page may be permanently defined as split or as
normal; or the base page may be varied between the two options under program control. There are a number of output
control flags (which are described next) that may be set or reset under program control. If one of these flags is con-
nected to the base page select pin. then setting or resetting this flag determines which base page option will be in
effect:

PACE Pin 28 (BPS)

Pin 22 (F14)
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Splitting the base page between the top and bottom of memory is useful in an INS8900 microcomputer system
because it simplifies external device addressing. If we reserve all memory addresses in the range FF801g - FFFF{g for
external devices, then external logic merely has to AND the top nine bits of an address and thus determine if an exter-
nal device {rather than a memory location) is being addressed:

151413121110 9 8 7 6 5 4 3 2 1 ( ~s—3BitNo

LD g [ xpxgxgxxgx]

M

8 or higher

If these nine bits are all 1, then an
external device is addressed

Splitting the base page also makes it easy to implement half of the base page in ROM, leaving the other half in RAM.

To a programmer, this scheme provides an easy way of generating 128 external device }INS8900/PACE
addresses. If the split base page option is in effect. then base page. direct addressing can be | SPLIT BASE
interpreted as external device addressing. so long as the high-order bit of the displacement is | PAGE TO

1: ADDRESS /0

Memory Reference instruction code

Displacement

15141312 1110 9 8 ' 7 6 5 4 3 2 1 Q —as— Bit No:

LI TP Ddrl TITTIIT]

Becomes |/0 instruction if there is a 1 here and
split base page is being used to address 1/0

00 specifies
Base Page addressing

The base page and program relative options do not apply when the displacement is part of a § INS8900/PACE
direct, indexed address. When indexed addressing is specified, the INS8900 adds the con- | DIRECT INDEXED
tents of the displacement, as a signed binary number, to the contents of the identified } ADDRESSING
Index register (AC2 or AC3). The sum becomes the effective address. Here are some ex-
amples:

Index Register ) Displacement

Contents Value Effective

213A ac,, 213A
004C
2186

Propagated Sign Bit

213A

213A, Ca,, FFC4
20FE

Observe that the high-order bit of the displacement, being a sign bit. is propagated through the missing high-order dis-
placement byte.

Instructions that allow indirect addressing simply superimpose indirect addressing logic on the preceding direct
address generation logic. For example. if indirect addressing without indexing is specified. then a base page or pro-
gram relative direct, address will be computed in the normal way, but the effective address is contained in the memory
location identified by the direct address.
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This illustration shows base page. indirect addressing; arbitrary memory addresses are used to make the illustration

easier to understand:

Memory e 0000

Address 0001
0043

0044

DISP =45 ——&= 0045
0046

0047

2178

2179

Effective = 217A
Memory 2178
Address 217C

This illustration shows program relative. indirect addressing. aga

Memory = OFDC

Address OFDD
OFDE
OFDF
OFEO
DISP = 90, (= '6310) 1040
1041
1042
Program Counter ————am-\ 1043
2178
2179
Effective =3 217A
Memory 2178
Address

MEMORY

217A

Base page word addressed directly

This word addressed indirectly

MEMORY

in using arbitrary memory addresses:

217A

Program relative, direct addressed word

This word addressed indirectly
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If indirect addressing with indexing is specified. then a direct address is first computed by adding the displacement, as
a signed binary number, to the contents of the specified Index register; the direct indexed address thus computed pro-
vides the memory location where the indirect address will be found. This is illustrated as follows:

MEMORY
Memory ==~ OrpC
Address OFDD
OFDE
AC2 = 1042 , ———= OFDF 217A Direct, indexed addressed word
DISP =9D, OFEO
1042 + FFID = OFDF

extended sign bit
2178
2179

Effective ———m 217A This word addressed indirectly
Memory 2178
Address 217C

INS8900 AND PACE STATUS AND CONTROL FLAGS

The INS8900 has a 16-bit Status and Contro! Flag register. This register is on the CPU chip and is illustrated as
follows:

ol INT
EXIT § F14 | F13 | F12 | F11 |BYTE} gy | UNK]| CRY | OVF | 1E5 | 1E4 | IE3 | IE2 | IET | "V

8383 88880

F13  F12 NIR5 NIR4 NIR3 NIR2

numbers

Fourteen of the 16 register bits are used. Three of the 14 bits are status flags as we define a status flag. These
three flags are:

Overflow (OVF), which is a typical Overflow status.
Carry (CRY), which is set and reset by arithmetic operations. as described for a typical Carry status.

Link (LINK), which is set and reset by Shift and Rotate instructions, as described for the hypothetical microcom-
puter’s Carry status in Volume 1, Chapter 7.

The separation of Carry into two statuses, one for shift and rotate operations, and the other for arithmetic
operations, is a fairly common minicomputer feature; the advantage of separating these two statuses is that the
results of arithmetic operations can be preserved across subsequent Shift and Rotate instructions.

BYTE causes data to be accessed in 8-bit lengths when this status is set to 1, or in 16-bit lengths when this status is
set to 0.

Five bits (IE1 through IE5) are reserved for interrupt processing. These five bits selectively enable and disable five
interrupt lines. One of these lines (IE1) is reserved for the Stack Overflow interrupt, the other four lines are available for
external device interrupt requests. There is also a master interrupt enable and disable bit (INT EN).

Bits F11, F12, F13 and F14 are control flags which are output directly to INS8900 and PACE device pins; they can
be used in any way to control external devices. One use, to select normal or split base page addressing. has already
been described.

Only the three status flags OVF, CRY and LINK are automatically set or reset in the course of instruction execu-
tion. The remaining 11 bits of the Status and Control Flags register are set and reset by instructions or instruction se-
quences that read data into, or write data out of. the Status and Control Flags register.
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INS8900 AND PACE CPU PINS AND SIGNALS

Pins and signals are illustrated in Figure 1-4 for the INS8900 and PACE devices. There | INS8900
are some small differences between the two sets of pin outs. These differences are | AND PACE
shaded in Figure 1-4. Within the shaded areas, the INS8900 signal is shown closest to the ar- | SIGNAL
row. The PACE signal is shown in brackets further out. Here is a summary of pins that differ: | DIFFERENCES

Pin INS8900 PACE

Number Signal Signal

20 GND Vgg (+5V)

23 Vgg (-8V) vpg (+8V)

24 CLKX NCLK

25 Vee (+5V) CLK

29 Vpp (+12V) Vg H12v)

The pin out differences between PACE and the INS8900 are not surprising. Since PACE uses P-channel MOS tech-
nology. while the INS8900 uses N-channel MOS technology. we would expect power supply differences. Also. the
INS8900, being a newer product. requires just one clock signal input {CLKX), compared to the two required by PACE

(CLK and NCLK}.

Let us examine the pins and signals in detail.

D04 ~——d-g 1 40 jes——3= D05
DO3 ~S—— ) 2 39 fet—3— D06
D02 - 3 38 je—3> D07
D01 ~——p-i 4 37 jt—=— D08
D00 ~—i & 36 [ D09
IDS ~f——g 35 jele—— D10
ODS ipeed 7 34 jeag——p— D11
NADS e 8§ 33 [ D12
NHALT —e————a=] g 32 jps——3— D13
CONTIN <ty 10 INS8900 31 p-t— D14
JC14 g 11 CcPU 30 jpt—- D15
JC1§ =——d=F 12 28— vgg-12V)
JC13 et 13 28 |- BPS
NIRS wwwsemege-i 14 27 jg———= EXTEND
NIR4 o1 15 26 [lpem—— NINIT
NIR3 et 16 25 et /o (+5V) (CLK)
NIR2 =g 17 24 g CLKX (NCLK)
F11 e 18 23 e Vgg (-8v) (Vgg ( +8V))
F12 atpoedl 19 22 b F14
Vggl + 5vIVgsGND | 20 21 oy F13
PIN NAME DESCRIPTION TYPE
CLKX (CLK, NCLK) Clock Lines Input
*D00 - D15 Data/Address Lines Tristate, Bidirectional
*IDS Input Data Strobe Output
*0DS Output Data Strobe Output
*NADS Address Data Strobe Output
*EXTEND Clock Delay Input
*NINIT CPU Initialize Input
*NHALT Stop CPU Bidirectional
*CONTIN Continue Jump Condition Bidirectional
*BPS Base Page Select Input
*JC13 -JC15 Control Flags Output
*F11-F14 Control Flags Output
*NIR2 - NIRS Interrupt Requests Input
Ve VGG Vss. Ve Power and Ground Lines Input
*JC13-JC15 Jump Conditions Input
*These signals connect to the System Bus.

Figure 1-4. INS8900 and PACE CPU Signals and Pin Assignments
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There are 16 data and address lines (DO - D15), which are multiplexed for data input, data output and address
output. Two control lines, ODS and NADS, identify output on the data and address lines as either data (ODS) or
addresses (NADS). A further control line, IDS, is used to strobe data input.

The EXTEND control input is used by slow memories or external devices to lengthen an instruction’s execution
time by increasing the duration of a data input/output cycle: this extends the time available for memories or external
devices to capture data output, or to present input data.

The NINIT input control initializes PACE; the Program Counter is set to 0. The Stack Pointer, the Stack and the Status
and Control Flags register are cleared.

BPS has already been described; it is used to select either normal or split base page, for base page direct ad-
dressing.

NHALT is a bidirectional control signal used by interrupt and halt logic. As an input, NHALT can induce a Halt state,
or in conjunction with CONTIN, it can generate a level O (highest priority) interrupt request. When the CPU executes a
Halt instruction. NHALT is output high to identify the Halt state. The various uses of NHALT and its interaction with
CONTIN are described in detail later in this chapter.

The CONTIN signal is used to terminate a Halt condition and is also used as an output interrupt acknowledge
signal. When CONTIN is properly sequenced with the NHALT signal, it initiates a high priority interrupt, as we men-
tioned in the preceding paragraph. CONTIN can also be used as a Jump condition input in the same way as JC13, 14
and 15, which are described next.

JC13, 14 and 15 provide an interesting capability found in very few microcomputers discussed in this book: the con-
dition of these three inputs can be tested by a Branch-on-Condition (BOC} instruction, thus allowing external con-
trol signals to directly manipulate PACE program instruction sequences.

F11, 12, 13 and 14 are the outputs for the corresponding flag bits in the Status and Control Flags register.

NIR2, 3, 4 and 5 are the external interrupt request lines. {nterrupt priority arbitration logic is included on the
INS8900 (and PACE) chip. NIR2 has the highest priority of the external interrupt lines, and NIRb has the lowest priority.

INS8900 AND PACE TIMING AND INSTRUCTION EXECUTION

PACE uses a combination of two clock signal inputs to time events internally within the § PACE
microprocessor CPU. The clock signals and the resultant internal clock phases can be illus- | CLOCK
trated as follows: SIGNALS

One Machine Cycle o

One Clock Period One Clock Period One Clock Period One Clock Period

Internal Clock

T Ty T3 T4 Ts Ts Ty Tg
Phase

-

z
[e]
[
=



The INS8900 clock logic has been simplified. A single, uniform clock signal generates all timing as follows:

st One Machine Cycle s
One Ciock Period One Clock Penod One Clock Period One Clock Period
T T2 L] Ta Ts Te T7 Tg

Several points should be noted regarding INS8900 and PACE timing. The internal clock phases J INS8900
(T1 through T8) are meaningless to external logic since they are not accessible, nor are they | AND PACE
needed for any external synchronization purposes. We have shown them merely because they § MACHINE
will simplify later discussions of data input/output operations. Four clock periods constitute a | CYCLE
single machine cycle. Most instructions require between four and seven machine cycles for ex-
ecution.

So far as external logic is concerned, there are only three types of machine cycles which can | INS8900

occur during execution of an instruction: AND PACE
1) A data input operation (read) during which external logic must present a word of data to the ?:IIYI::(:.:INE
CPU. TYPES

2) A data output operation {write) during which the CPU transmits a word of data to external
logic.
3) An internal operation during which no CPU-initiated activity occurs on the System Bus.

All instructions include one or more data input machine cycles, and two or more internal operation machine cy-
cles. Only a few instructions include data output machine cycles. The first machine cycle of any instruction’s execution
must, of course, be an instruction fetch operation — which to external logic is simply a data input cycle. Let us
therefore begin by examining the data input machine cycle.

Figure 1-5 illustrates timing for a standard data input machine cycle. Notice that the address | INS8900 AND
is only present on the data lines for the first portion of the machine cycle. The NADS signal is sent | PACE DATA
out approximately in the center of the time interval during which the address data is valid; §INPUT CYCLE
therefore, either the leading edge or trailing edge of NADS can be used to clock the address data.
The IDS signal is sent out at about the same time as the address information is taken off the data lines — well before
the time when input data is expected by the CPU. This gives external logic time to prepare the input data. The input
data needs to be valid only for a short time interval later in the machine cycle. Exact timing is given in the data sheets
at the end of this chapter.

Internal Clock T4 T T3 Ta Ts T T7 Tg T T2
Phase

D00-D15 | 1ddress Data Output Valid
) i | ! ]
I
|
I
1
]
|

NADS

| W A

T

DS

\
!

Figure 1-5. INS8900 and PACE Data Input Timing



Figure 1-6 illustrates timing for a standard data output cycle. The address-output portion of
the cycle is identical to that of the data input cycle just described; the ODS signal is sent out at
the same part of the cycle as IDS was. At approximately the same time that ODS is sent out. the
output data word is placed on the data lines. The output data remains valid beyond the end of the
ODS signal so that the trailing edge of ODS can be used as the clock for external data latches.

INS8900 AND
PACE DATA
OUTPUT
CYCLE

internal Clock

AE] T2 T3 T4 Tg Te T7 Tg T Ty
Phase
| | i |
D00 -D15 kddress Data Output Valii Output Data Valid x
] 1 ! | ! 1 ] ] 1 1 1
| r
] T T ) T
NADS | | b I\ \ ’ 1 b i X 1 .
| 1 1 1 1 ! ! | I ! 1
| | 1 [ 1 ! + + 1 1
obs | L 1 | 1 I 1 1 l | !
t 1 | 1 1 1 1 | 1 ] 1
1 1 | 1 | 1 1 1 | | !

Figure 1-6. INS8900 and PACE Data Output Timing

The data input/output cycles just described allow approximately two clock periods for ex- } INS8900 AND
ternal logic to respond. If this time interval is too short, the EXTEND signal input to the CPU | PACE EXTEND
can be used to lengthen the 1/0 cycle by multiples of the clock period (one clock period equals | SIGNAL FOR
two internal clock phases). The EXTEND signal can be placed high during address time or im- | SLOW 1/O
mediately after the start of IDS or ODS, but it must be high before the end of internal clock | OPERATIONS
phase 6 as shown in Figure 1-7.
One Clock One Clock
Period Period Extension
T2 T3 T4 15 T6 T7 T8 E E T T2

] | | I I Input Data
D00 - D15

|
' .
{For Input Cycle) ’___J Address Data Out l Valid I

D00 - D15
(For Output Cycle) jum

| I ] : 1 I ] '
| Output Data Valid

| 1
I Address Data Out
] ]

e - -

| : 1 ] i |

1 1 1 | | ! | | I
ﬁ ] N 1 1 1 [ 1 1
NADS | ' IL'J | 1 | i i | i
! ' | ! ] [ ] ] ] ] |
1DS/0DS | \ | ' y [ 1 ] 1 \ | :
L Y Y T 1 ! | 1 | h
' | 1 1 (IS dim | 1 i i !
exteno! Y B U - ' , I
! ] 1 ro— | ' r + +
1 | | i

Figure 1-7. Using the EXTEND Signal to Lengthen 1/O Cycles

The timing shown in Figure 1-7 provides the minimum 1/O cycle extension of one clock period.




The maximum extension permitted by PACE is 2 microseconds; so with a clock period of 750 nanoseconds. this
means that only two clock period extensions can be added to an input/output cycle. The second clock period extension
is achieved by holding the EXTEND signal high for one additional clock period beyond the timing shown in Figure 1-7.
The INS8900 has no maximum permitted extension.

Notice that the EXTEND signal does just what its name implies; it simply extends the duration of the data transfer por-
tion of an I/0O machine cycle. The trailing edge of the IDS or ODS signal is delayed and. for data input, the time until
valid input data must be present is delayed. On data output cycles, the valid data is simply maintained on the data lines
by the CPU for an extended period of time.

The EXTEND signal can also be used to suspend CPU input activity. This use of EXTEND will be described later
under the heading of Direct Memory Access.

THE INITIALIZATION OPERATION

A NINIT low signal input to the CPU initializes the microprocessor. The NINIT signal is the equivalent of the Reset
signal described for other microcomputers in this book. While NINIT is held low, CPU operations are suspended; IDS
and ODS are reset low. NINIT must be held low for a minimum of eight clock periods to give the CPU time to respond.
After NINIT goes high again. this is what happens:

1} The internal Stack Pointer is cleared.

2) All flags and interrupt enables are set low (except Level O Interrupt Enable which is set high).

3) The Accumulators contain arbitrary values.

4) The Program Counter is set to zero.

5) 16 to 24 clock periods after NINIT returns high, the NADS signal is output high. The first instruction is thus fetched
from memory location zero (00001g).

Figure 1-8 illustrates the timing for the initialization operation. Note that the NINIT signal is shown going low after
power and clocks are both stable. The NINIT signat must be applied whenever the CPU is powered-up; if NINIT is held
low before clocks and/or power have stabilized, the NADS and NHALT output signals may have undefined states for
eight clock pulses after the trailing edge of NINIT.

Power and Clocks Stabilized

o tios 222224

8 Clock Periods

, }a——— 16 t0 24 Clock Periods ————=|
zzzzzA4
IDS/0DS \

:

Begin to:fetch instruction from
memory address 0000,

Figure 1-8. INS8900 and PACE Initialization Timing

THE HALT STATE AND PROCESSOR STALL OPERATIONS

Most microprocessors described in this book have a Hold state, which typically describes a CPU condition dur-
ing which there is no CPU-initiated activity on the System Busses; external logic can then perform Direct
Memory Access operations. The INS8900 and PACE CPUs have an equivalent state that can be initiated under pro-
gram control or by external logic. When this state is initiated under program control (by executing a Halt instruc-
tion) INS8900 and PACE literature calls it the Halt state; when initiated by external logic, it is called a Pro-
cessor Stall.

During normal program execution. the CPU NHALT control line provides a high output. When a | INS8900 AND
Halt instruction is executed, the NHALT output is driven low to indicate that CPU activity is sus- | THE PACE
pended. While in the Halt state, the NHALT output has a 7/8 duty cycle; thatis. every eighth clock | HALT STATE
phase, the NHALT output goes high. If the NHALT output is merely used to drive an indicator on a




control panel, this 7/8 duty cycle is of little concern; but, if the NHALT signal is used as a logic signal. the 7/8 duty cy--
cle must be accounted for. The Halt state is terminated by setting the CONTIN input signal high for a minimum of
16 clock cycles, and then resetting it low for at least four clock cycles, as shown in Figure 1-9.CPU operation
then resumes by executing the next instruction, that is, the instruction that follows the Hait instruction.

Cycles |

L
CONTIN 9 Jr—
_ / Lo F——-m Clock CYclesMnmmum———»E’I‘
|

(Input) - »
Jst——indefinite Duration —zm
| | I

| Halt instruction executed CPU operation resumes |
\

|

NHALT ) r\

{Output) | - 6 n { G 5
I . |
I 1 Machine |

cycle 4 Clock

l
|

Figure 1-9. Terminating INS8900 or PACE Halt State

As we have just seen, the PACE NHALT and CONTIN signals are interrelated. We men- fNHALT AND CONTIN
tioned earlier that these signals are also multifunctional. We will describe separately |SIGNALS ARE

each of the functions that can be implemented with NHALT and CONTIN. Do not use | MULTIFUNCTIONAL
these signals to implement more than one function unless your application absolutely
requires the additional functions. Critical and complicated timing relationships are required by the CPU to differenti-
ate between various functions. For PACE. but not the INS8900, timing is further complicated by some circuit problems
in the CPU’s interrupt system, which we will describe later.

The INS8900 and PACE CPU can be forced into the Halt state by external logic. INS8900 | INS8900
and PACE literature defines this operation as a Processor Stall. A Processor Stall uses both | AND PACE
NHALT and CONTIN as control signal inputs. Figure 1-10 shows the timing sequence re- } PROCESSOR
quired. The NHALT input must be driven low by external logic to initiate the sequence. CPU § STALL
operation is then suspended after execution of the current instruction is completed. The minimum
response time is five clock cycles. The maximum response time is equal to the longest instruction execution time (refer
to Table 1-2 ). There is no maximum time limit for a Processor Stall. The CPU simply remains in the Halt state until it is
terminated by the CONTIN input signal. which must be properly sequenced with the removal of the NHALT input. as
shown in Figure 1-10..

Let us take another look at the beginning of the Processor Stall timing sequence. Notice } PROCESSOR STALL
that when the CPU has completed the current instruction and recognized the stallre- | AND LEVEL O
quest, the CONTIN output signal is briefly driven fow by the CPU. This pulse is referred | INTERRUPT

to as ACK INT (Acknowledge Interrupt) and can be used to let external logic know that the .| SIMILARITIES

CPU is responding to the stall request. It may seem inappropriate for the CPU to provide an
Acknowledge Interrupt response when we are initiating a Processor Stall. However, as we shall see later in this chapter,
aLevel O Interrupt request begins with exactly the same timing sequence as a Processor Stall; in fact, the reac-
tion of the CPU is the same for both operations until that point in the sequence where NHALT goes high.
Therefore. the initial response of ACK INT is always sent out after NHALT is driven low.

DIRECT MEMORY ACCESS OPERATIONS

At the beginning of our Halt state and Processor Stall discussion we mentioned that these are the equivalent of Hold
states provided by other microprocessors. But there are some significant differences between the INS8900 and
PACE Halt state, and the Hold state described for other microprocessors in this book. Because of these
differences, Direct Memory Access operations with PACE or the INS8900 are not straightforward.

The INS8900 and PACE CPUs never float their Data or Control Busses. But remember that the | FLOATING
design of any realistic INS8900 or PACE system is going to require buffer/drivers for the data lines | INS8900
and control signals. The BTE. which.is part of the PACE microcomputer family. performs this | AND PACE
buffering function. SYSTEM
BUSSES

Any bidirectional three-state buffer can be used to float INS8900 bus lines. In Figure 1-2,
INS8208 devices are shown performing this function. Thus it is the control signals input to the
BTE by PACE or to the INS8208 by the INS8900 that actually float bus lines at the proper time, in order to allow DMA
operations.
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Figure 1-10. Timing Diagram for Processor Stall Using

NHALT and CONTIN Signals

But we must have a way of determining whether the CPU is going to be using the System Busses. There are
several methods of making this determination; we will conceptually examine each of them within the context of three

different DMA schemes:
1)
2)

3) Cycle-stealing DMA transfers

From a hardware point of view, the simplest method of implementing DMA in a PACE or
INS8900 system is to have the CPU initiate block transfers of data. Consider the following
approach. The CPU will treat an external DMA controller as a peripheral device and will estab-
lish initial conditions such as starting address, word count, and direction (memory read or
write). This information can be passed to the controller by treating its registers as memory

DMA block data transfers initiated by the CPU
DMA block data transfers initiated by external logic

CPU

INITIATED

DMA BLOCK
DATA TRANSFERS

locations and using Store instructions to write into the registers. When the required information has been passed. the
CPU simply executes a Halt instruction. As we described earlier, when a Halt instruction is executed, the NHALT
control output line from the CPU is driven low (7/8 duty cycle). This signal could thus be used by the DMA con-
troller as an indication that the CPU will not be using the System Bus and the DMA transfer can begin. When the
transfer is completed, the DMA controller will use the CONTIN input to the CPU, as shown in Figure 1-9, to
terminate the Halt instruction. Normal CPU operation will then resume.




Most microprocessors have a Bus Request input signal that can be used by external logic to re-
quest access to the System Busses. In a PACE or INS8900 system, the NHALT input signal
can be used to force the CPU into a Processor Stall, as described earlier, and thus free
the System Busses for DMA operations. The Acknowledge Interrupt (ACK INT) pulse on
the CONTIN output line shown in Figure 1-10 is then equivalent to a Bus Grant signal,
and the DMA controller may begin the data transfer. When the transfer is complete, the
CONTIN line is used as a control input line to the CPU to terminate the Processor Stall.

DMA BLOCK
DATA TRANSFERS
INITIATED BY
EXTERNAL LOGIC
IN PACE AND
INS8900
SYSTEMS

Cycle-stealing DMA operations typically transfer a single word via the System Busses during a
- brief interval when the CPU is not using the busses. With this method, CPU operations need
not be stopped: instead. they are only slowed down slightly, or in some cases not affected at
all. In order to implement cycle-stealing DMA, external logic must have a way of detect-

CYCLE-STEALING
DMA IN PACE
AND INS8900
SYSTEMS

ing those time intervals when the CPU will not be using the System Busses. There are
two ways that this can be accomplished with the INS8900 or PACE CPU. The first method involv

es the use of the EX-

TEND input signal to the CPU to suppress or suspend input/output operations; the second method uses a special tech-

nique to sense when the CPU is beginning an internal (non-1/0) machine cycle.

Earlier we described how to use the EXTEND input signal to lengthen the CPU inpu‘t/output cy-
cles. The EXTEND signal can also be used to prevent the CPU from beginning an 1/0 cycle, and
thus ensure that the System Busses will be available to external devices for DMA operations.

Figure 1-11 illustrates both uses of the EXTEND signal. The CPU looks at the EXTEND input sig-
nal at internal clock phases. T1 and T6. Notice that during I/O cycles the IDS or ODS signal goes
high at the beginning of T6 and low at the beginning of T1. If EXTEND is high during T6, then ex-
tra clock cycles are inserted after T8; this is the method that would be used to lengthen an 1/0 cy-

EXTEND USED
TO SUSPEND
INS8900 AND
PACE 1/0
DURING DMA
OPERATIONS

cle. If EXTEND is high during T1, then extra clock cycles are inserted between T3 and T4; this is the method we would
use for DMA operations.

The trailing edge of IDS/ODS indicates that the CPU has just completed an /0 cycle and is therefore not using the
System Busses at this instant. By setting EXTEND high at this time, we suppress the beginning of another I/0 cycle
while we use the busses for a DMA transfer.

Notice that we are merely lengthening the beginning of the machine cycle, and thus delaying that part of the machine
cycle where the CPU might begin I/0 activity. We do not know whether the current machine cycle will be an internal
machine cycle or an I/0 cycle, and we do not care. We have merely stolen the busses by slowing down the CPU.

750 nsec 1.5 usec

Internal | I : :
Clock Phase IT1 T2T3T4T576 T7 TBE E)TIT2T3E ET4TS5T6T7 TBITIT2 T3E E € E T4T5 76
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Figure 1-11. Using PACE EXTEND Signal for Cycle-Stealing DMA



There are two drawbacks inherent in the EXTEND method of cycle-stealing DMA. First. whenever we use the System
Busses for a DMA transfer, we slow down the operation of the CPU. Second, we must wait until the CPU has just com-
pleted an input/output cycle before we can perform the cycle steal. Since only about one-third of the CPU machine cy-
cles are used for I/0, this means that bus access for DMA will be quite limited. Both of these drawbacks can be elimi-
nated if we can find some technique for determining when the CPU is performing an internal {(non-1/0} machine cycle.
We could then use the System Busses any time that the CPU is not using them (which is more than 60% of the
time) and we couid perform the DMA transfer without slowing down CPU operations. We shall now describe
just such a technique.

We stated earlier in this chapter that the internal clock phases (T1 through T8) are not availa- | CYCLE-STEALING’
ble to external logic. However, National Semiconductor data sheets include a figure that shows | DMA DURING
circuits for internal drivers and receivers. A detailed examination of this figure reveals a very | INS8900 AND
interesting and useful fact: the JC13 (Jump Condition 13) pin on the CPU is intended as an in- | PACE INTERNAL
put signal; but. because of the way in which the receiver for this signal is designed. it also pro- | MACHINE CYCLES

duces an output pulse on the JC13 pin during every machine cycle. The output pulse occurs
during T4 of each machine cycle, and we can use this fact to design a very efficient cycie-stealing DMA arrangement.

e BUS REQUEST
(From DMA Device)
NADS 3— D Q BUS GRANT
| (To DMA Device)
+5V
‘D" FLIP-FLOP
LA, CLK
CLR
Jc13
}_—
HCF
3
-
DIVIDE-BY-FOUR
CLR
NINIT - ?
TCLK
(From STE)

Figure 1-12. Idealized Circuit for Cycle-Stealing DMA During INS8900 and
PACE Internal Machine Cycles

Figure 1-12 shows a circuit that uses the output pulse provided by JC13 to implement cycle-stealing DMA. Recall
that the CPU sends out a negative-going NADS pulse at T4 of every input/output cycle. This NADS signal is ANDed in
our circuit with an external device’s DMA Bus Request and applied to the D input of a flip-flop. The JC13 output puise.
which also occurs at T4, is inverted via a transistor and applied to the clock input of the flip-flop. Thus, if NADS is high
at T4 (indicating that the current CPU machine cycle is not an 1/0 cycle) the flip-flop will be set if there is a Bus Request
present. The output of this flip-flop is then used by externat logic as a Bus Grant signal and the DMA transfer can be in-



itiated. Since we do not know whether or not the next cycle will be a CPU I/0 cycle. we must terminate DMA activity on
the bus prior to the next T4 time. In Figure 1-12. this is accomplished using a divide-by-four counter.

The CLK input to the counter is a combination of the Bus Grant signal and the TCLK signal which is available from the
PACE STE. This results in the timing shown in Figure 1-13. Notice that this scheme makes the bus available for about
7/8 of a machine cycle, or approximately 2.25 microseconds. I you refer back to Figure 14-10 you will notice that this
is about the same length of time as was obtained by using the maximum duration of EXTEND. So. we have not in-
creased the maximum time available for a DMA transfer. But, we have made two significant gains: DMA transfers can
occur more frequently, and these transfers do not slow down CPU operations.

We must add a final note of caution to the description of this otherwise straightforward DMA technique. There are
several critical timing paths in the idealized circuit shown in Figure 1-12. Both the JC13 pulse and the NADS signal
occur at T4, although the trailing edge of NADS does occur slightly after the trailing edge of JC13. Therefore, the com-
ponents used to provide CLK and D inputs to the flip-flop must be selected carefully to ensure that there is not a race
condition. Additionally, we have shown the Bus Grant signal being reset at the end of T3. Since the leading edge of
NADS occurs at T4, this timing relationship can be critical. However, if external devices such as address latches and
decoders use the trailing edge of NADS, this timing should present no problems.

T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 T5
NCLK ‘
CLK I
(TCLK)
Jc13 ’ \

A
n T \J \})
Z

NADS \ ’
wsreo 727 I
BUS GRANT ‘ ‘

I 2 2.25 usec for DMA Transfer |

Figure 1-13. Timing for Cycle-Stealing DMA During INS8900 and PACE Internal‘ Machine Cycle

THE INS8900 AND PACE INTERRUPT SYSTEM

The INS8900 and PACE CPUs have complete on-chip interrupt systems. Six separate levels of interrupts are
provided: one internal and five external interrupt request inputs, including a non-maskable input. Priority logic is
provided on the CPU, and all interrupts are vectored, thus eliminating any polling requirements. Because of the
various ways in which interrupts can be initiated, and also because of a few problems that exist in the PACE in-
terrupt system, we will divide our description of the system into three parts:

J

1) Low priority external interrupts
2) Internal (Stack) interrupts
3) Non-maskable (Level O) interrupts

But first, let us take an overview of the INS8900 and PACE interrupt system.
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Figure 1-14. Internal View of INS8900 and PACE Interrupt System

1-20




Figure 1-14 depicts the interrupt logic that is contained on the CPU. The highest priority in-- | INS8900
terrupt request is the non-maskable Level O interrupt request, which is initiated using | AND PACE
the NHALT control input to the CPU. The lowest priority interrupt request is NIR5. INTERRUPT

The Stack Interrupt and each of the four lower-priority external interrupt requests can be PRIORITIES

individually enabled or disabled by setting or clearing associated bits (IE1 - IE5) in the | ENABLING AND
Status and Control Flag register. Notice in Figure 1-14 that these bits are shown as provid- | DISABLING

ing the ‘R" input to a latch. The 'S’ input to each of these latches is the actual interrupt request | INS8900 AND

line. The significance of this is rather subtle. It means that an interrupt request need not supply § PACE INTERRUPTS

a continuous low level until it is acknowledged. Instead, any pulse exceeding one PACE clock
period will set the associated interrupt request latch: this allows narrow timing or control
pulses to be used as interrupt request inputs. Note, however, that the ‘R’ input to the latches overrides the 'S" input.
Therefore, if the individual Interrupt Enable flag is reset. it not only prevents the latch from being set by interrupt re-
quests, it will also clear a previously latched request that may or may not have been serviced. If this logic is not clear to
you, you should study the characteristics of the RS flip-flop.

A master interrupt enable (IEN) flag is also provided in the Status and Control Flag register. IEN must be set true
to allow any of the latched interrupt requests to be recognized by the CPU.

The CPU checks for interrupts at the beginning of every instruction fetch. If an interrupt requestis | INS8900 AND
present (and enabled), the instruction fetch is aborted, the contents of the Program Counter are | PACE

pushed onto the Stack, and the master interrupt enable {IEN) is set low. The CPU then loads the | INTERRUPT
Program Counter with the address vector for your interrupt service routine and executes the in- | RESPONSE
struction contained at that address. (We'll describe the address vectors in the next paragraph:)
The interrupt request just described requires a total of 28 clock cycles from the time the interrupt is recognized by the
CPU until the time when the first instruction of your interrupt service routine begins execution.

Memory locations 00021 ¢ through 00081 ¢ are used as pointer locations or address vectors. | INS8900
You load each of these locations with the starting address of the interrupt service routine for each § AND PACE
interrupt as follows: ) ) INTERRUPT

MEMORY LOCATION  INTERRUPT POINTER FOR POINTERS
Stack Interrupt

NIR2

NIR3

NIR4

NIR5

Level O Program Counter Pointer % Special

Level O Interrupt Origin case

ONOOPWN

The level O interrupt is a special case which we will descrlbe on its own. But first let us look at interrupts in
general.

When the CPU responds to an interrupt. it loads the Program Counter with the contents of memory locations 2 through
6. depending on the specific level of interrupt that is being acknowledged. Control is thus vectored to the proper ser-
vice routine. Suppose, for example, memory location 4 contains the value 2A301g. If an interrupt request occurring at
pin NIR3 is acknowledged. then during the acknowledge process the contents of the Program Counter are saved on the
Stack, following which the value 2A301¢ is loaded into the Program Counter. Had the value 47281 been in memory
location 4, then 47281 would have been loaded into the Program Counter instead of 2A3016. Thus, whatever memo-
ry address is stored in the memory location associated with the interrupt being acknowledged, this address will be
loaded into the Program Counter, becoming the starting address for the specific interrupt service routine to be ex-
ecuted.

As part of the interrupt response we’ve just described, the CPU sends out a low-going puise on § INS8900

the CONTIN line. Refer back to Figure 1-10 and associated text for a description of the ACK | AND PACE

INT pulse. The last instruction executed by your interrupt service routine must be a Return- | INTERRUPT
from-Interrupt (RTI) instruction. This instruction sets IEN high to re-enable interrupts. then | ACKNOWLEDGE
pulls the top of the Stack into the Program Counter. This returns program control to the point § AND RETURN
where it was interrupted. The RTI instruction does not clear the internal Interrupt Request § FROM INTERRUPT
latch; therefore your interrupt service routine must reset the latch (using a Pulse Flag instruc-
tion), or the same interrupt request will still be present after the RT! instruction has been executed Once the latch has
been cleared. it can then be re-enabled for subsequent interrupt requests.
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The interrupt sequence does not save the contents of any registers except the Program Counter. If | SAVING
the program that was interrupted requires that the contents of CPU registers be saved and then § INS8900 AND
restored, your interrupt service routine must perform these operations. PACE CPU

The CPU’s response to a Stack interrupt is as described for external interrupts. However, the inter- REGISTERS

rupt request is generated internally by the CPU chip: it can be caused either by a Stack Full or a DURING

Stack Empty condition. Remember that the 10-word Stack is part of the CPU chip. It consists of an INTERRUPTS
internal RAM and a pointer that can address Stack words O through 9. A Stack Empty interrupt re- | INS8900 AND
quest is generated whenever the pointer is at 0 and a Pull instruction is executed. A Stack Full in- | PACE STACK
terrupt request occurs when the pointer is at 7 (eight entries on the Stack) and a Push instruction § INTERRUPTS
is executed to fill the ninth word. The tenth word of the Stack will then be used as part of the in-
terrupt response to store the Program Counter contents. Unless you intend to extend the Stack out
into main memory, your application program will not require a Stack Empty or Full interrupt. These interrupts become
error conditions and can be avoided by careful programming.

If your program is treating the Stack Empty and Stack Full interrupts as error conditions, then you can disable Stack in-
terrupts, in which case the full ten words of the Stack are available for nested interrupts and subroutines. Of course,
this means that a Stack Full or Empty condition, should it occur, will become an undetected error, with unpredictable
consequences.

When using PACE, but not the INS8900, there is an additional reason for not using the Stack in- § PACE
terrupt capability unless you really need it. PACE has an internal circuit problem that can cause ]| STACK
improper interrupt response. If a Stack interrupt request occurs at the same time as an NIR3 | INTERRUPT
or NIR5 interrupt request, the Stack interrupt address vector will be incorrectly accessed | PROBLEMS
from location O instead of location 2. The solution recommended in PACE literature is to load
both of these locations with the Stack interrupt vector. This apparently straightforward solution is complicated by the
fact that location O also happens to be the initialization address; whenever the CPU is initialized, the first instruction ex-
ecuted is the one that is contained in location 0. Thus, the word in location O must serve a dual purpose:

1) It serves as an instruction whenever the CPU is initialized.
2) It serves as an address vector if a Stack interrupt occurs at the same time as NIR3 or NIR4.

Here's an example. The object code for a Copy Flags to Register (CFR) instruction is 040016. So, if locations O and 2
both contain a value of 04001 the problem is solved. Your Stack interrupt service routine would have to begin at
memory address 040016, but you would be correctly vectored to that address regardless of whether or not the inter-
rupt error we've just described occurs. On initialization, the first instruction executed would be the CFR instruction: this
is not a very useful initialization instruction, but at least no damage is done.

For a fuller discussion of this interrupt problem and the solution, refer to PACE literature. Also keep in mind that
the problem has been fixed in the INS8900.

The non-maskable (Level 0) interrupt cannot be disabled and differs from the other interrupt levels both in the
way it is initiated and in the way the CPU responds to it. :

The Level O interrupt request is initiated using the NHALT control input signal in com- J INS8900
bination with the CONTIN input line. Figure 1-15 shows the timing relationships bet- | AND PACE

ween NHALT and CONTIN that are required to initiate the non-maskable interrupt. If you | NON-MASKABLE
compare this figure with Figure 1-10 . you will notice that the Level O interrupt request and | (LEVEL O} °

the Processor Stall begin in exactly the same way; NHALT is driven low by external logic and § INTERRUPT

held low for some time after a low-going puise (ACK INT) has been sent out on the CONTIN
line. The only difference between the two operations is towards the end of the timing sequence. For a Processor Stall,
NHALT is allowed to return high while CONTIN is still high; for a Level O interrupt, the CONTIN line must be driven low
by external logic before the NHALT line is atlowed to go high. This critical timing sequence is the only way that the CPU
has to differentiate between a Processor Stall and a Level O interrupt. Notice that this Level O interrupt timing sequence
never requires external logic to drive CONTIN high. Therefore, if you're using the CONTIN line for any of its other multi-
ple functions (including the ACK INT output pulse) you can merely tie CONTIN to ground and use NHALT to initiate the
Level O interrupt. :

The response of the CPU to the Level O interrupt is subtly different from its response to | INS8900
other interrupts. These subtle differences are related to the slightly different purpose of a non- | AND PACE
maskable interrupt versus a normal program interrupt request. A non-maskable interrupt is § LEVEL O
typically used only when there is a catastrophic error or failure (such as loss of power) or to imple- | INTERRUPT
ment a control panel for program development or debug purposes. Both of these uses require that | RESPONSE
an asynchronous, unplanned program termination have a minimum effect upon system status;
that is, you want to leave behind a picture of the system as it looked immediately before the program termination oc-
curred.
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Figure 1-15. Initiating INS8900 and PACE Level O Interrupt
Using NHALT and CONTIN Signals

Remember that other levels of interrupts store the contents of the Program Counter or the Stack and reset the IEN flag
in the Status and Control Flag register. This sequence obviously alters the “'picture” of the CPU. since both Stack con-
tents and Status and Control Flag register contents are changed. To avoid this. the Level O interrupt response by the
CPU uses an external memory location to store the contents of the Program Counter. Memory location 00071 holds
the address of the memory word where the Program Counter will be stored. The contents of the Status and Control Flag
register are unaltered. CPU internal circuitry resets an “IRO INT ENABLE flag to prevent another interrupt from being
recognized (refer to Figure 1-16), but this is not discernible to you. After the Program Counter has been saved in the
designated memory location, the instruction contained in memory location 00084¢ is executed:; this is the first instruc-
tion of your Level O interrupt service routine. Suppose, for example. that memory location 0007 15 contains the value
FFO016. Following a Level O interrupt request, the Program Counter contents will be stored in location FFO01g. Follow-
ing the Level O interrupt acknowledge. the actual instruction stored in memory location 00081g is executed.

Note that the Level O interrupt acknowledge sequence has not altered anything within the CPU that is discernible to
you or to a program; the Stack, Accumulators, and Status and Control Flag register are all unchanged. Additionally,
avoiding use of the Stack ensures that there will not be a Stack overflow — and in consequence a Stack interrupt will
not be generated by this interrupt response sequence.

The normal Return-from-Interrupt (RTI) instruction that must be executed at the end of your inter- | RETURN FROM
rupt service routine causes the Program Counter to be restored from the Stack. Since the Level 0 | PACE LEVEL O
interrupt sequence does not utilize the Stack to store the Program Counter, a different tech- § INTERRUPT

nique must be used to return control to the interrupted program. First you must execute a Set
Flag (SFLG) or Pulse Flag (PFLG) instruction, referencing bit 15 in the Status and Control Flag register. This bit always
appears to be set to a ‘1", but must be referenced in this case to enable lower levels of interrupts. Next you must ex-
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ecute a Jump Indirect (JMP@) through the location pointed to by the contents of memory location 0007 1¢ to restore
the original Program Counter contents.

PACE, but not the INS8900, has some Level O interrupt circuit problems. PACE
LEVEL O
INTERRUPT
PROBLEMS

If a Level O interrupt occurs within the 12-clock-cycle period following the recognition of
any other interrupt, PACE will either perform a Processor Stall (which we described earlier)
or PACE will execute the Level O interrupt — but using the wrong pointer address. In short,
you don’t know what might happen under these circumstances. There is a solution for this prob-
lem. It requires that external logic allow NHALT to be applied to the PACE CPU only while the NADS signal is present,
provided no Acknowledge Interrupt (ACK INT) has occurred since the last NADS pulse. ACK INT is accompanied by a
negative-going puise on the CONTIN line. Sound complicated? It is.

The circuit shown in Figure 1-16 is reproduced from PACE literature and solves the problem we’'ve just described. We
won't attempt to describe here how this circuit solves the problem. Note that this circuit only takes care of Level O in-
terrupt problems; if you also want to use NHALT and CONTIN to cause a Processor Stall, you must design additional ex-
ternal logic.

Once again, we must advise that these interrupt system problems exist in PACE CPU chips. The INS8900 has
none of these problems.

THE INS8900 AND PACE INSTRUCTION SET
Table 1-1 summarizes the INS8900 and PACE instruction set.

The primary memory reference instructions have typical minicomputer addressing modes. These instructions will also
be used as I/0O instructions, since external devices are identified via selected memory addresses.

In Table 1-1, “direct addressing options’ means the instruction can reference memory using any | INS8900

of the direct or direct indexed addressing options described earlier. AND PACE
“Indirect addressing options’” similarly specifies any of the indirect addressing options described 2:;‘532.33'"6
earlier. OPTIONS

Both Branch and Skip instructions are provided. and each differs significantly from the philfoso-
phies described in Volume 1, Chapter 6.

There are 16 conditions that can cause a Branch, as shown in Table 1-3 . Notice that three of the conditions are deter-
mined by external inputs JC13, 14, and 15. If a Branch-on-Condition is true. then the displacement which is added to
the Program Counter is an 8-bit signed binary number as described in Volume 1, Chapter 6.

There are three varieties of Skip-on-Condition instructions. SKNE, SKG and SKAZ compare the contents of an Ac-
cumulator to a memory location which is addressed using direct or direct indexed addressing. Based on the results of
the comparison. the instruction following the Skip may or may not be executed. These three instructions are therefore
combined Skip and Memory Reference instructions.

ISZ and DSZ identify a memory location using direct or direct indexed addressing; the contents of the addressed
memory location are incremented (ISZ) or decremented {for DSZ); if after the increment or decrement operation the
memory location contains a O value, then the Skip is performed.

The AISZ instruction adds an 8-bit, signed binary number to the contents of an Accumulator; if the result is 0. a Skip is
performed. .

These Skip instructions will be very familiar to minicomputer programmers, and on most microcomputers are
equivalent to a secondary Memory Reference or Immediate Operate instruction, followed by a Branch-on-Condition in-
struction.
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LEVEL O INTERRUPT REQUEST NOTE: If the Level O Interrupt request has not

\ I 1 already been reset to a logic ‘1’ level

before IACK goes to a logic ‘1", then
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Figure 1-16. Circuit to Prevent Conflicts Between PACE Level O
Interrupts and Lower Priority Interrupts

1-25




The following symbols are used in Table 1-1:

ACO

C

ccC

D
DATAS8
DISP(X)
@DISP(X)
EA

f

FW

IEN

(@R}

PC

r

S

ST
x<y,z>
[1

[rn
A

\"

iVa

——

Accumulator O

Carry status

4-bit Condition Code described in Table 15-3

Any Destination register

8-bit binary data unit

Direct or indexed addressing operands as explained in the text.

Indirect addressing operands as explained in the text.

The effective address generated by the specified operands.

4-bit quantity selecting a bit in the Flag Word.

Flag Word described in the text.

Interrupt Enable status

A 1-bit unit determining whether LINK is included in the shift/rotate.
Link status

Seven bits determining how many single bit shift/rotates are performed.
Overflow status

Program Counter

Any register of the Accumulator: ACO, AC1, AC2 or AC3

Any Source register

Top word of on-chip Stack.

Bits y through z of the quantity x. For example, r<7.0> is the low-order byte of the specified register. -

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets,
then the designated register's contents are specified. If a memory address is enclosed within the brackets,
then the contents of the addressed memory location are specified.

Implied memory addressing; the contents of the memory location designated by the contents of a register.
Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow.

Data is exchanged between the two locations designated on either side of the arrow.

Under the heading of STATUSES in Table 1-1 . an X indicates statuses which are modified in the course of the instruc-
tion’s execution. If there is no X, it means that the status maintains the value it had before the instruction was ex-

ecuted.
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Table 1-1. INS8900 and PACE iInstruction Set Summary

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED
o}
LD r.DISP(X) 2 [r]—[EA]
w Load any Accumulator, direct addressing options.
g LD . 0.@DISP(X) 2 [ACOl—[EA]
> w Load Primary Accumulator. indirect addressing options.
< v g ST r.DISP(X) 2 [EA1—[r]
3 3 a Store any Accumulator, direct addressing options.
;i z 2 ST 0.@DISP(X) 2 [EAl—[ACO]
g Store Primary Accumulator. indirect addressing options.
w LSEX 0.DISP(X) 2 [ACOl—[ EAl(sign extended)
H Load a signed byte into Primary Accumulator: extend sign bit into high order byte. Direct
addressing options. . .
ADD r.DISP{X) 2 X [rl—[r1+[EA]
3 o Add to any Accumulator, direct addressing options.
Z2h DECA 0.DISP(X) 2 X [ ACO}—[ ACO]+TEA]~[C]
E 5 E Add decimal with Carry to any Accumulator, direct addressing options.
gug SUBB 0.0ISP(X) 2 X [ ACO]—[ ACO] - [EA] +C]
3 : ; Subtract from Primary Accumulator with borrow. direct addressing options.
Q g o AND 0.DISP{X) 2 [ ACO1—[ACO] A [EA]
? s E AND with Primary Accumulator. direct addressing options.
S 2 OR 0.DISP(X) 2 [ ACOI—[ACO] V [EA]
OR with Primary Accumulator, direct addressing options.
L r.DATA8 2 {r<7.0>1— DATAB8 (sign extended)
w Load immediate into any Accumulator. DATAS is an B-bit signed binary value. The sign bit
: is propagated through 8 high order bits.
E JMP DISP(X) 2 [PCl—EA
3 Jump by loading the effective direct address into the Program Counter.
2 JMP @DISP(X) 2 {PC]—EA

Jump by loading the.effective indirect address into the Program Counter.
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Table 1-1. INS8900 and PACE Instruction Set Summary (Continued)

Skip if AND with Primary Accumulator is zero.

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED
o
JSR DISP(X) 2 [STl—{PC]
_ [PCl—EA
E 3 Jump to subroutine direct. As JMP direct, but push old Program Counter contents onto
2 Stack.
gL JSR @DISP(X) 2 [STI—I[PC]
H 8 [PCI—EA
- = Jump to subroutine indirect. As JMP indirect, but push old Program Counter contents onto
Stack.
w CAl r.DATA8 2 [r}—1r}+DATAS8 (sign extended)
: E Complement contents of any register. then add immediate data.
gg
2a
S0
Z > 80C CC.DIsP 2 If CC true: then [PCl—EA
°3 Branch on CC true. as defined in Table 14-3.
ZE
22
28
@ O
8 SKNE r.DISP(X) 2 If [r) # [EAL then [PCI—[PC]+1
é - Skip if any Accumulator not equal.
wek SKG 0.DISP(X) 2 It [ACO) > [EAJ; then [PC1—[PCl+ 1
g » ,Ig Skip if Primary Accumulator greater.
>Su SKAZ 0.DISP(X) 2 It ({ACQ] A [EA]) = O: then [PCI—[PC] +1
g<e
3
w
H
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Table 1-1. :INS8900 and PACE Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED
o L
w 1SZ DISP(X) 2 [EA]—[EA]+ 1
2K ¥f [EAJ = 0; then [PCI—[PCI+1
g g é [ Increment memory. skip if zero.
wwwg 174 DISP(X) 2 [EA]—[EA]-1
2uwog If [EA] = 0; then [PC]—[PC]+1
Decrement memory, skip if zero.
Fwe AlSZ «DATAB 2 [rl—(r]+DATA8
ggow 1f [1] =0 then [PCI—[PCl+1
g w g_ Add immediate to any Accumulator. Skip if zero. DATAS is an 8-bit signed binary immedi-
20« ate data value.
5‘ & . RCPY S.D 2 [D1—I[S]
= A s Move contents of any Accumulator {S) to any Accumulator (D).
ooS RXCH S.D 2 {Dl——IS]
g E Exchange contents of any Accumulators.
w RADD S.D 2 X [D]—{S]1+[D}
g Binary add any Accumulator to any Accumulator.
e:" w RADC S.D 2 X [Dl—I[S]+[DI+[C]
'5 (=] Binary add with Carry any Accumulator to any Accumulator.
o RAND S.D 2 [D]—[SIA D]
& 5 AND any Accumulator with any Accumulator.
Q@ RXOR S.D 2 [D]—ISI¥ (D]
= Exclusive-OR any Accumulator with any Accumulator.
« E SHL rn1 2 X Shift any Accumulator left n bits. Simple if 1 = 0. through Link if 1 =1,
lq-, g SHR r.n1 2 X Shift any Accumulator left n bits. Simple if 1 =0, through Link if 1 = 1.
ow ROL rn1 2 X As SHL, but rotate.
H 3 ROR rn.1 2 X As SHR, but rotate.
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Table 1-1. INS8900 and PACE Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES Y OPERATION PERFORMED
o
PUSH 3 2 {STI—(r)
Push any Accumulator contents onto Stack.
PUSHF 2 [STI—[FW]
Push flags onto Stack.
PULL r 2 [rl—[sT]
5 Pull top of Stack into any Accumuiator.
.5 PULLF 2 X [FW]—(ST]
173 Pull top of Stack into flags.
XCHRS r 2 [sT1——-([1]
Exchange contents of any Accumulator with top of Stack.
RTS DIsP ©2 [PC1—[ST) + DiSP
Return from subroutine. Move sum of DISP and top of Stack to PC. DISP is an 8-bit signed
binary number.
E RTI DIsP 2 [PC]—[STI+DISP
E [IEN)—1
.ﬂ‘_.l Return from interrupt. Like RTS, but enable interrupts.
Z
CFR r 2 [r1—(FW]
Copy flags to any Accumulator.
CRF r 2 X [FW]1—[r]
g Move any Accumulator contents to flags.
T SFLG f 2 (FW<f>1—1
& Set flag f to 1. (f=0 to 15.
PFLG f 2 [FW <f>1—1 for four clock periods
Pulse flag f {invert flag status for four clock periods). (f= 0 to 15).
HALT 2 Halt




The following symbols are used in Table 1-2:

aa
bb
[o{elofo]
ee
fiff

|
nnnnnnn
PP
QQ
X

XX

Two bits choosing the destination register.

Two bits choosing the Index register
Four bits choosing the Condition Code. See Table 1-3.

Two bits choosing the source register.
Four bits selecting a bit in the Flag Word.

One bit determining whether Link is included in a shift or rotate.

Seven bits determining how many single bit shifts or rotates are performed.

8-bit signed displacement
Eight bits of immediate data
A “don’t care” bit
A “don’t care” byte

Table 1-2. INS8900 and PACE Instruction Set Object Codes

MACHINE CYCLES
INSTRUCTION OBJECT CODE | BYTES
TOTAL | INTERNAL | INPUT | OUTPUT

ADD  DISP(X) 1110aabb 2 4 2 2
PP

AISZ  rDATA8 01111022 2 5/6 4/5 1
Qa

AND  0DISP{X) 101010bb 2 4 2 2
PP

BOC  CCDISP 0100ccee 2 5/6 a/5 1
PP

cAl r,DATAS 0111008 2 5 4 1
Qa

CFR  f 000001aa 2 4 3 1
XX

CRF 000010aa 2 4 3 1
XX

DECA  0,DISP(X) 100010bb 2 7 5 2
PP

DSZ  DISP{X) 101011bb 2 7/8 a/s 2 1
PP

HALT 000000xx 2 - - 1
XX

1Sz DISP (X) 100011bb 2 7/8 a/5 2 1
PP

JMP  DISP(X) 000110bb 2 4 3 1
PP

JMP  ©@DISP(X) 100110bb 2 4 2 2
PP

JSR  DISP(X) 000101bb 2 5 4 1
PP

JSR @DISP (X) 100101bb 2 5 3 2
PP

LD r,DISP {X) 1100aabb 2 4 2 2
PP

LD 0,@DISP (X) 101000bb 2 5 2 3
[

u r,DATA8 010100aa 2 4 3 1
a0 .

LSEX  O,DISP(X) 101111bb 2 4 2 2
PP

OR 0,DISP (X) 101001bb 2 4 2 2
PP
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Table 1-2. INS8900 and PACE Instruction Set Object Codes (Continued)

MACHINE CYCLES
INSTRUCTION OBJECT CODE | BYTES
TOTAL INTERNAL INPUT OUTPUT
PFLG f 0011ffff 2 6 5 1
Oxxxxxxx
PULL r 011001aa 2 4 3 1
XX
PULLF 000100xx 2 4 3 1
XX
PUSH r 011000aa 2 4 3 1
XX
PUSHF 00001 1xx 2 4 3 1
XX
RADC SD 0011101aa 2 4 3 1
eXXXXXX "
RADD S,D 011010aa 2 4 3 1
EOXXXXXX
RAND SD 010101aa 2 4 3 1
EeXXXXXX
RCPY SD 010111aa 2 4 3 1
BXXXXXX
ROL ol 001000aa 2 5+3n 4+3n 1
nnnnnnnl
ROR rn,l 001001aa 2 5+ 3n 4+3n 1
nnnnnnnl
RTI 011111xx 2 6 5 1
PP
RTS 100000xx 2 5 4 1
PP
RXCH SD 011011aa 2 6 5 1
EeXXXXXX
RXOR SD 010110aa 2 4 3 1
BEXXXXXX
SFLG  f 0011ffff 2 5 4 1
1XXXXXXX
SHL el 001010aa 2 5+3n 4+3n 1
nnnnnnnl
SHR rnl 001011aa 2 5+3n 4+3n 1
nnannnnl
SKAZ  0,DISP(X) 101110bb 2 5/6 3/4 2
PP
SKG 0,DISP (X} 100111bb 2 7/8 5/6 2
PP -
SKNE  r,DISP (X) 1111aabb 2 5/6 3/4 2
PP
ST r,DISP (X) 1101aabb 2 4 2 1 1
PP
ST 0,@DISP (X) 101100bb 2 4 1 2 1
PP
SUBB  0.DISP({X) 100100bb 2 4 2 2
PP
XCHRS r 000111aa 2 6 5 1
XX

*All instructions may take additional cycles if Extend Read and Extend Write are implemented.
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Table 1-3. Branch Conditions for INS8900 and PACE BOC Instruction

gggg'(tg)g) Mnemonic Condition

0000 STFL Stack Full {contains nine or more words).
0001 REQO (ACO) equal to zero (see Note 1).
0010 PSIGN (ACO) has positive sign {see Note 2).
0011 BITO Bit O of ACO true.
0100 BIT1 Bit 1 of ACO true.
0101 NREQO (ACO) is nonzero (see Note 1).
0110 BIT2 Bit 2 of ACO is true.
0111 'CONTIN CONTIN (continue) input is true.
1000 LINK LINK is true.
1001 IEN IEN ‘is true.
1010 CARRY CARRY s true.
1011 NSIGN (ACO) has negative sign (see Note 2).
1100 OVF OVF is true.
1101 JC13 JC13 input is true (see Note 3).
1110 JC14 JC14 input is true.
1M JC15 JC15 input is true.

NOTES:

1. If selected data length is 8 bits. only bits O through 7 of ACO are tested.
2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits.

3. JC13is used by INS8900 and PACE Microprocessor Development System and is not accessible
during prototyping.

THE BENCHMARK PROGRAM

For PACE, our standard benchmark program adopts this modified form:

LD 2,10BUF LOAD 1/0 BUFFER ADDRESS INTO AC2
LD 0.@TABLE LOAD ADDRESS OF FIRST FREE TABLE BYTE
RCPY 0.3 MOVE TO AC3
LOOP LD 0.0(2) LOAD NEXT BYTE FROM |/O BUFFER
ST 0.,0(3) STORE IN NEXT TABLE BYTE
AISZ 21 INCREMENT AC2
AISZ 3.1 INCREMENT AC3
DSz I0CNT DECREMENT 1/0 BUFFER LENGTH. SKIP IF ZERO
JMP LOOP RETURN FOR MORE BYTES
RCPY 3.0 MOVE AC3 CONTENTS TO ACO
ST 0.@TABLE RESTORE ADDRESS OF FIRST FREE TABLE BYTE

In order to take advantage of INS8900 and PACE indirect addressing, three memory locations are reserved on page O as
follows:

IOBUF  holds the beginning address of the I/0O buffer.
TABLE holds the address of the first free byte in the permanent data table.
IOCNT holds the number of data words in the I/O buffer.

1-33



Memory, as organized for the benchmark program will look like this:

Memory
Addresses MEMORY

10BUF =3~ 0010 XXxx

TABLE ——m= 0011 LA Data on Base Page

1OCNT ————am- 0012
0013
0014
XXXX " j————— Start of 1/0 Buffer

st~ Start of Data Table

YYYY petif—— First free word of Data Table

Suppose the benchmark program rules arbitrarily require that a displacement be stored in the first word of the data ta-
ble, and that this displacement be added to the address of the first word of the data table in order to compute the ad-
dress of the first free data table word:

DISP |~ First data table word

pISP
ptip—— First free data table word

Now the instructions:

LD 0.@TABLE LOAD ADDRESS OF FIRST FREE TABLE BYTE

RCPY 0.3 MOVE TO AC3
must be replaced by these instructions:

LD 3. TABLE LOAD BEGINNING ADDRESS OF DATA TABLE

LD 0.0(3) LOAD DISPLACEMENT TO FIRST FREE TABLE WORD

RADD 0.3 ADD DISPLACEMENT TO AC3
The new displacement must be restored to the first data table word. The instructions:

RCPY 3.0 MOVE AC3 CONTENTS TO ACO

ST 0.@TABLE RESTORE ADDRESS OF FIRST FREE TABLE BYTE
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must be replaced'by these instructions:

LD O0.TABLE LOAD BEGINNING ADDRESS OF DATA TABLE IN ACO
CAl 0.1 FORM TWOS COMPLEMENT

RADD 0.3 SUBTRACT ACO FROM AC3 TO FORM DISPLACEMENT
RCPY 3.0 MOVE DISPLACEMENT TO ACO

LD 3.TABLE LOAD BEGINNING ADDRESS OF DATA TABLE IN AC3
ST 0.03) SAVE DISPLACEMENT IN FIRST FREE TABLE WORD

Forcing an INS8900/PACE programmer to conform to programming logic suited to some other microcomputer's in-
struction set only proves that the two microcomputers have different instruction sets.

THE PACE DP8302 SYSTEM TIMING ELEMENT (STE)

The STE is a very elementary clock device used with PACE, but not with the INS8900; it accepts inputs from an
external crystal and generates the MOS clock signals for PACE, plus a pair of TTL-level clock outputs that can
be used for synchronizing system operations. Figure 1-17 illustrates the pin assignments of the STE.

————

16 Vee
15 f—— K

14 : CLK
STE 13 NCLK
DP8302 12 = VGG

11 [ NCK

10 e | CK

9 LCK*

B ——

P R
X2 oo
EXTC it
TCLK emmmsmeand

TCLK? <t
GND

W NG HWN =

PIN NAME DESCRIPTION TYPE

X1, X2 External crystal connections Input
CLK, NCLK Damped MOS clocks to PACE Output
CK, NCK Undamped MOS clocks to PACE Output
TCLK, TCLK* TTL clocks to microcomputer system Output
EXTC External oscillator option Input
LCK, LCK* Non-overlap capacitor connection

Vee: Vae Power and Ground

Figure 1-17. DP8302 System Timing Element (STE) Pins and Signals

The frequency of the MOS clocks output by the STE is one-half the input crystal frequency. The | STE CLOCK
STE is designed to operate with a 2.6667 MHz crystal. The MOS clock frequency is thus 1.3333 | FREQUENCY
MHz which results in a clock period {tp) of 750 nanoseconds {tp = 1/f); this is the optimal clock
period for the PACE CPU.

Two pairs of MOS clock outputs are generated by the STE; NCLK/NCLK* and NCK/NCK®*. The first pair of outputs
contain a 25 () series of damping resistor; typically, these outputs will be used in circuit board layouts where the STE-
to-PACE interconnect lines are less than two inches. The other MOS outputs, NCK and NCK*, are undamped, and you
can sefect some other value of series damping resistors that might be better suited for your particular board layout.

In addition to the +5V and -12V power supplies typically needed with MOS devices, the } GENERATING
PACE CPU has a third power supply requirement: a substrate bias voltage (Vgg) of +8V | THE PACE
must be applied to the CPU chip. Since it is unlikely that any other devices in your microcom- } SUBSTRATE
puter system would require this voltage level, the need for a third external system power source § BIAS

can be eliminated by providing a voltage converter circuit. Figure 1-18 shows a circuit that | VOLTAGE
generates the required Vgpg voltage level; the circuit requires only a few components and uses
one of the STE's TTL clock outputs as a ‘charge pump’ for the circuit.
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PACE

(+8V) 23

STE Ves

TCLK* |

0.1uF

pb—

+5V

Figure 1-18. Circuit to Generate Substrate Bias Voltagé (Vgg) for PACE CPU

THE PACE BIDIRECTIONAL TRANSCEIVER ELEMENT (BTE)

The DP8300 BTE is an 8-bit device that provides an interface between the PACE MOS-level signals and the
TTL-level signals required by other devices in a microcomputer system (the BTE is not used in INS8900
systems). If you refer to Figure 1-1° at the beginning of this chapter, you will see that a typical PACE microcomputer
system requires three BTEs: two are used to buffer the CPU’s 16 address/data lines, and the third is used as a TTL
driver for the CPU's control signal outputs (NADS, ODS, IDS. F11 - F14).

Figure 1-19 shows the pin assignments for the BTE.

1 28 I v,
MB1/0 00 :: 2 23— aglclo 00
MBI/O 01 -ty 3 22 =3 gD|/0 01
MBI/O 02 ———i—] 4 21 j~=— gp|/0 02
MBI/O 03 ~—{ 5 20 p~=— gp|/0 03
MBI/O 04 —eg—] 6 BTE 19 p=@—3 B0|/0 04
MBI/O 05 ~tf——p 7 18 j~=—3 BDI/0 05
MBI/O 06 -—t——3m—] 8 17 p—3 pD|/0 06
MBI/0 07 ~lf——3={ 9 16 p~et——3= BD|/0 07
——l 10 15 j———— CE1
WBD* eme—eed 11 14 p-—— CE2*
GND et 12 13 fesgp———— STR*

PIN NAME DESCRIPTION TYPE
MBI/0 00 - 07 MOS Bus Data Lines Input/Output
BDI/O 00 - 07 TTL Bus Data Lines Input/Output
CE1, CE2*, Mode Control Signals Input
STR*, WBD*
Vce. GND +5V Power and Ground

Figure 1-19 BTE Signals and Pin Assignments
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Table 1-4 summarizes thé operating modes of the BTE. BTE MODE
CONTROL

WBD" is the main mode control signal; when this signal is low, the other control signals are ig- SIGNALS

nored and the BTE simply converts the MOS signals from the CPU into TTL-level output signals.
The TTL outputs have a high fan-out capability and can service up to thirty 50 milliampere loads.
The BTE used to buffer the PACE control signals normally operates continuously in this ‘drive-only’ mode (Mode
1) and is kept in this mode by simply connecting the WBD* signal to ground.

The BTEs used to buffer bidirectional (address/data) lines must be switched back and forth between Modes 1
and 2; Mode 1 is used for CPU data output and Mode 2 for CPU data input. The simplest way of accomplishing this
is to continuously enable the CE1, CE2*, and STR* controls by connecting them to appropriate logic levels (+5V or
ground) and then use the WBD* signal for directional control. For example, in a PACE system, the IDS signal from the
CPU could be used as the input to WBD*. During a PACE data input cycle, IDS will go high at the appropriate portion of
the cycle and place the BTE in Mode 2; IDS is low at all other times and the BTE will operate in Mode 1.

Table 1-4. PACE BTE Truth Table

MODE CONTROL INPUTS
MODE DESCRIPTION

# cet1 | ce2* | sTR* | waD*
Receive MOS signals and

L X X X 0 drive TTL signals
Receive TTL signals and

2 ! 0 0 ! drive MOS signals

0 ! Outputs in

3 0 1 0 1 high-impedance

state
1 1 1

On positive-edge transition
of STR*, latch into Mode 2

4 X X ! ! or 3 as determined by state
of CE1 and CE2*

X = don’'t care

+5V

CE1 |

BTE

10§ ————-Y N
) )—— weo-

14

13
BUS GRANT CE2* STR* 1
-—
-

Figure 1-20. Signal Connections to Control BTE in a DMA System
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In a DMA or multiprocessor we will need to use BTE Mode 3 to place the BTE outputs in a high-impedance state
and thus free the System Busses for use by other devices. In such a system an externally generated Bus Grant sig-
nal could be used to place the BTE in Mode 3. Figure 1-20 illustrates one method of doing this: whenever the BUS
GRANT signal is high, the BTE is in Mode 3. At other times the IDS signal operates as we've just described to switch the
BTE back and forth between Modes 1 and 2.

The fourth BTE mode uses a negative-to-positive transition on the STR* input to latch the state of CE1 and
CE2*, and then places the BTE in either Mode 2 or Mode 3. This latch mode function might be useful when the BTE
is used as a simple input buffer. For example, in a system with multiplexed address/data lines {such as PACE), address
outputs could be applied to CE1 and CE2*, and an address strobe signal {such as NADS) connected to STR*. Then,
when the BTE is selected by the appropriate address bits, the trailing edge of the strobe signal will gate TTL data
through the BTE and apply the data to the MOS lines of the CPU. When the BTE is not selected (addressed), its outputs
will be in the high impedance state (Mode 3).

USING OTHER MICROCOMPUTER SUPPORT DEVICES
WITH THE PACE AND INS8900

The INS8900 CPU has numerous control signals which allow general purpose microcomputer support devices to
be included in an INS8900 system.

Let us see how 8080A support devices might be used with the INS8900 CPU. First, we'll take an overview of
the general CPU-to-device interface that all the 8080A family of devices expect.

All of the 8080A family devices require that address information (or enabling/select signals derived from the ad-
dress lines) be valid during the data transfer {read/write) portion of an input/output cycle. Recall that the INS8900
data lines are multiplexed: at the beginning of an input/output cycle, the data lines are used to output address informa-
tion; the address information is then removed and the data lines are used for the actual input or output of data during
the latter portion of the 1/0 cycle.

Thus, the first thing we must do to interface the INS8900 to an 8080A family device is | DEMULTIPLEXING
to demultiplex the INS8900 address/data lines. There are several different approaches | THE INS8900
that we can use to accomplish the required demultiplexing. ADDRESS/DATA

The most obvious way is-to use D-type flip-flops or data registers with the INS8900 LINES

NADS signal as the clock pulse. Here are some of the standard 7400 family devices that might be used:

+ 7475 Double 2-Bit Gated Latches with Q and Q Outputs

« 7477 Double 2-Bit Gated Latches with Q Output Only

- 74100 Double 4-Bit Gated Latches

- 74166 Dual 4-Bit Gated Latches with Clear

* 74174 Hex D-Type Flip-Flops with Common Clock and Clear

» 74175 Quad D-Type Flip-Flops with Common Clock and Clear

Some of these devices require that the NADS signal be inverted to provide the necessary clocking signal. Remember,

though, that PACE address information is valid during both the leading edge (high-to-low transition) and trailing edge
(low-to-high transition) of NADS; this generally simplifies the demultiplexing operation.

In many systems you will not need to latch all 16 bits of address information since it would be an unusual applica-
tion that required all of the 64K of address space that this provides. There will usually be some tradeoff between system
address requirements (how many system devices require a latched Address Bus) and the type and amount of address
decoding required. When a fully latched Address Bus is provided. then simpler nonlatched address decoders can be
used. In fact, often address bits can then be used directly as device select signals, or simple AND/OR gate combina-
tions can perform the decoding.

The alternative method of demultiplexing the address/data linés is to use address decoding devices that are
clocked by the NADS signal and provide latched outputs. These latched outputs can then be used as the
device/chip select signals during 1/0 cycles.

Many systems will use some combination of a fully latched Address Bus and simple or latched address
decoders. In the discussions that follow, we will not generally describe in detail the method used to obtain the
required addressing or select/enabling signals, since the method used is so dependent on the particular system
that you are designing.
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Once the INS8900 address/data lines have been demultiplexed, the only major con- |INS8900 CONTROL
siderations we are left with are to ensure that the input/output control signals are of | SIGNAL POLARITY
the proper polarity, and to verify that there are no timing problems. We will see that JCONSIDERATIONS
generally the INS8900 1/0 control signals must be inverted to operate with the 8080A
family of devices, although the 8212 offers us a choice of using the IDS and ODS signals, in either their-original or in-
verted form.

Now we will provide a few specific examples of how devices from the 8080A family can be used with the
INS8900 CPU.

In our first example the 8212 1/0 Port is used as a simple input port by the INS8900.CPU. | THE 8212 USED |
The interconnections required are shown in the following figure: AS A SIMPLE
INPUT PORT IN
AN INS8900
SYSTEM
e DOO DI0 [t
Data to M .
. . Data from
INS8900 CPU . . .
. . external logic
(System Bus) . .

el DO7

Derived from ss———————gm-OQf DS1 8212
Address Lines
DS =il DS2

(from INS8300) Tie MD to Ground. Now STB clocks

latches and DS1, DS2 enable buffers.
NADS sTB MD
(from INS8900) CLR |

? -—
-
NINIT

Here, the INS8900 Address Strobe signal (NADS) is inverted and used as the STB input to the 8212. Since MD
is tied to ground, the STB signal clocks the data into the 8212: this will occur every time the INS8900 performs
an input/output cycle, but the latched data will only be placed on the System Bus when the 8212 is selected.
We accomplish device selection by applying a negative-true decoded address signal to the DS1 input and then
using the INS8900 IDS strobe signal as the DS2 input. Now, whenever the proper address is decoded, the IDS
signal will cause the data that was previously latched by NADS to be placed on the System Bus for input to the
INS8900. The timing would look like this:

NADS
sTB '
DIO - DI7 Data Latched

b5 \

r---
DS2 (IDS) ¥ '\‘

DOO - DO7 Q

Latched data output
onto System Bus
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Notice that the data from external logic will be latched whenever NADS occurs. The actual selection of the 8212 and
input of the latched data to the INS8900 might not occur for quite some time. Frequently, this arrangement will be
completely acceptable. If not. then an input-with-handshaking arrangement, which we will describe next, might pro-
vide a better solution.

Before we proceed to our next example, let us make one more general comment about interfacing devices to
the INS8900 CPU.

The INS8900 is a 16-bit microcomputer: it can transfer 16 bits of parallel data in a single input or output cycle.
All of the other devices that we will be discussing are 8-bit devices. Frequently, you may not need the full
width of the 16-bit Data Bus when transferring data between the CPU and external logic. In these cases, you
can simply connect the data lines to/from the support device to the less significant data lines (DO - D7) of the
INS8900 System Bus, as we have shown in our first example. Masking of the unused. more significant data bits
would then be handled under program control.

When you are going to utilize the full 16 bits of the Data Bus, you merely connect two 8-bit devices in parallel,
as described in more detail for the CP1600 in Chapter 2. One device would be connected as we've already de-
scribed; the data lines of the other device would then be connected to the more significant bits (D8 - D15) of
the System Bus. All other connections to the two devices (device select signals, strobe signals, etc.} would be
identical.

In this example, we will use the 8212 interrupt request signal INT to establish an input | THE 8212 USED
port with handshaking. The connection diagram is very similar to our first example: IN AN INS8900
SYSTEM FOR
INPUT WITH
HANDSHAKING

~ap—q DOO DI0
Data to M . Data from
INS8900 CPU . . external logic
(System Bus) . .
~g————1 DO7 D17 et
Derived from g} DS1 8212 STB = External logic strobes
Address Lines data into latches

IDS ==me—pmei DS2

(from INS8900) .
Tie MD to Ground. Now STB clocks

latches and DS1, DS2 enable buffers

t0 INS8900 ~t———] INT MD '_—:l
Interrupt or
Jump Condition -
Input Pin =

Here, the device select signals are the same as in our first example. However, instead of using the INS8900
NADS signal to clock data into the latches, we will require external logic to input the STB signal when it has
data ready. When the data has been latched, the 8212 will output the TNT signal, which will be used as the in-
put to one of the INS8900 CPU interrupt request lines (NIR2 - NIRS) or Jump Condition inputs (JC13 - JC15).
The CPU-will then execute a service routine program that will include an instruction to read the data from the input
port. This instruction will send out the input port's address, thus generating the DS1 signal, and then gate the latched



data onto the System Bus when the IDS signal is generated. When the latched data is read out of the 8212, the INT sig-
nal returns high to complete the transaction. This sequence is summarized by the following timing diagram:

Data latched by
/ external logic
DIO - DI7 J 7Y

ST8

T

DS1 \

DS2 (IDS)

DOO - DO7 j

|

Interrupt request or Latched data gated
Jump condition input onto System Bus
to INS8900 CPU

Using the 8212 as an output port in an INS8900 system requires a simple reversal of the | THE 8212 USED
connections we have described in the two preceding examples, and we will now use the | AS AN OUTPUT
ODS (Output Data Strobe) signal from the INS8900 instead of the IDS signal. PORT IN AN
INS8900 SYSTEM

— o4 DIO DOO S
Data from : : Data to external
INS8900 CPU : . logic
(System Bus)
-1 DI7 DO7 i
8212 DST JO~—— g4icct signals generated
oDs by external logic

(from INS8900) ste ps2

Select Signal —_— MD NT To external logic
derived from | '
Address Lines — H
- 1]
to INS8900 ~l==mm-m —
interrupt lines
or JC inputs
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When the output port's address is sent out and decoded from the Address Bus, one input to the AND gate is enabled.
The ODS signal then goes high to generate the STB signal and latch the contents of the system Data Bus into the 8212.
This will cause the TNT signal to go low and inform external logic that data has been loaded into the output port. The
external logic will then generate the DST and DS2 signals to gate the data out of the latches. When the data has been
gated out, the TNT signal will return high. This low-to-high transition could be used as an interrupt request or jump con-
dition input to an INS8900 to enable output of new data. Notice that if we continuously enable the 8212 outputs
by tying DST to ground and DS2 to +5V, then whenever the INS8900 loads a new data word into the latch, it
will be immediately output to external logic. This approach may be more advantageous in some applications.

Although the 8255 Programmable Peripheral Interface (PPl) is a more complicated | 8265 PP!
device than the 8212, interfacing the 8255 to an INS8900 CPU is no more complicated | DEVICES
(from a hardware point of view) than the INS8900-to-8212 interfaces we’'ve described. | USED IN
This is due to the programmability of the 82565; mode control is performed by your pro- | AN INS8900
gram instead of by hardwired signals. Let us look at an example to illustrate this point: §} SYSTEM

B s S oY)
To/From PORT A
INS8300 CPU

(System Bus)

~tiiffer———— ()]

8l

Decoded Select i) PORT C

signal derived
from Address Bus 8255 To/From
External Logic
OR——— .
Fom hed "
Address Bus

mmn— A\ |

DS _Do._-q RD
From
INS8900
CPU PORT B
oDS _M WR
RESET
NINIT Dc

Theﬁsignal selects the 8255 and this signal would typically be the output of an address decoder. The A0 and
A1 inputs select one of the three 1/0 ports (A, B or C} or the 8255 Control registers. The RD and WR control sig-
nals are obtained by simply inverting the IDS and ODS signals from PACE. A generalized timing diagram for in-
put/output operations would look like this:

NADS
CS-A0-A1 Select Device and Port Select
IDS (ODS) ‘
76 (WR) J

Data transferred /
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If two 8255s are used in parallel to provide 16-bit 1/0 ports, there is one special con-
sideration beyond the general rules that we discussed earlier. Recall that mode control of
the 8255 is accomplished by writing data into one 8-bit Control register within the
device. When wired in parallel, one 82565 would be connected to bits O - 7 of the system
Data Bus, and the other 82565 would be connected to bits 8 - 15. Therefore, when we
send out a 16-bit control word from the INS8900 CPU to establish the desired mode of

TWO 8255
DEVICES USED
FOR 16-BIT
/0 PORTS
WITH INS8900

operation, the upper and lower bytes of the word must be identical.

From a hardware point of view, interfacing either of these devices to an INS8900 CPU is
no different than interfacing an 8255 PPI to the INS8900. All we need to do is invert the
IDS and ODS signals from the CPU to obtain RD and WR (or TOR and [OW) signals, and
provide chip select and latched address bits forinput to the devices. All other interfacing
and usage considerations are software functions and are described in Chapter 4. We will

THE 8251

USART AND 8253
PROGRAMMABLE
COUNTER/TIMER

USED IN INS8900
SYSTEMS

not describe them here since those portions of the device descriptions apply regardless
of the CPU ‘being used.

We will conclude our discussion of the use of 8080A devices in INS8900 systems byb
comparing INS8900 System Bus signals with those of 8080A systems. This comparison
will be a useful guide for interfacing any 8080A device to an INS8900 system. Table

1-5 is a summary of INS8900 System Bus signals and the corresponding signals availa-

INS8900 AND
8080A SYSTEM
BUSSES
COMPARED

ble in 8080A systems. Two separate columns are provided for 8080A signals: the first ap-

plies strictly to the 8080A CPU: the right-hand column refers to the signals present in a typical three-chip 8080A
system consisting of the CPU, an 8228 System Controller, and an 8224 Clock Generator and Driver.

Since we have already discussed these signals in preceding paragraphs, we won't perform an item-by-item analysis of
the table. Nonetheless, there are a few signals in this table that do need additional explanation.

We have included the INS8900 BPS signal in the I/0 Control Signal group although it is not the type of signal you
would normally classify within this group. However, you will recall that when the BPS input is high, the INS8900
operates in a Base-Page-Split mode; base page then consists of the top 128 words of memory and the bottom 128
words of memory. In our earlier discussion of the BPS signal. we described how this mode can be used to simplify ad-
dressing of 1/0 devices. If you refer back to that discussion, you will see that by doing a little address decoding we
can come up with a signal that will tell us when the INS8900 is addressing an 1/0 device (as opposed to memory).
Let us call this decoded signal '1/0 Device' (I/0D). Now, we can combine this decoded signal with IDS and ODS as

shown below to generate signals equivalent to the 8080A T/OR and I7OW signals.

DS
1/OR
1/0D
1/OW
ops
And if we invert the 1/OD signal we can generate the 8080A MEMR and MEMW signals.
IDS
MEMR
1/0D
MEMW
oDs
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One other portion of Table 1-5 requires some explanation. Notice that we have not drawn a line to separate the
1/0 control signals from the DMA-Related Signals. We've done this intentionally because there is some overlap-
ping of functions with some of these signals. For example. the INS8900 EXTEND signal can be used either to extend
1/0 cycles or to suspend I/O to allow DMA operations. We've also compared the INS8900 NHALT output signal to the
8080A WAIT signal. This comparison is valid if limited to the CPU Halt state initiated in either system by a Halt instruc-
tion. However, in 8080A systems the WAIT signal is also an acknowledgement to the READY or RDYIN input signals.
There is no comparable EXTEND acknowledgement signal in PACE systems.

The 6800 family includes many devices that might be useful in INS8900 systems. Unfor- | 6800 SUPPORT
tunately, all of these devices have one common requirement which effectively makes them | DEVICES NOT
incompatible for use in an INS8900 system. That requirement is enabling input signal E which | COMPATIBLE
should more accurately be described as a synchronizing signal. In 6800 systems, E is usually | WITH INS8900
generated by ANDing one of the primary system clock signals {®2) with the Valid Memory
Address signal (VMA) from the 6800 CPU. The clock period of the resulting E signal can be no less than one microse-
cond. The clock signals {CLX and NCLK) used in PACE systems, however, cannot have a clock period greater than 850
nanoseconds, and therefore cannot be used to simulate the 6800 ® 2 signal. Therefore, we cannot recommend using
6800 family devices in an INS8900 system.

Table 1-5. Comparing INS8900 System Busses to 8080A System Busses

INS8900 8080A 8080A SYSTEM
SYSTEM BUS SYSTEM CPU {CPU, 8228, 8224)
SIGNALS SIGNALS SIGNALS
Bidirectional D00 - D15 D0-D7 DBO - DB7
Data Bus (16 Bits) (8 Bits) - (8 Bits)
Address Bus D00-D15 AO-A15 AO-A15
Address information
must be demultiplexed
from Data Bus
Control Bus
NADS
Strobe signal used
by external logic _ —
to demulitiplex
/0 address from
Control Data Bus
Signals IDS DBIN MEMR and 7OR
0DS WR MEMW and I/OW
BPS, ] - ) -
EXTEND READY RDYIN
NHALT {output) WAIT WAIT
NHALT and HOLD HOLD
DMA- CONTIN inputs
Related CONTIN HLDA HLDA
Signals _ (ACK INT output) B .
- - BUSEN
NIR2 - NIRS INT INT
CONTIN DO and SYNC —
{ACK INT output) INTA
Interrupt - INTE INTE
Signals Non-maskable
Interrupt _ -
(CONTIN and
NHALT inputs)
Initialize NINIT RESET RESIN
Jump Condition JC13-JC15 _ _
Inputs
Control Flag F11-F14 - _
Qutputs




DATA SHEETS

This section contains specific electrical and timing data for the following devices:

PACE CPU
INS8900

PACE STE
PACE BTE
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FIGURE 4. PACE Driver and Receiver Equivalent Circuits

external clock timing
PACE requires non-overlapping true and complemented

clock inputs as shown in Figure 5. Refer to Electrical
Characteristics for timing specifications.
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where:

tg = CLOCK PERIOD
INOVA = INOVB = CLOCK NONOVERLAP
tWCLK * 'tWNCLK = CLOCK WIDTH

FIGURE 5. External Clock Timing

We reprint data sheets on pages 1-D2 through 1-D17 by permission of National Semiconductor Corporation.



PACE CPU

For systems utilizing memories with access times greater
than 2 clock periods it may be desirable to use the
EXTEND input to lengthen the 1/O cycle by multiples
of the clock period. Timing for this is shown in Figure 9.
in the case of either input or output operations, the
extend- should be brought true prior to the end of
internal phase 6. The timing shown in Figure 9 will
provide the minimum extend of one clock period. Hold-
ing EXTEND true for n additional clock periods
longer will cause an extension of n + 1 clock periods.

fn DMA or multiprocessor systems it may be desirable
to prevent 1/O operations by PACE when the bus is in
use by another device. This may be done by using the
EXTEND signal immediately following an 1DS or ODS
as shown in Figure 70. Alternatively, the extend timing
of Figure 9 may be used, as the extend function occurs
independent of whether there is an 1/O operation, that
is, whenever the internal clock phase 6 occurs.
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1 e VOV
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w22
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€

INTERNAL
CLOCK PHASE

FIGURE 6. Initialization Timing
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Figure 7. Address Output and Data Input Timing
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FIGURE 9. Extend /0 Signal Timing

absolute maximum ratings .

All Input or Output Voltages with +0.3V to -21.5V Storage Temperature Range -65°C to +160°C
Respect to Most Positive Supply Lead Temperature (Soldering, 10 300°C
Voltage (Vgg) seconds)

Operating Temperature Range 0°Cto +70°C

electrical characteristics (15 = 0°C to +70°C, Vgg = +5V 6%, Vg = —12V £6%, Vgg = Vgg + 3V £0.5V)

PARAMETER CONDITIONS IMIN I MAX I UNITS
OUTPUT SPECIFICATIONS

D00-D15, F11—F14, ODS, IDS, NADS (These are
open drain outputs which may be used to drive
DS3608 sense amplifiers, or may be used with pull-
down resistors to provide a voltage output.)

Logic “1’* Output Current (Except F11-—F14) VouT = 2.4V -1.0 -5.0 mA

Logic “1'* Output Current, F11—F14 (Note 7) VourT = 2.4V -0.7 -5.0 mA

Logic 0" Output Current VGG < VQUT < Vss 10 MA
NHALT, CONTIN (Low Power TTL Output.) .

Logic 1" Output Voltage IQUT = -6501A 24 \'

Logic ““0"* Output Voltage 'QUT = 300uA 0.4 v

INPUT SPECIFICATIONS

D00—D15, NIR2—-NiR5, EXTEND, JC13—-JC15,
CONTIN, NINIT, NHALT (These are TTL
compatible inputs.) (Note 2)

Logic “1"* Input Voltage vgs—1 | vgst03 \

Logic “0"" Input Voltage vss—7 | vss—4 \%

Puilup Transistor ‘“ON'’ Resistance VIN = Vgg— 1V 7 k2

(D00—-D15) {Note 3)

Pullup Transistor ‘“ON"" Resistance VIN = Vg1V 5 k2

(all others)

Logic “0’* Input Current {D0O0—D15) VIN = 0.4 -1.8 mA

Logic “0" Input Current (NHALT, CONTIN) - VIN=04 -12 mA

Logic 0" Input Current (all others) VIN =04 -3.6 mA

Capacitance, Input and Output (except clocks) VIN = Vsg, fT =500 kHz 20 pF
BPS (This is a MOS Level Input.) {Note 4)

Logic 1" Input Voltage Vss-! vgst0.3 v

Logic 0" Input Voltage VGG vgs~7 \

Logic ““1”” Input Current VIN = Vgs—1V 100 HA
CLK, NCLK (These are MOS Clock Inputs)

Clock “1”* Voltage (Note 5) vss—1 | vgs*0.3 \%

Clock 0" Voltage VGG vggt! \

Input Capacitance (Note 6) 30 150 pF
Bias Supply Current VBB = Vgg +3.0V 100 HA
VGG Supply Current tp = .65us, TA=25°C 40 mA
Vgs Supply Current tp = .65us, TA = 25°C 85 mA




PACE CPU
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FIGURE 10. Suspend 1/0 Signal Timing

TIMING SPECIFICATIONS (See Figures 5 to 10 for additional timing information.)

CLK, NCLK (See Figure 5) (Referenced to
10% and 90% Amplitude)
Rise and Fall Time (tr, tf) 10 50 ns
Clock Width (tw CLK,tw NCLK) 300 375 ns
Clock Non-Overlap (tNOVA, tINOVB) 5 ns
Clock Period (tp) .65 8 us
EXTEND
Individual Extend Duration 2 us
Extend Setup Time (tgg) (Note 10) 100 ns
Extend Hold Time (tgH) (Note 13) 20 ns
Propagation Delay {tpp)
NHALT, CONTIN (Note 9) CpL=20pF 200 ns
NADS, IDS, ODS, DO0—D15 (Note 8) VouT =24V 100 ns
D00—-D15
Input Setup Time {tpg) (Note 11) 200 ns
Hold Time (tpH) (Note 12) 0 ns
Turn-on or Turn-off Time of Pullup 150 ns
Transistor {tpc) (Note 13)
F11—F14 Pulse Flag (PFLG) Pulse Width 4tp ~300 | 4tp +300 ns
NINIT Initialization Pulse Width 8 clock periods
NIR2—NIR5 Input Pulse Width to Set Latch 1 clock periods

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended
and should be limited to those conditions specified under dc electrical characteristics.

Note 2: Pullup transistor provided on chip (See Figure 4.)

Note 3: Pullup transistors on JC13, JC14, JC16 are turned on one out of 8 clock intervals. Pullup transistors on DO0—D15 are turned on
during last clock period of Input Data Strobe (IDS). Other pullup transistors are on continuously when in data input mode.

Note 4: Pulldown transistor provided on chip.

Note 5: Clamp diodes and series damping resistors may be required to prevent clock overshoot.

Note 6: Capacitance is not constant and varies with clock voltage and interna! state of processor.

Note 7: For Vgg = VouT = 2.0V output current is a linear function of VouT.

Note 8: Delay measured from valid iogic level on clock edge initiating change to valid current output level

Note 9: Delay measured from valid logic level on clock edge initiating change to valid voltage output level.

Note 10: With respect to rising edge of NCLK. (See Figure 9 and 70.)

Note 11: With respect to falling edge of CLK. (See Figure 7.)

Note 12: With respect to the valid 0" level on the falling edge of Input Data Strobe (1DS). (See Figure 7.)

Note 13: With respect to valid logic level of appropriate clock.




INS8900

Absolute Maximum Ratings

Voltage at Any Pin with Resepct to

Most Negative Supply (VBB). . . ... . ... ..... -0.3Vto+20V
Operating Temperature Range . . .. .. .. ........ 0°C to +70°C
Storage Temperature Range. . . . ... ......... -65°C to +160°C
Lead Temperature (soldering, 10seconds) . . .. ........ +300°C
Electrical Characteristics

(TA=0°Cto+70°C,Vgg=0V,Vpp = +12V £ 5%, Vcc=+5V £ 5%, Vgg = -8V % 5%)

Symbol| Parameter Conditions l Min l Max |Units

OUTPUT SPECIFICATIONS

D00-D15, F11-F14, ODS, IDS, NADS
(These are low-power Schottky-compatible push-puli outputs.)

VOH Logic ““1"” Output Voltage louT = ~500 A 24 \

VoL Logic 0" Output Voltage fouT = 900uA 04 Vv
NHALT, CONTIN (low-power Schottky outputs)

VoH Logic ““1"* Output Voltage louT = -250 A 24 v

VoL Logic ““0"" Output Voltage loyT = 600uA 04 v

INPUT SPECIFICATIONS

D00-D15, NIR2-NIR5, EXTEND, JC13-JC15, NINIT,
CONTIN, NHALT {low-power Schottky inputs)

ViH Logic ““1" Input Voltage 24 Veet+1 | V
ViL Logic ‘0"’ Input Voitage -1.0 +0.8 V.
[N Input Leakage Current {except NHALT, CONTIN, JC13-JC15)| Vegs<VINS Vo +1 40 LA
e Logic ‘0" Input Current, NHALT, CONTIN (Note 2) VIN=04V -7.0 mA
L Logic “0"" input Current, JC13-JC15 (Note 2) VIN=04V -3.0 mA
BPS (This is an MOS leve! input.)
ViH Logic “1”" Input Voltage Vpp-1| Vpp+1| V
ViL Logic “0” Input Voltage -1.0 +0.8 Y
I Logic “’1”" Input Current (Note 3) VIN=13.6V 750 MA
CLKX (This is an MOS level input.)
VeiL Clock ““0” Voltage -1.0 +0.8 \
VCIH Clock 1" Voltage Vpp-1| Vpp+1| V
CIN Input Capacitance 20 pF
oD Average Supply Current (Vpp) (Note 4) tp=500ns, Ta = 25°C 100 mA
Icc 'Average Supply Current (V) (Note 4) tp=500ns, T =25°C 10 mA

IgB Average Supply Current (Vgpg) vgg =-8V -200 uA




INS89800

Timing Specifications

Symbol Parameter Conditions Min Max Units

CLKX

ty, tf Rise and Fall Times (Note 5} 5 30 ns
(Referenced to 10% and 90% amplitude)

tp Clock Period 500 650 ns

tCLK, tNCLK Pulse Width (Referenced to 50% amplitude} tp/2 - 5% | tp/2 +5% ns
EXTEND
Individual Extend Duration 2 us

tES Extend Setup Time (Note 6) 70 ns

tEH Extend Hold Time (Note 6) 120 ns
Propagation Delay

tDD1 NHALT, CONTIN {(Note 7) CL=40pF, 200 ns

1 low-power Schottky ioad

tDD2 NADS, IDS, ODS, D00-D 15 (Note 7) CL =40pF, 1 INS8208 load 200 ns
D00-D15

DS Input Setup Time {Note 6) 50 ns

tDH Hold Time (Note 8) ’ 0 ns

tFW F11-F14 Pulse Flag (PFLG) Pulse Width 4tp - 300 | 4tp+300 ns

tNW NINIT Initialization Pulse Width 8 tp

tIRW NIR2-NIRS Input Pulse Width to Set Latch 1 tp

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operatmn at these limits is not
intended and should be limited to those conditions specified under DC electrical characteristics.

Note 2:

NHALT, CONTIN, and JC13-JC15 logic “0" input currents specified when the internal chip loads are putting dut a logic 1.

Note 3: Pull-down transistor provided on chip.
Note 4: Supply currents measured with 40 pF and INS8208 loads.
Note 5: Clamp diode and series damping resistor may be required to prevent clock overshoot.
Note 6: Measured with respect to appropriate valid logic level of CLKX.
Note 7: Delay measured from valid logic level on CLKX edge initiating change to valid output volitage level.
Note 8: With respect to the valid 0" level on the falling edge of Input Data Strobe (IDS}.
Note 9: Typical load circuit:
1NS8900 R = 3.6k (3.3k for testing)
Vee Cp =40pF
| VRefp =1.72V
_{ |
| AL
VREF
= T
vss I l
—-— w—— —l -
Note 10: Typical output delay versus load capacitance C_ Note 11: Typical Vpp supply current versus temperature.
for load circuit in Note 9:
250 = 125.0
200 100.0 p=
z g R
-3 150 = = 150 |
3 = h,
100 |- 50.0 -
'
S0 250 -
A i 'l L i — 1 ' 1 L A
120 140 160 180 200 220 [] % 50 75 100

top {ns} TEMP (°C)
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Timing Waveforms

L
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Figure 1. External Clock Timing (CLKX)
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Figure 2. Initialization Timing
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Figure 3. Address Output and Data Input Timing
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Timing Waveforms (continued)
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Figure 4. Data Output Timing
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Timing Waveforms (continued)
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Figure 7. Relative Timing for Level-0 Interrupt Generation

} EXECUTION | EXECUTION SUSPENDED fe-p STALL DURATIQN—{-«— RESUME NORMAL QPN ——=

I }.—> 141y cvcl.zs_:l — APPROX 4 CYCLES

»
G
NHALT DRIVEN LOW EXTERNALLY — | DRIVEN HIGH EXTERNALLY
(DR USING INTL PULLUP)
|e— < 3CLK CYCLES
§ CLOCK CYCLE MIN |.._ >5+-.cvuzs >4 CYCLES
INTERRUPT RESP TIME

o BT Ll | B
ACK INT @ v .

| |—APPROX 2% + te CLOCK CYCLES
CONTINUE DRIVEN BY PACE - CONTINUE mzm
{EXTERNAL CIRCUITS HIGH IMPEDANCE)

LCDITINUE DRIVEN _ |
EXTERNALLY
NOTES:

t. EXTERNALLY GENERATED TTL INPUTS OVERRIDE PACE OUTPUTS.

2. V| CROSSHATCH INDICATES “DON'T CARE” INPUT STATE.
@v. + DURATION OF EXTEND DURING PACE 1/0 CYCLES TIMING ASSUMES NO OTHER EXTENDS AND ND SUSPENDS.

Figure 8. Relative Timing for Processor Stall

The architecture of the INS8900 {shown in Figure 9)

features a number of resources to minimize system pro-.

gram and read/write storage, increase throughput, and
reduce the amount and cost of external support hard-
ware. Principal resources that allow these efficiencies to
be achieved include:

Four 16-bit general purpose working registers availabie
to the user reduce the number of memory load and store
operations associated with saving temporary and inter-
mediate results in system memory.

An independent 16-bit status and control flag register
automatically and continuously preserves system status.
The user may operate on its contents as data, allowing
masking, testing, and modification of several bit fields
simuitaneously.

A ten-word (16-bit) last-in, first-out (LIFQ)} stack
inherently decreases response time to interrupts while
eliminating both program and read/write system storage
overhead associated with storing stack information
outside the microprocessor chip.

Stack full/stack empty interrupts are provided to facili-
tate off-chip stack storage in those applications where
additional stack capacity is desirable.

A six-level vectored priority interrupt system internal to
the chip provides automatic interrupt identification,
eliminating both program storage overhead and the time
normally required to poll peripherals in order to identify
the interrupting device.

Three sense inputs and four control flag outputs allow
the user to respond directly to specific combinations of
status present in the microprocessor-based system, thus
eliminating costly hardware, program overhead, and
throughput associated with implementing these func-
tions over the system data bus.

A comprehensive set of input/output control signals
provided by the internal control logic simplifies inter-
faces to memory and peripherals and allows flexible
control of INS8900 operations.

Single-phase 2.0 MHz clock input is easily generated with
a minimum of external components.

1-D10




PACE STE
recommended crystal specifications

¢ AT-cut crystal

* 2.6667 MHz t 0.1%, fundamental
mode

o 5 mW maximum

e 150 Q maximum series resistance

timing diagram

15v
TOLK*
PL2 —»
TCLK /_
/ 15v
— [=—tPH2
90%
NCLK 10% 10%
O/
NCK
INOV2 ——>|
j J—
€K 90% 0% 0%
10% 0% 0%
%
PW |——— 1Py ————

TIMES FOR NCLK, NCK, CLK, AND CK MEASURED AT 10% AND 90%

Figure 2.
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absolute maximum ratings [’

operating conditions

Supply Voltage (Vgg) .o v v v vveeiiinen 7.0V Min. Max. Units
(VGG) ................. -15.0V Supply Voltage (VCC’ 4.75 5.25 v
InputVoltage. . . . ........... ... 55V (Vgg) -11.40 -12.6 v
Storage Temperature . . .. ....... -65°C to +150°C Temperature 0 +70 °c
Lead Temperature (soldering, 10 seconds) . . . . . 300°C
dc electrical characteristics (Notes 2and 3)
Parameter Conditions l Min. Typ. Max, Units
OUTPUT SPECIFICATIONS:
T CLK, T CLK* (TTL Clocks)
Vou Logic “1” Output Voltage Vec =475V lon=-1mA 3.65 4.25 v
VoL Logic “0” Output Voltage Vec=4.75V loL=32mA 0.25 0.4 v
los Output Short Circuit Current | (Note 4), Voc=5.25V, Vg =0 -10 -33 -55 mA
CK, NCK, CLK, NCLK
Vo Logic “1” Output Voltage lon = -100uA Vec-09] 45 v
VoL Logic “0” Output Voltage Vec=4.75V oL - 1004 Vea* 011 Vog + 0% v
Vgg=-114V | |5 = 6mA Vgg+0.2| Vgg+05 \
INPUT SPECIFICATIONS:
EXTC
Vg Logic “1” Input Voltage 2.0 v
I Logic “1” Input Current Vee=525v | NZ24V 40 KA
Vin=55V 1.0 mA
V)L Logic ““0” Input Voltage 0.8 v
) Logic “0” Input Current Vee=5.25V Vi =04V -0.9 -1.6 mA
Vciamp  Input Clamp Diode Vee =475V hL=-12mA -0.8 -15 \%
POWER SUPPLY CURRENT
lcc  Supply Current from Ve Vce=5.25V 20 30 mA
Igg Supply Current from Vgg Vgg =-12.6V -40 -55 mA

ac electrical characteristics Crystal Frequency at 2.6667 MHz

1A=0°Cto+70°C, Voo - Vgg = +17V £ 6%

unless otherwise noted.

Ciy = 40pF.

4. Only one output at a time should be shorted.
5. The test conditions for measuring AC parameters are shown in Figures 2 and 3, with C1 = C2 = 60pF, C3 = 80pF, CNyov =60 pF. Load
conditions for MOS clocks and TTL clocks are shown in Figures 4 and 5. Including probe and jig capacitance, C|_q = 20 to 80pF, and

Limits . Test

Symbol Parameter Min. [ Typ. [Max. Units Conditions
tNOV 1. tNOv2 | Non-Overlap Time 5 12 ns See Note 5
tpw MOS Clocks Pulse Width (NCLK, CLK, NCK, CK) 300 | 320 ns See Note 5
tR MOS Clocks Rise Time (NCLK, CLK, NCK, CK) 40 ns See Note 5
tg MOS Clocks Fall Time (NCLK, CLK, NCK, CK) 40 ns See Note 5
tPH1. tPH2 TTL Clocks to MOS Clocks High Level Delay -40 40 ns See Note 5
tpLy. tPL2 TTL Clocks to MOS Clocks Low Level Delay 80 ns See Note 5
trp1. tTD2 TTL Clock to TTL Clock Delay -25 25 ns See Note 5
tSTART Time Delay from Last Power Applied to MOS Clocks Stabilized 100 | ms |See Figure 7
Notes:

1. “Absolute Maximum Ratings’’ are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply
that the devices should be operated at these limits. The table of “Electrical Characteristics'’ provides conditions for actual device operation.
2. Unless otherwise specified, min/max limits apply across the 0°C to +70°C temperature range and Ve =475V 10525V, Vgg =-114V
to =12.6 V power supply range. All typicals are given for Vo = 5.0V, Vgg =-12V, and Tp = +25°C.
3. All currents into device pins are shown as positive; currents out of device pins are shown as negative. All voltages are references to ground

1-D12
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test conditions

.
0p8302 NCLK, NCK, CLK, CK LOAD TCLK®, TCLK LOAD
N 1) " OUTPUT UNDER
=1 NC vee TEST .
2 15 A cc
3 14
x1 CLK [=—
a| . 13
[ x2 NCLK f— outeur
aeormiz | % e ves P2 TEST RL=3300
6 11 =T -
—{ Teik NCK [memm 2010 80pF
7 10
-] TCLK* LeK
0 2 ¢
GND LeK* G
Cnov I
= = CL2=80pF
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*ALL CAPACITORS ARE 5% - = =

Figure 3. Figure 4. Figure 5.
typical characteristics
TYPICAL NON-OVERLAP TIME VS.
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Figure 6. Figure 7.
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absolute maximum ratings (Note 1)

recommended operating conditions

Supply Voltage ) v MIN  MAX  UNITS
Input Voltage (All Inputs Except MBI/O input Active) 5.5V Supply Voltage (Vg 475 5.25 v
Output Voltage 5.5V o
MOS Bus Input Current +10 mA Temperature {Tp) o +70 c
Storage Temperature —65°C to +150°C

Lead Temperature (Soldering, 10 seconds)

300°C

dc electrical characteristics (Notes 2 and 3)

PARAMETER CONDITIONS [ mn [ 1ve [ max [ umits
TTL BUS PORT (BDI/0 00-07)
VIH Logicat **1”’ Input Voltage 20 \
viL Logical “‘0” Input Voltage 0.8 \
VOH Logical “*1”” Qutput Voltage WBD” = 0.8V, IoH =—1 mA vee—1.1] Vec 0.8 \
MBI/O=0.5mA | IoH =-5.2mA 24 37 \Z
VoL Logical 0" Qutput Voltage WBD* = 0.8V, loL =20 mA 0.256 0.4 \
MBI/O = 100uA | 1oL = 50 mA 04 05 Vv
fos Qutput Short Circuit Current WBD* = 0.8V, MBI/O = 0.5 mA, -10 -35 =75 mA
VouT =0V, Vcc = 5.25V, (Note 4)
Y] Logical ““1” Input Current WBD* =2V, V|4 = 24V 80 MA
I Input Current at Maximum WBD*® =2V, V| =5.5V, 1 mA
Input Voltage Ve =5.25V
TN Logical ““0”* Input Current WBD* =2V, V| =04V -10 -250 RA
VCLAMP  Input Clamp Voltage WBD* =2V, I|N=—12 mA —0.2 -1.5 A
10D Output/Input Bus Disable Current | WBD* = STR™ = 2V, BDI/O = 0.4V —80 80 HA
to 4V, Vee = 5.25V
MOS BUS PORT (MBI/0 00—07) ‘
o Logical “‘0” Input Current WBD™ = 0.8V, IgL(TTL) = 50 mA, -5.0 0.10 mA
VoL <0.5V, (Note 5}
1] Logical 1" Input Current WBD™ = 0.8V, IgH(TTL) = —1 mA, 0.50 5.0 mA
VoH >Vee — 1.1V, (Notes 5 and 6)
Vo Logical “’'0” Input Voltage WBD* = 0.8V, IoL(TTL) = 50 mA, 0.8 \
‘ VoL <0.5v
Vi Logical “1” Input Voltage WBD" = 0.8V, IgH(TTL) = —1mA, 2.0 1.5 \
VoH 2> Ve — 1.1V
VOH Logical ““1" Qutput Voltage WBD™* = CE1=BDI/0O =2V, 24 33 v
IOH(MOS) = =1 mA, CE2" =
STR* = 0.8V
VoL Logical ‘0" Output Voltage WBD" = CE1=2V, Ig(MOS) = 0.28 0.5 Vv
5mA, CE2* =STR* =BDI/0=0.8V
10s Output Short Circuit Current WBD* = CE1=BDI/O =2V, =7 -5 —45 mA
Ve =5.25V, Voyut =0V,
STR* = CE2" = 0.8V, (Note 4)
VcLamp  Input Clamp Voltage IIN=-12mA -15 A
lop Output/Input Bus Disable Current | MBI/O = 0.4V to 4V, Vg = 5.25V -80 80 MA
CONTROL INPUTS (WBD*, CE1, CE2*, STR*)
VIH Logical ““1" Input Voltage 20 \
ViL Logical ““0” Input Voltage 0.8
IiH Logical *“1” Input Current VIN = 2.4V 20 HA
I Input Current at Maximum VIN =5.5V 1.0 mA
Input Voltage

1-D14




PACE BTE/8

dc electrical characteristics (Continued) (Notes2 and 3)

PARAMETER CONDITIONS [ min | 1ve | max | uwits
CONTROL INPUTS (WBD*, CE1, CE2*, STR*] (continued)
L Logical “’0*" Input Current VN = 0.4V —250 —400 MA
VeLAMP  Input Clamp Voltage IIN=-12mA —0.85 -1.5 \

POWER SUPPLY CURRENT
lce Power Supply Current Vog = 5.25V | [ 0o [ 10 | wa

Note 1: “Absolute Maximum Ratings’ are those values beyond which the safety of the device cannot be guaranteed. They are not meant to
imply that the devices should be operated at these limits. The table of “Electrical Characteristics’’ provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the 0°C to +70° C temperature range and the 4 75V to 5.25V power supply range.
All typicals are given for Vog = 5V and Tp = 25°C.

Note 3: All currents into device pins are shown as positive, out of device pins are negative. All voltages are referenced to ground unless otherwise
noted.

Note 4: Only one output at a time should be shorted.

Note 5: The MBI/O Input Characteristic Graph illustrates this parameter and defines the regions of guaranteed logical “’0’’ and logical 1" out-
puts. See equivalent input structure for clarification. When the MBI/O input is loaded with a high impedance source (open}, the TTL output will
be in the logic “‘0’ state,

Note 6: The maximum MOS bus positive input current specification is intended to define the upper limit on guaranteed input clamp operation.
At higher input currents (up to the absolute maximum rating) clamp operation is not guaranteed but TTL bus logic state is valid and no device
damage will occur.

Note 7: In most applications the MOS bus data lines are higher impedance and more sensitive to noise coupling than TTL bus lines. Conservative
design practice would dictate routing MOS bus lines away from high speed, low impedance TTL lines and MOS clock lines or providing a ground
shield when they are adjacent.

ac electrical characteristics vcg =5V 5%, Ta = 0°C to +70°C

PARAMETER CONDITIONS I MIN l TYP I MAX | UNITS
DATA TRANSFER SPECIFICATIONS
Receiving Mode {BD1/0 Bus to MBI/O Bus) WBD™ =3V, C|_= 15 pF, tpd0 17 40 ns
RL =1k, (Figures 4 and 6) | tpd1 20 40 ns
Driving Mode (MB1/0 Bus to WBD" =CE1=0V, tpd0 40 60 ns
BDI/0 Bus) STR* = CE2" =3V, tpd1 40 60 ns
CL =50pF, R_=100 €,
{Figures 3 and 5)
TRANSCEIVER MODE SPECIFICATIONS
Select Bus
DS Chip Enable Data Set-Up (Figure 1) 45 23 ns
tDH “ Chip Enable Data Hold {Figure 1) 0 ns
tES Set-Up (Figure 1) 0 ns
TTL Data Bus (BDI/O 00—07)
18D OD Bus Data Output Disable ‘CL=5pF, R_=100%, (Figure 1) 5 20 50 ns
tBD OE Bus Data Output Enable C =50 pF, R =100 2, (Figure 1) 25 80 ns
tBD IE Bus Data Input Enable (Figure 1) 30 ns
t8D ID Bus Data Input Disable {Figure 1) 30 ns
MOS Data Bus (MB1/0 00—-07)
tMB 0D MOS Bus Output Disable CL=15pF, R =1k, (Figure 1) 15 50 100 ns
tMB OF MOS Bus Output Enable CL=15pF, R =1k, (Figure 1) 50 100 ns
tMB ID MOS Bus Input Disable (Figure 1) 55 ns
tMB IE MOS Bus Input Enable (Figure 1) 20 ns
Select Bus
tCLR Clear Previous Chip Enable (Figure 2) l | 25 | 50 T ns
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switching time waveforms and ac test circuits

INPUT
WAVEFORM
{MOTE 1)

INPUT
WAVEFDRM
(NOTE 1)
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-
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[~—tes—= '80IE 180 0E
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80 00— I‘— 8010 “—
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TTL DATA 801/0 00-07 BDI/0 10-07 BD1/0 00-07
aus QUTPUT ACTIVE /% INPUT ACTIVE /% OUTPUT ACTIVE
—1 tMnoE B IE |-—
% M 7/
. 10 00-07 MBH/0 00-07 MBI/0 00-07
mos n:{'g |:!.|:1“Amv5 //A OUTPUT ACTIVE % INPUT ACTIVE
B 10— F— B 0D |"—
FIGURE 1
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TTL DATA 801/0 00-07
[ OUTPUT ACTIVE QUTPUT ACTIVE
- I—' ME 1D Mg I f——
Mas DATA MBI/0 00-07 MB1/0 00-07 B)/0 00-07
[T INPUT ACTIVE TRISTATE® INPUT ACTIVE
FIGURE 2
Veg =5V
0.14F —
B 5v T 100
INPUT = QUTPUT
o
41 0
o ool Vee
sv 18 PULSE 82" ’
1. v AAA— MBI/O  DUT BONO ALL DIODES
(NOTE 1) 9 I L ARE IN3084
3% T = Woren 3™
> >
FIGURE 3. BDI/O Bus 9 I

15V 15V

FIGURE 4. MB!/O Bus

.
1

*This input network simulates the actual drive characteristic of the PACE outputs
FIGURE 5. MBI/O to BDI/O ac Loads

Vep =5V
- [X¥3
" T
ouTPUT = INPUT
[}
Vee
PULSE
ALL DIODES MBI/O OUT  BDI/O ENERATC
ARE 1N3064 S eND <3
*g (nnrszl)T S

FIGURE 6. BDI/O to MBI/O ac Loads
Note 1: Freq = 1 MHz, duty cycte = 50%, tg = tF < 10 ns (refer to Figures 5 and 6).
Note 2: Ali capacitance values include probe and jig capacitance (refer to Figures 5 and 6).
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typical performance characteristics
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Chapter 2
THE GENERAL INSTRUMENT CP1600

The CP1600 and the TMS 9900 were the first two NMOS 16-bit microprocessors commercially available. Even
a superficial inspection of the CP1600 shows it to be more powerful than the National Semiconductor PACE (or 8900),
yet the CP1600 is not widely used. This is because General Instrument does not support the CP1600 to.the extent
that National Semiconductor originally supported PACE, or most manufacturers support their 8-bit microprocessors.

General Instrument’s marketing philosophy has been to seek out very high-volume customers; General Instru-
ment supports low-volume customers only to the extent that this support would not require substantial investment on
the part of General Instrument.

From the viewpoint of the low-volume microprocessor user, General Instrument’s marketing philosophy is unfortunate.
The CP1600 is an ideal microprocessor for the more sophisticated video games that are appearing. and its rich instruc-
tion set and capable architecture make it an ideal choice for data processing terminals and home computer systems.
However, due to its limited support. potential iow-volume CP1600 customers are likely to choose another equally capa-
ble product.

Three CP1600 parts are available, differentiated only by the clock speeds for which they have been designed.
The CP1600 requires a 3.3 MHz, two-phase clock and generates a 600 nanosecond machine cycle time.

The CP1600 requires a 4 MHz, two-phase clock and generates a 500 nanosecond machine cycle time.

The CP1610 requires a 2 MHz, two-phase clock and generates a 1 microsecond cycle time.

In addition to the CP1600 microprocessors themselves, the CP1680 Input/Output Buffer (IOB) is described in
this chapter. Additional support devices for the CP1600 may be found in An Introduction to Microcomputers:

V — Some Real S rt Devices.
The sole source for the CP1600 is:

GENERAL INSTRUMENT
‘Microelectronics Division
600 ‘West John Street
Hicksville, New York 11802

There is no second source for the CP1600. General Instrument has a policy of discouraging second sources for its
product line.

The CP1600 is fabricated using NMOS ion implant LS! technology; the device is packaged as a 40-pin DIP.
Three power supplies are required: +12V, +5V and -3V.

THE CP1600 MICROCOMPUTER SYSTEM OVERVIEW

Logic of our general microcomputer system which has been implemented by the CP1600 CPU is illustrated in
Figure 2-1. .

Observe that the CP1600 requires external logic to create its various timing and clock signals.

Some bus interface logic is shown as absent because a number of devices must surround the CP1600; these in-
clude:

1) An address buffer, since data and addresses are multiplexed on a single 16-bit bus.

2) Buffer amplifiers to provide the power required by the type of memory and I/O devices that will normally be con-
nected to a CP1600 CPU.

3) A one-of-eight decoder chip to create eight individual control signals out of three controls output by the CP1600.

4) A one-of-sixteen multiplex chip to funnel sixteen external status signals into the CP1600 if using external
branches.
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Were you to compare Figure 2-1 with an equivalent figure for a low-end microprocessor such as the SC/MP {(which is
described in Chapter 3 of the Osborne 4 & 8-Bit Microprocessor Handbook(Osborne/McGraw-Hill, 1980), the CP1600
might appear to offer fewer logic functions; but within the functions it does provide, the CP1600 provides considerably
more logic and program execution capabilities. Where low-end microprocessors choose to condense, onto a single
chip, simple implementations of different logic functions, high-end products such as the CP1600 choose to provide
more devices — with greater capabilities on each device.

CP1600 CPU

Clock Logic

CP1680 1/0 Buffer
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Figure 2 -1. Logic of the CP1600 CPU and CP1680 I/O Buffer



CP1600 PROGRAMMABLE REGISTERS
The CP1600 has eight 16-bit programmable registers, which may be illustrated as follows:

R1
R2 Data Counters

R4 } Data Counters with
auto-increment

R6 Stack Pointer

R7 Program Counter

General Purpose registers

The way in which the registers illustrated above are used is unusual when compared to other microcomputers de-
scribed in this book. All eight 16-bit registers can be addressed as though they were general purpose registers;
however, only Register RO has no other assigned function. We may therefore look upon Register RO as the Primary Ac-
cumulator for this CPU.

Registers R1, R2, and R3 serve as general purpose registers, but may also be used as Data Counters.

In addition to serving as general purpose registers, R4 and R5 may be used as auto-incrementing Data Counters.
Memory reference instructions that identify Register R4 or R5 as holding the implied memory address will cause the
contents of Register R4 or RS to be incremented — after the memory reference instructions have completed execution.

Registers R6 and R7, in addition to being accessible as general purpose registers, also serve as a Stack Pointer and a
Program Counter, respectively.

Having the Stack Pointer accessible as a general purpose register makes it quite simple to maintain more than one
Stack in external memory; also. you can easily address the Stack as data memory using the Stack Pointer as a Data
Counter.

Having the Program Counter accessible as a general purpose register can be useful when executing various types of
conditional branch logic.

While having the Stack Pointer and the Program Counter accessible as though they were general purpose registers
may appear strange. this is a feature of the PDP-11 minicomputer — and is a very powerful programming tool.

CP1600 MEMORY ADDRESSING MODE
The CP1600 addresses memory and 1/0 devices within a single address space.

When referencing external memory, you can use direct addressing, implied addressing, or implied addressing
with auto-increment.

Direct addressing instructions are all two or more words long, where the second or last § CP1600 DIRECT
word of the instruction object code provides a 16-bit direct address. ADDRESSING

CP1600 direct addressing instructions are complicated by the fact that CP1600 program

memory is frequently only 10 bits wide. That is to say. even though the CP1600 is a 16-bit microprocessor, its instruc-
tion object codes are only 10 bits wide. If program memory is only 10 bits wide, then direct addresses will only be 10
bits wide. A 10-bit direct address will access the first 1024 words of memory only.
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Were you to implement a 16-bit wide program memory. then you could directly address up to 65.5636 words of memo-
ry; however, six bits of the first object program word for every instruction in program memory would be wasted. This
may be illustrated as follows:

Program
Memory
15 10-9 0 <@— Bit Number
X Three memory
object code - reference
. instructions
Direct Address that specify
Six unused object code direct addressing
bits in each- - -
of these Direct Address

memory locations

object code word instructions

object code

- -’
Direct Address

object code } Two single

Instructions that reference memory using implied addressing identify general purpose | CP1600
Register R1, R2, or R3 as containing the implied address. IMPLIED
ADDRESSING

A memory reference instruction which identifies Register R4 or R5 as providing the external
memory address will always cause Register R4 or R5 contents to be incremented following the
memory access; thus you have implied memory addressing with auto-increment.

Memory reference instructions that specify implied memory addressing via Register 1, 2, 3, 4, or 5 can access
8-bit memory. An SDBD instruction executed directly before a valid memory reference instruction forces the memory
reference instruction to access memory one byte at a time. If implied memory addressing via Register 1, 2, or 3 is
specified, then the same byte of memory will be accessed twice. For an instruction that loads the contents of data
memory into Register RO, this may be illustrated as follows:

Memory
SDBD
MVI R1,RO Program memory
RO[ vy vy |
N
1 ]
N\
.
rRi|[ PP ac | PPQQ XXYY Data memory
N v’
/

Data memory
address
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If Register R4 or R5 provides the implied memory address for the instruction which follows an SDBD instruction, then
the implied memory address is incremented twice, and two sequential low-order bytes of data are accessed. For an in-
struction which loads data into Register RO, this may be illustrated as follows:

Memory
SDBD
MVI R5,RO
. Program memory
rRo| BB vy |
Nt o —
[ ]
1 1
A
e
Rs [ PP oo |} praQ\ | XxYY Data memory
\*\~ AABB g
~——
M Z.
R

Data memory
address

The SDBD instruction may also precede an immediate instruction. Now the immediate data will be fetched from the
low-order byte of the next two sequential program memory locations. This may be illustrated as follows:

Memory
SDBD
MVIl XXYY,RO e,
RO [ xx vy ] ; 00YY
N 00XX

Without the preceding SDBD instruction, an immediate instruction will access the next singrle program memory word
to find the required immediate data. Ten or more bits of immediate data will be accessed, depending on the width of
program memory words.

The CP1600 has no Stack reference instructions such as a Push or Pull; rather, a variety of § CP1600
memory reference instructions can identify Register R6 as providing the implied address. | STACK

When Register R6 provides the implied address, it is treated as an upward migrating Stack J ADDRESSING
Pointer. When a memory write operation specifies Register R6 as providing the implied memory
address, Register R6 contents will be incremented following the memory write. A memory read instruction that
specifies Register R6 as providing the implied memory address will cause the contents of Register R6 to be decre-
mented before the read operation occurs.

An unusual feature of the CP1600 is the fact that a variety of secondary memory reference instructions can also
reference memory via the Stack Pointer. When these instructions are executed, Register R6 contents are decre-
mented before the memory access occurs — as though a Pull operation from the Stack were being executed.

Logically. Register R6, the Stack Pointer. is being handled as though it were a Data Counter with post-increment and
pre-decrement.
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Jump instructions use direct memory addressing. Jump instructions are all three words long. The direct address is
computed from the second and third memory words as follows:

9 8 7 6 5 4 3 2 1 0
ojojojojojojoj1{o}oO JR or JSR
XIX]|AlAJAJAJATALY}Y je@—— Word 2
B|B|B|B|B|B|B|B|B|B ["l——Word3

AAAAAABBBBBBBBBB Jump address (binary)

yy are enable/disable bits for interrupts .

xx identify the register where the return address will be stored for JSR
xx and yy are described in detail in Table 2-4.

You can enable or disable interrupts whenever you execute a Jump or Jump-to-Subroutine instruction.

The only difference between a Jump instruction and a Jump-to-Subroutine instruction is that the Jump-to-Subroutine
instruction saves the Program Counter contents in Register 4, 5, or 6. The two high-order bits (xx) or the second Jump-
to-Subroutine object code word specifies which of the three registers will be used to hold the return address.

Jump-to-Subroutine instructions, like the Jump instruction. allow direct memory addressing only.

CP1600 STATUS AND CONTROL FLAGS

The CP1600 CPU has four of the standard status flags; in addition, it has some unusual control signals.
These are the four standard status flags:

Sign (S). This status is set equal to the high-order bit of any arithmetic operation result.

Zero (2). This status is set to 1 when any instruction’s execution creates a zero result. The status is set to O for a nonzero
result.

The Carry (C) and Overflow (0) statuses are standard carry and overflow, as described in Volume 1.

Four control signals (EBCAO - EVCA3) are output during a Branch-on-External (BEXT) instruction. These four sig-
nals are output to reflect the low-order four bits of the BEXT instruction’s object code. External logic receives these four
signals and (depending on their state), may or may not return a high input via EBCI. If EBCl is returned high, then the
BEXT instruction will perform a branch; if EBCI is returned low, then the BEXT instruction will cause the next sequential
instruction to be executed. The four control signals EBCAO - EBCAS therefore provide the CP1600 with a means of test-
ing 16 external conditions.

CP1600 CPU PINS AND SIGNALS .
CP1600 CPU pins and signals are illustrated in Figure 2-2.

DO - D15 is a multiplexed Address and Data Bus. Given a total of 40 pins in a package, CP1600 designers have been
forced to share 16 pins between addresses and data. Three control signals, BDIR, BC1, and BC2, identify the traffic
on the Address/Data Bus. External logic (one MSI chip) must decode these three signals to create eight control
signals, as summarized in Table 2-1.

Remaining signals may be divided into four groups: timing, status/control, interrupt, and DMA.

Two timing clock signals are required: ®1 and ®2. These are complementary clock signals which may be illustrated
as follows:
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EBCI ~—P 1 40 P& FCIT
MSYNC ~—P{ 2 39 p—— GND
BC1 #—{ 3 38 e >
BC2 @—1 4 37 p— P2
B8DIR «@— 5 36 b— vpp
D15 <91 6 35 p—— vgg
D14 =P 7 34 p— VcC
D13 >y 8 33 feg— BDRDY
D12 P4 ¢© 32 j— STPST
D11 =P~ 10 CP1600 31 jpe— BUSRQ
D10 <P 11 cPU 30 p—3» HALT
D9 i 12 29 |9 BUSAK
D8 =4 13 28 fg— INTR
D0 =P 14 27 p— INTRM
D1 <P{ 15 26 PP TCI
D7 -] 16 26 == EBCAO
D6 ~P= 17 24 |9 EBCA1
D5 <P 18 23 |3 EBCA2
D4 19 22 PP EBCA3
D3 | 20 21 pg— D2
Pin Name Description Type
DO -D15 Data and Address Bus Tristate, Bidirectional
BDIR, BC1, BC2 Bus control signals Output
D1, &2 Clock signals Input
MSYNC Master Synchronization input
EBCAQ - EBCA3 branch conditi lines Output
gg External branch condition input Input
PCIT Program Counter inhibit/software Input
interrupt signal
BORDY WAIT Input
STPST CPU stop or start on high-to-low transition Input
HALT Halt state signal Output
m, INTRM interrupt request lines input
TCl Terminate current interrupt Output
BUSRQ Bus request Input
BUSAK External bus control acknowledge Output
VeB. VcC. VDD, GND Power and Ground

Figure 2-2. CP1600 CPU Signals and Pin Assignments

MSYNC is a somewhat unusual signal, as compared to other microcomputer clock signals in this book. Following
powerup. MSYNC must be held low for at least 10 milliseconds. On the subsequent rising edge of MSYNC. logic inter-
nal to the CP1600 CPU will synchronize the ®1 and ®2 clock signals to start a new machine cycle. Most of the CPU
devices we have described in this book use a reset signal. or have internal powerup logic which performs this clock
synchronization.

Now consider the status and control signals.

First of all, there are the four control outputs which we have already described: EBCAQ - EBCA3. There is one con-
ditional Branch instruction (BEXT) which will only branch if a high signal is input via EBCI. When the BEXT in-
struction is executed, the low-order four BEXT instruction object code bits are output via EBCAO - EBCA3. External
logic is supposed to decode these four signals by whatever means are appropriate — and thence determine whether
EBCI should be input high or low. A high input, as we have just stated, will result in a branch; a low,input will cause the
next sequential instruction to be executed.

In reality. there is no connection within CP1600 CPU logic between the EBC! input and the four EBCAO - EBCA3 out-
puts. So far as external logic is concerned. the execution of a BEXT instruction is identified by signal levels output and
maintained on the EBCAQ - EBCA3 outputs. while the EBCI input determines whether a branch will or will not occur.
How external logic chooses to determine whether EBCI will be set high or low is entirely up to external logic. The only
vital function served by EBCAO - EBCAS3 is to identify the instant at which a BEXT instruction is executed.

Another unusual control signal provided by the CP1600 is PCIT; this is a bidirectional signal. When input low. this
signal prevents the Program Counter from being incremented following an instruction fetch. This signal is also output
as a low pulse following execution of a software interrupt instruction. Instruction timing separates the active input and
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active output of this signal; providing external logic adheres to timing requirements, a conflict between input and out-
put logic will never arise.

BDRDY is equivalent to the WAIT signal we have described for a number of other microcomputers. BORDY is in-
put low by any external logic which requires more time in order to respond to an I/0 access. Recall that the CP1600
uses a single address space to reference memory or 1/0 devices. The BDRDY signal causes the CPU to enter a Wait
state for as long as BDRDY is being input low; however. during the Wait state CPU logic is not refreshed. Thus a Wait
state cannot last for more than 40 microseconds. or the contents of internal CPU locations will be lost.

STPST, a Halt/Reset input, is an edge-triggered signal. When external logic inputs a high-to-low transition via STPST.
the CPU will complete execution of any interrupt instruction, then will enter a Halt state and output HALT high. If a
non-interruptable instruction is being executed, then the Halt state will not being until completion of next interruptable
instruction’s execution. The Halt state will last until external logic inputs another high-to-low STPST transition, at
which time the Halt output will be returned low and normal programming execution will continue. Execution of the
HLT instruction also causes the CP1600 to enter a Halt state, as described above. .

Let us now look at interrupt signais.

The CP1600 has two interrupt request inputs — INTR and INTRM. INTR has higher priority than INTRM. INTR can-
not be disabled. Typically, TNTR will be used to trigger an interrupt upon power failure or other catastrophes.

The interrupt acknowledge signal is created by external logic which must decode the BC1, BC2, and BDIR sig-
nals, as shown in Table 2-1. Observe that there are, in fact. two interrupt acknowledge signals; the first (INTAK)
acknowledges the interrupt itself. while the second (DAB) is used as a strobe for external logic to return an interrupt ad-
dress vector. The interrupt sequence is described later in this chapter.

The CP1600 has two additional interrupt-related signals which are unusual when compared to other microcomputers
described in this book.

TCl is output high when an End-of-Interrupt instruction is executed. This signal makes it easy for external logic to
generate interrupt priorities which extend across the execution of an interrupt service routine.

Table 2-1. CP1600 Bus Control Signals

BC1 BC2 BDIR SIGNAL | ) FUNCTION

0 0 0 NACT The CPU is inactive and the Data/Address Bus is in a high impe-
dance state.

4} 0 1 BAR A memory address must be input to the CPU via the Data/Address
Bus.

0 1 0 |1AB Acknowledged external interrupt requesting logic must place the
starting address for the interrupt service routine on the Address Bus.

0 1 1 DWS Data write strobe for external memory.

1 0 0 ADAR This signal identifies a time interval during which the Data/Address

Bus is floated, while data input on the Data Bus is being interpreted
as the effective memory address during a direct memory addressing

operation.

1 0 1 bw The CPU is writing data into external memory. DW will precede
DWS by one machine cycle. ‘

1 1 0 D18 This is a read strobe which external memory or 1/0 logic can use in
order to place data on the Data/Address Bus. :

1 1 1 INTAK This is an interrupt acknowledge signal. It is followed by IAD which

is a strobe telling the external logic which is being acknowledged to
identify itself by placing an address vector on the Data/Address Bus.
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Figure 2-5. CP1600 Timing for Memory Read Instruction with Imptied Memory Addressing

CP1600 INSTRUCTION TIMING AND EXECUTION

CP1600 instructions are executed as a sequence of machine cycles. Each machine cycle has four clock periods,
as illustrated in Figure 2-3. Machine cycles are identified by their cycle number and by the levels of the BC1, BC2,
and BDIR signals. Each of the eight level combinations is given a name, taken from Table 2-1. This name becomes the
name of the machine cycle. Thus in Figure 2-4, and in subsequent instruction timing illustrations, each machine cy-
cle is identified by a signal name from Table 2-1.

Figure 2-3 shows general case timing for data output or input on the Data/Address Bus. in between data input or out-
put operations the bus is floated.

CP1600 MEMORY ACCESS TIMING

Figure 2-4 illustrates instruction fetch timing for a CP1600 instruction’s execution. Three machine cycles are re-
quired. During the first machine cycle an address is output. Nothing happens during the second machine cycle; it is a
““time spacing’ machine cycle that routinely separates two CP 1600 Bus access machine cycles. The object code for the
accessed instruction is returned during the third machine cycle.

Figure 2-5 illustrates timing for the simplest memory read instruction’s execution. In this case the data memory
address is taken from one of the CPU registers. There is no difference between timing for the three machine cycles of an
instruction fetch or a data memory read. As illustrated in Figure 2-5, a simple memory read instruction’s execution
consists of two three-machine cycle memory read operations, separated by a spacing no operation machine cycle.
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Figure 2-6. CP1600 Timing for Memory Write Instruction with Implied Memory Addressing

Figure 2-6 illustrates timing for a simple CP1600 memory write instruction execution. Data is output for two
machine cycles, giving external logic ample time to respond to the data output. External logic uses the DWS machine
cycle as a write strobe.

Any memory reference instruction that specifies direct memory addressing will require one three-clock-period machine
cycle to fetch each word of the instruction object code; an NACT clock period will separate each machine cycle. After
the first instruction fetch machine cycle, an ADAR-NACT clock period combination will be inserted in the second (and
third, if present) instruction fetch machine cycle. During an ADAR clock period, BC1 is high, while BC2 and BDIR are
low. No other control signals are active. Thus, for a two-word memory read or memory write instruction that
specifies direct addressing, the following clock periods and machine cycles will be required for instruction ex-

ecution:

Direct Addressing Direct Addressing
Memory Read Memory Write
Machine Cycles Machine Cycle

BAR Fetch first instruction BAR
NACT p <s———————— object code word ————— g { NACT
DTB DTB
NACT «¢~—————Spacing machine cycle—————#»NACT
BAR BAR
NACT NACT
ADAR ) «qg————Fetch second instruction———————={ ADAR
NACT object code word NACT
DTB DTB
NACT «<eg———————Spacing machine cycle ——————— NACT
BAR Memory read Memory write BAF(;
NACT}‘—machine cycle machine cycle ~————— ng T
DTB

DWS
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Figure 2-7. CP1600 Wait State Timing
THE CP1600 WAIT STATE

The CP1600 has a Wait state equivalent to those described for other microcomputers in this book. External logic that
requires more time to respond to an access must input BDRDY low before the end of the BAR machine cycle. during
which an address is output and the device is selected. Timing is illustrated in Figure 2-7.

If you examine Figures 2-4, 2-5 and 2-6, you will see that an address is output during a BAR machine cycle to initi-
ate any external device access. The BAR machine cycle is always followed by an NACT machine cycle; in the middle of
T1 during this NACT machine cycle. the CP1600 samples BDRDY. |f BDRDY is low. then a sequence of NACT machine
cycles occurs. In the middle of T4 for every NACT machine cycle, the CP1600 samples BDRDY again. Upon detecting
BDRDY high. the CP1600 resumes instruction execution with a DTB machine cycle.

A Wait state must last for less than 40 microseconds, since the CP1600 is a dynamic device.

THE CP1600 HALT STATE

The CP1600 has a Halt state which may follow execution of the Halt instruction, or may be initiated by external
logic. )

When the Halt instruction is executed, then, following the instruction fetch machine cycle, the HALT signal is output
high and a sequence of NACT machine cycles is executed.

External logic initiates a Halt state by making the STPST input undergo a high-to-low transition. Following execution of
the next interruptable instruction. a Halt state begins. The HALT signal is output high and a sequence of NACT
machine cycles is executed.

A Halt state, whether it is initiated by execution of a Halt instruction or by a high-to-low transition of STPST, must be
terminated by a high-to-low transition of STPST. This will cause the Halt state to end at the conclusion of the next
NACT machine cycle. Timing for a Halt state which is initiated and terminated by STPST may be illustrated as follows:

STPST ]
HALT
Next interruptable \ Y J
instruction’s
execution . HALT STATE Next NACT machine
ends here cycle ends here
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The PCIT signal as an input inhibits CP1600 Program Counter increment logic. Thus, external | CP1600
logic can input PCIT low — in which case the same instruction will be continuously re-executed | PCIT

until PCIT goes high again. However, PCIT should only change levels while the CPU has been | SIGNAL
halted. Thus, PCIT and STPST should be used together as follows:

' PCIT REQUEST
STPST
- PCIT

CP1600 INITIALIZATION SEQUENCE

The CP1600 is initialized by inputting the MSYNC signal low for a minimum of 10 milliseconds after power is
first applied to the CPU. .

MSYNC must make a low-to-high transition, marking the end of the initialization, on a rising edge of the ®1 clock sig-
nal. On the next rising edge of ®1, instruction execution will begin. This may be illustrated as follows:

' ] 1

{ ]

T2 1 T3 ) T4,
|

«»1_F\_ﬂ§‘\j-\r-\'m

When insi_ruction execution begins, interrupts are disabled. The following sequence of machine cycles is executed:

| T

NACT -

|IAB «s— Read Data/Address Bus and load into Program Counter
NACT

NACT

NACT

BAR «ag—— Output Program Counter contents to fetch first instruction
NACT

DTB

etc

During the IAB machine cycle. external logic must supply a 16-bit address at DO - D15. Your external logic must pro-
vide this address, which in the simplest case may be 0000 by grounding the bus, or FFFF1g by tying it to +5V following
a startup.

The address which is input at IAB is output at BAR, initiating program execution.

CP1600 DMA LOGIC

CP1600 DMA logic is quite standard. When external logic wishes to transfer data under DMA control, it inputs
BUSRQ low. At the conclusion of the next interruptable instruction’s execution, the CPU floats the
Data/Address Bus and enters a Wait state, during which a sequence of NACT machine cycles is executed.
BUSAK is output low at the beginning of the first NACT machine cycle.

The NACT machine cycles that occur during a DMA operation refresh the CPU. NACT machine cycles that occur
during a' Wait state do not refresh the CPU. This means that any number of NACT machine cycles can occur during a
DMA break, while a Wait state must be shorter than 40 microseconds.

The DMA break ends when external logic inputs BUSRQ high again. BUSRQ is sampled during T1 of every DMA NACT
machine cycle. When BUSRQ is sampled high, two additional NACT machine cycles are executed. then BUSAK is out-
put high and normal program execution resumes.

DMA timing is illustrated in Figure 2-8.
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Figure 2-10. CP1600 Timing for TCl Instruction’s Execution

THE CP1600 INTERRUPT LOGIC
The CP1600 uses a vectored interrupt processing system.
External logic requests an interrupt by inputting a low signal at either the INTR or INTRM pins.

Following the execution of the next interruptable instruction, the CP1600 acknowledges the interrupt by pushing
Register R7 contents {the Program Counter) onto the Stack; then the CP1600 outputs 111, followed by 010 at BC1,
BC2. and BDIR. External logic must respond by placing 16 bits of data on the Data/Address Bus. These 16 bits of data
will be loaded into Register R7, the Program Counter, thus causing program execution to branch to an interrupt service
routine dedicated to the interrupt. Timing is illustrated in Figure 2-9.

The PCIT signal is output low following execution of a software interrupt instruction (SIN). This is the only microcom-
puter described in this book which allows external logic to respond to a software interrupt in this fashion. Allowing ex-
ternal logic to respond to a software interrupt only makes sense when you anticipate your product being used in a
minicomputer-like environment. Typically, the software interrupt will interface to logic of a front panel or console.
When an SIN instruction is executed, a one-machine cycle low PCIT pulse is output.

You may. if you wish, end an interrupt service routine by executing a Terminate Current Interrupt (TCI) instruction, in
which case the TCI signal will be output high.

Timing for TCl is given in Figure 2-10.

Following an interrupt acknowledge. the interrupt service routine must execute instructions in order to disable inter-
rupts and save the contents of registers on the Stack. The exception is Register R7, the Program Counter, which is auto-
matically pushed onto the Stack following an interrupt acknowledge.

External logic is entirely responsible for any type of interrupt priority arbitration which may occur. and for the genera-
tion of the interrupt vector address which must be input following an interrupt acknowledge.
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It is quite easy to generate signals equivalent to other microcomputer system busses from the CP1600 System Bus.
Therefore, you can use parts described in Volume 3 to handle CP1600 interrupt requirements.

THE CP1600 INSTRUCTION SET

The CP1600 instruction set is relatively straightforward. Addressing modes. which we have already described, are sim-
ple, and instructions are typical of those we have seen and described for other microcomputers. Unusual features relat-
ing to addressing modes available with individual instructions are summarized in Table 2-2, which describes the
CP1600 instruction set.

If you have never programmed a PDP-11 minicomputer, then you should pay particular attention to program-
ming techniques that result from the Stack Pointer and Program Counter being accessed as general purpose
registers.

A wide variety of Register Operate instructions allow you to compute data and load the result directly into Register R7,
the Program Counter. In effect, these become computed Jump instructions.

The ability to manipulate Register R6, the Stack Pointer, as though it were a general purpose register means that it is
easy to maintain a number of different Stacks in external read/write memory.

The Jump-to-Subroutine instruction has a minicomputer flavor to it. Rather than saving the return address on the
Stack, Register R7 contents are moved to General Purpose Register R4 or R5. A number of minicomputers will save a
subroutine return address in a general purpose register in this fashion. The problem with this logic is that you must ex-
ecute an additional instruction within the subroutine to save the return address on the Stack if you are going to use
nesting subroutines. If you are passing subroutine parameters, however, this is an excellent arrangement, for the Jump-
to-Subroutine instruction places the address of the parameter list directly in a Data Counter with auto-increment. We
have described the concept of parameter passing in Volume 1, Chapter 7.

Note that the CP1600 instruction set lacks a logical OR.

In Tables 2-2 and 2-4, instruction length is given in terms of “words” rather than “bytes”. as we have done in pre-
vious chapters. Since only the lower 10 bits of the CP1600 object code are presently used, system configurations need
not have the full 16-bit word size. Hence a “word” may be 10 to 16 bits wide. depending on the implementation.

The following notation is used in Table 2-2:
ADDR One word of direct address

cond ‘Condition on which a branch may be taken. Table 1-3 lists all 14 branch conditions.
DATA One word of immediate data.

DISP One word displacement. See Table 2-4 for location of sign bit.

E External branch condition.

EBCAO-3 The external branch condition address lines: EBCAO, EBCA1, EBCA2, and EBCAS.
EBCI The external branch condition input line.

LABEL A 16-bit direct address, target of a Jump instruction. See Table 2-4 for the bit format.
PCIT The software interrupt output line.

RB General Purpose Register R4, R5, or R6.

RD One of the general purpose registers, used as a destination for operation results.

RM One of the general purpose registers used as a Data Counter, R4 or R5, if specified. is auto-incremented
after the memory access. R6 is incremented after a write, and decremented before a read.

RR General Purpose Register RO, R1, R2, or R3.

RS One of the general purpose registers. used as the source of an operand.

Statuses:

S the Sign status
C the Carry status
Z the Zero status
O the Overflow status
The following symbols are used in the STATUSES column:
X the status flag is affected by the operation
a blank means the status flag is not affected
0 the operation clears the status flag
1 the operation sets the flag
2 the Overflow flag is affected only on 2-bit shifts or rotates
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The Status Word. whose bits correspond to the condition of the status flags in the following way:

321 0 <« BtNo

E E Status Word

When the status word is copied into a register, it goes to the upper half of each byte:

s 12In 87 4]3 o} I3 of

ERR] [sw]

When the status word is loaded from a register, it comes from the upper half of the lower byte:

Is 8f7 4] o] 3 0

[Rs] [sw]

Bits y through z of the Register x. For example, R7 < 15,8 > represents the upper byte of the Program
Counter

Indicates that the operand “,2" is optional
A low pulse

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets.
then the designated register’'s contents are specified. If a memory address is enclosed within the brackets.
then the contents of the addressed memory location are specified.

Implied memory addressing: the contents of the memory location designated by the contents of a register.
Logical AND

Logical Exclusive-OR

Addition or subtraction of a displacement. depending on the sign bit in the object code.

Data is transferred in the direction of the arrow.



Table 2-2. CP1600 Instruction Set Summary

81-z

STATUSES
TYPE | MNEMONIC OPERAND(S) | WORDS sz c o OPERATION PERFORMED
Mvi ADDR,RD 2 [RD]—[ADDR]
Load register from memory, using direct addressing.
o w MVI@ RM,RD 1 [RD]-—~[{RM]]
; g g Load register from memory, using implied addressing.
E g g MVO RS,ADDR 2 [ADDR]—[RS]
g o ﬁ Store register to memory, using direct addressing.
z zc MVO@ RS,AM 1 [[RM]]1—[RS]
Store register to memoty, using implied addréssing. If RS=R4, R5, R6 or R7, then RS=RM is not
supported.
ADD ADDR,RD 2 XX X X {RD]—[RD] + [ADDR]
w Add memory contents to register, using direct addressing.
e ADD@ RM,RD 1 XX X X [RD}—[RD] + [[RM]]
‘Ilzl Add tmemory contents to register, using implied addressing.
ui sus ADDR,RD 2 Xx X X [RD]—[RD] - [ ADDR]
E Subtract memory tontents from registeér, using direct addressing.
> sus@ RM,RD ' XX X X {RD]—[RD] - [[RMI]}
g Subtréct memory contents frorfi register, using implied addressing.
= cmpP ADDR.RS 2 XX X x [RS]- [ADDR]
§ Cdmpare memory with regi using direct addressing. Only the status flags are
o affected.
z CMP@ RM,RS 1 XX x X [Rs]- [[AM]]
o Compare memory contents with register's, using implied addressing. Only the status flags are
= affected.
> AND ADDR,RD 2 X X [RD)—{RD] A [ADDR]
5 AND memory contents with those of register, using direct addressing.
S AND@ RM;RD 1 X X LRDJ—[RD] A [[RM]]
8 AND memory contents with those of register, using implied addressing.
w XOR ADDR,RD 2 X X [RD]-—[RD]+ [ADDR]
Exclusive-OR memory contents with those of register, using direct addre\ssin@
XOR® RM,RD 1 X X [RD]—[RD1+ [[RM]]
Exclusive-OR memory with those of register, using implied addressing.
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Table 2-2. CP1600 Instruction Set Summary (Continued)

STATUSES

TYPE MNEMONIC OPERAND(S) WORDS sz ¢ O OPERATION PERFORMED
s MvIl DATA,RD 2 [RD]— DATA
g Load immediate to specified register.
w MVOt RS,DATA 2 [[R7] + 1]—I[RS]
g Store contents of specified register in immaediate field of MVOl instruction. This is only possible if
- program memory is read/write memory {rather than ROM).
w ADDI DATA,RD 2 XX X X [RD)—[RD] + DATA
: Add immediate to specified register.
[ susl DATA,RD 2 XX X X [RD}—[RD] - DATA
s Subtract immediate data from specified register.
w CMPI DATA RS 2 XX X X [RD] - DATA
< Compare i diate data with of specified register. Only the status flags are affected.
a ANDI DATARD 2 X X [RDI—[RD] A DATA
3 AND immediate data with contents of specified register.
2 XORI DATARD 2 X X (RD]—[RD]¥ DATA
Exclusive-OR i diate data with of specified register.
J LABEL 3 [R7]— LABEL
Jump to given address.
o JR RS 1 X X [R7]1—([RS]
g Jump to address contained in specified register.
- JSR RB,LABEL 3 [RB1—[R7]; [R7)— LABEL
) Jump to given address, saving Program Counter in R4, R5, or R6.
B DISP 2 {R7]J—[R71+2+DISP
Branch relative to Program Counter contents.
Bcond DISP 2 If cond is true, [R7]—[R7}+ 2+DISP
Branch relative on given condition; otherwise, execute next sequential instruction.
BEXT DISPE 2 EBCAO-3 —E;

BRANCH ON
CONDITION

If EBCI=1, [R7]—[R7] +2+DISP
Branch relative if external condition is true.
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Table 2-2. CP1600 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S} WORDS 2z c¢c O OPERATION PERFORMED
MOVR RS.RD 1 X [RD]—(RS]
w Move contents of source register to destination register.
§ E ADDR RS.RD ' X X X [RD]—[RS]+ [RD]
1 E Add of specified regi
258 SUBR RS,RD 1 X X X [RD]—{RD] - [RS]
: o Subtract contents of source register from those of destination register.
w g CMPR RS.RD 1 X X X [RD] - {RS]
@ g Compare registers’ contents. Only the status flags are affected.
] ANDR RS.RD 1 X [RD)—[RD] A [RS]
=2 AND of specified
XORR RS,RD 1 X [RD1—[RD}+[RS]
Exclugive-OR of specified regi
CLRR RO 1 ! [RD]—[RD]V {RD]
Clear specified register.
TSTR RS 1 X [RS]—[RS]
Test contents of specified register.
INCR RD 1 X [RD}—[RD]+1
,“_" Increment contents of specified register.
S DECR RD 1 X [RD}—([RD] - 1
&‘ Decrement contents of specified register.
° COMR RD 1 X [AD]—[RD]
w Complement contents of specified register (ones complement).
o NEGR RD 1 X X X {RDI—IRD] +1
g Negate contents of specified register (twos complement).
’ ADCR RD 1 X x x {RD]—[RD] + [C]
Add Carry bit to specified register contents.
sw RR(,2) 1 X

E—3-

[RR]
Shift logical left one or two bits, clearing bit O (and bit 1 if shifting twice),
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Table 2-2. CP1600 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S} WORDS zZ c O OPERATION PERFORMED
ALC RR(2) 1 X X 2 @ 15 €—— 0
[RR]
Rotate left one bit through Carry, or rotate 2 bits left through Overflow and Carry.
suc AR, 2) 1 X X 2 @ TS ) 0
[RR]
— Shift logical left one bit into Carry, clearing bit O, or shift left two bits into Overflow and Carry,
8 clearing bits 0 and 1.
2
F4 SLR RR(,2) 1 X
= 0
3 1RRI
e Shift logicat right .one or two bits, clearing bit 15 {and bit 14 if shifting twice).
w
=4
SAR RR(,2) 1 X
é (F————",)
8 : [RR]
«c Shift arithmetit; right one or two bits, copying high order bit.
=
" '
2 [ —
[RR]
Rotate right one bit through Carry, or rotate two bits right through Overflow and Carry.
SARC RR(,2) 1 X
| pE—ErE
[RR]
Shift arithmetic right one bit into Carry,. or two bits into Overflow and Carry.
SWAP RR(,2) 1 X

[RR]

Swap bytes of register once, or twice.
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Table 2-2. CP1600 Instruction Set Summary (Continued)

STATUSES
OPERATION PERFORMED
TYPE MNEMONIC OPERAND(S) WORDS sz c O
5 PSHR RS 1 Separate mnemonics for MVO@ RS,R6.
E PULR RD 1 Separate mnemenics for MVIGRE,RD.
SIN (2) 1 PCIT — LI
Software interrupt.
EIS 1 Enable interrupt syetem.
- . .
3 DIS 1 Disable interrupt system.
E TCI 1 Terminate current interrupt.
i JE LABEL 3 Jump to given address and enable interrupt system.
r4 Jo LABEL 3 Jump to given address and disable interrupt system.
JSRE RB,LABEL 3 Jump to given address, saving Program Counter in R4, RS or R6, and enable interrupt system.
JSRD RB,LABEL 3 Jump to given address, saving Program Counter in R4, RS or R6, and disable interrupt system.
GSWD RD 1 [RD <15,12>1—[SWI]; [RD<7,4>]1—[SW]
Place Status Word in upper half of each byte of the specified register. RD may be RO, R1, R2 or
R3.
9 RSWD RS 1 XX X X [sw]l—I[RS<7,4>]
: Load Status Word from bits 7 through 4 of the specified register.
1S CLRC 1 0 [cl—o
Clear Carry.
SETC 1 1 [Ccl—1
Set Carry.
NOPP 2 No Operation.
NOP (2) 1
HLT 1 Halt after executing next instruction.
SDBD 1 Set double byte data mode for next instruction, which must be of one of the following types:
Primary or secondary 1/0 or memory. reference
Immediate or immediate operate
If implied addressing through R1, R2, or R3 is used, the same byte will be accessed twice; address-
ing through R4, R5, or R7 will give bytes from the [ ion and that add after
auto-i Direct ing and Stack addressing are not all d in double byte mode.




Table 2-3. CP1600 Branch Conditions and Corresponding Codes

OBJECT CODE
MNEMONIC BRANCH CONDITION | DESIGNATION
c c=1 0001
LGT Cany
(logical greater than)
NC c=0 1001
ur No Carry
(logical less than}
ov 0o=1 0010
Overfiow
Nov 0=0 1010
No overfiow
PL §$=0 0011
Plus
M §=1 1011
Minus
ZE zZ=1 0100
EQ Zero (equal)
NZE Z=0 1100
NEQ Nonzero (not equal)
LT S¥0 =1 0101
Less than
GE S¥0 =0 1101
Greater than or equal
LE ZV{SVO0)=1 0110
Less than or equal
GT ZV(Sv0)=0 1110
Greater than
usc C¥S =1 0111
Unequal sign and camry
ESC C¥S =0 11
Equal sign and camy

The following notation is used in Table 2-4:

Where ten digits are shown, they are the ten low-order bits of a 10 to 16-bit word. (Word size depends on the system
implementation.) Where four digits are shown, they represent the hexadecimal notation for an entire word (10 to 16
bits).

bb Two bits indicating one of the first three general purpose registers:
00 =RO
01 =R1
10 =R2
ccee Four bits giving the branch condition, as shown in Table 2-3.
ddd Three bits indicating a destination register, RD:
000 = RO
001 =R1
010 = R2
011 =R3
100 = R4
101 =R5
110 =R6
111 =R7
eeee Four bits giving the external branch condition, E. Control signals EBCAO-EBCAS reflect the state of these four
bits.

1] One word of immediate data (10 or 16 bits)
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mmm Three bits indicating a Data Counter Register RM:

000 = RO
001 =R1
010 =R2
011 =R3
100 = R4
101 =Rb
110 = R6
111 =R7
m One bit indicating the number of rotates or shifts:

0 one bit position
1 two bit positions
p One bit of immediate address
P One hexadecimal digit {4 bits) of immediate address
r Two bits indicating one of the first four general purpose registers:
00 =RO
01 =R1
10 =R2
11 =R3
sss Three bits indicating a source register. RS:
000 = RO
001 =R1
010 = R2
011 =R3
100 = R4
101 =R5
110 = R6
111 =R7
z Sign of the displacement:
0 add the displacement to PC contents
1 subtract the displacement from PC contents

In the “Machine Cycles” column, when two numbers are given with one slash between them (e.g.. 7/9), execution time
depends on whether or not a branch is taken. When two numbers are given, separated by two slashes (such as 8//11),
execution time depends on which register contains the implied address.

THE BENCHMARK PROGRAM

For the CP1600 our benchmark program may be illustrated as follows:

Mvil IOBUF.R4 LOAD THE I/0 BUFFER STARTING ADDRESS INTO R4
MVII TABLE.R1 LOAD THE TABLE STARTING ADDRESS INTO R1
Mvi@ R1.R5 LOAD ADDRESS OF FIRST FREE TABLE WORD INTO R5
Mvil CNT.R2 LOAD WORD COUNT INTO R2
LOOP Mvi@ R4.RO LOAD NEXT DATA WORD FROM IOBUF
MVO@ RO.Rb STORE IN NEXT TABLE WORD
DECR R2 DECREMENT WORD COUNT
BNZE LooP RETURN IF NOT END
MVO@ R5.R1 RETURN ADDRESS OF NEXT FREE TABLE BYTE

This benchmark program makes very few assumptions. The input table IOBUF and the data table TABLE can have any
length, and can reside anywhere in memory. The address of the first free word in TABLE is stored in the first word of the
TABLE.
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Table 2-4. CP1600 Instruction Set Object Codes

MACHINE MACHINE
INSTRUCTION OBJECT CODE | WORDS CYCLES INSTRUCTION OBJECT CODE | WORDS CYCLES
ADCR RD 0000101ddd 1 6 JSRE RB,LABEL 0004 3 12
ADD ADDR,RD 1011000ddd 2 10 bbppppppO1
PPPP . PPPP
ADD@ RM,RD 1011 mmmddd 1 8//11 MOVR RS,RD 0010sssddd 1 6//1
ADDI DATARD 1011111ddd 2 8 MVI ADDR,RD 1010000ddd 2 10
i PPPP
ADDR RS,RD 0011sssddd 1 6 MVI~ RM,RD 1010mmmddd 1 8//11
AND ADDR,RD 1110000ddd 2 10 MVl DATA,RD 1010111ddd 2 8
PPPP m
AND@ RM,RD 1110mmmddd 1 8//11 MVO RS.ADDR 1001000sss 2 1
ANDI DATA,RD 1110111ddd 2 8 PPPP
m MVO@ RS,ARM 1001mmmsss 1 9
ANDR RS,RD 0110sssddd 1 6 MVOI RS,DATA 1001111sss 2 ]
B DISP 1000200000 2 7/9 "
PPPP ‘ NEGR RD 0000100ddd 1 6
Bcond DISP 1000z0ccee 2 7/9 NOP (2) 000011010m 1 6
PPPP NOPP 1000201000 2 7
BEXT DISPE 100021eeee 2 7/9 PPPP
PPPP PSHR RS 1001110sss 1 9
CLRC 0006 1 4 PULR RD 1010110ddd 1 "
CLRR RD 0111dddddd 1 6 RLC RR(,2) 0001010mer 1 6/8
CMP ADDR,RS 1101000sss 2 10 RRC RR(,2) 0001110mer 1 6/8
PPPP : RSWD RS 0000111sss 1 6
CMP@ RM,RS 1101mmmsss 1 8//1 SAR RR(2) 0001101mrr 1 6/8
CMPI DATA RS 1101111sss 2 8 SARC RR(,2) 000111 1mrr 1 6/8
[} SDBD 0001 1 4
CMPR RS,RD 0101sssddd 1 6 SETC 0007 1 4
COMR RD 0000011ddd 1 6 SIN (2) 000011011m 1 6
DECR RD 0000010ddd 1 6 SLL RR(,2) 0001001mr 1 6/8
DIS 0003 1 4 SLLC RR(,2) 000101 1mrr 1 6/8
EIS 0002 1 4 SLR RR(,2) 0001100mrr 1 6/8
GSWD RR 00001100 1 6 SUB ADDR,RD 1100000ddd 2 10
HLT 0000 1 4 PPPP
INCR RD 000000 1ddd 1 6 SUB@ RM,RD 1100mmmddd 1 8//11
J LABEL 0004 3 12 SUBT DATARD 1100111ddd 2 8
11pppppp00 m
PPPP SUBR RS,RD 0100sssddd 1 6
JD LABEL 0004 3 12 SWAP RR(,2) 0001000nr 1 6/8
11pppppp.10 TCl 0005 1 4
PPPP TSTR RS 0010ssssss 1 6//7
JE LABEL 0004 3 12 XOR ADDR,RD 1111000ddd 2 10
11ppppppO1 PPPP
PPPP XOR@ RM,RD 1111mmmddd 1 8//11
ka RS 0010sss111 1 7 XORI DATA,RD 111111 1ddd 2 8
JSR RB,LABEL 0004 3 12 1
bbpppppp00 XORR RS.RD 0111sssddd 1 6
PPPP
JSRD RB,LABEL 0004 3 12
bbpppppp 10
PPPP
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CP1600 8080A

System Bus System Bus
Signals Signals
EEE—. Latched ——————» A0
Address :
DO *——H —— Buffer ~ |———— = A5
: MUX ————’
E DO High-order
D15 -— ¢—— | Latched : b7 byte
Data l@a——— 9 DO Low-order
-] Buffer ——— 8 D7 byte
BAR

DTB v
' 90——-» WVEVR
DWS R
—DO——-> MEMW

—_—

IAB

BC2 —— =] 1 of 8 Decoder | \nTAK
=>0—-——> INTA
BDIR ———ﬁ ADAR
—>

DN

BC1

NACT

INTR - O< INT
o

INTRM - INT
BUSRQ L 4 —» BUSEN
HOLD
BDRDY -— RDYIN
WAIT
MSYNC RESET

STSTP -

HALT

TCI

EBCAO

BUSAK —
—

L

—

—

EBCA3

EBCl -—

Figure 2-11. CP1600 to 8080A Bus Conversion
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SUPPORT DEVICES THAT MAY BE USED WITH THE CP1600

A CP1600C microcomputer system with any significant capabilities will use support devices of some other
microprocessor. Parallet I/O capability is available with the CP1680, (described néxt), but priority interrupt logic. DMA
logic, and serial 1/0 logic., to mention just a few common options, may need additional support devices. Fortunately, it
is quite easy to generate an 8080A-compatible system bus from the CP1600 system bus. Logic is illustrated in
Figure 2-11.

The CP1600A is the fastest version of the CP1600 CPU; it runs with a 500 nanosecond machine cycle. The CP1600
machine cycle is equivalent to an 8080A clock period. Since the standard 8080A clock period is also 500 nanoseconds,
no speed conflicts will arise.

The bus-to-bus interface logic illustrated in Figure 2-11 is self-evident, with the exception of bus demultiplexing logic.
The CP1600 Data/Address Bus is shown buffered by a demultiplexing buffer that is connected to two latched buffers.
One of the latched buffers accepts the demultiplexer outputs only when a valid address is being output, as identified by
BAR high. The second latched buffer may be a bidirectional latched buffer, or it may be two unidirectional latched
buffers. Three latching strobes are required: DTB, |AB, and DWS.

DTB and IAB are data input strobes. DTB strobes data input that is to be interpreted as data, while |AB stroves data in-
put that is to be interpreted as an address. So far as external logic is concerned. both of these signals are simple data in-
put strobes. We could therefore generate a single data input strobe as the OR of DTB and IAB. When this data input
strobe is high, information on the 8080A System Bus side of the latched data buffer must be input to the buffer; this
data must simultaneously be transmitted to the multiplexer.

DWS is the data output strobe. When high, this signal must strobe data from the multiplexer to the latched data buffer;
this latched data must immediately appear at the 8080A System Bus side of the latched data buffer.

Since the CP1600 uses a 16-bit Data Bus, you will probably have to generate two external device data busses; a high-
order byte bus and a low-order byte bus. All external devices that transmit or receive parallel data must be present in
duplicate. For example, were 8255 parallel interface devices to be present, the following connections would be re-
quired:

- WR
- RD
- L 4 < - DO
- > D7
- 1 —.b D8
- i D15
- - AQ
- - Al
-4 < - A2
- ; A5
Device
Select
. Logic
Do'o o'[)7 DO} ee | D7
- et
PA high __ PA low
- WR = WR lg—
- 8255 RO [ R0 g5 [
PB high PPI PPI PB low
AO 1 A0 e —
Al - - A1 jaag—
PC high . PC low
CE sl & —1 CE fg—
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The CP1600 and MC6800 system busses are singularly incompatible. You should not attempt to use MC6800 support

devices with the CP1600.

TOr ——f 40— INTRQ
IMSKO -— 2 39 j— IMSKI
DO «@—i] 3 38 f-@—BC1
D1 -— 4 37 j=@—— BC2
D2 -@—P»{ 5 36 j<@—— BDIR
D3wt—®] & 35 p@——TE
D4 -—p>y 7 34 j-@—— ERROR
D5 -@—»] 8 I Vee
D6 -—{ 9 32 GND
p7<a—mf10 cPieso 31 VoD
TKT —=f 11 108 30 p——PE
PCLR ——=f 12 29 f——72R
PDO «g—»q 13 28 f=@— PD15
PD1 -g—{ 14 27 PD14
PD2 <g—d»q 15 26 p— PD13
PD3 -g—P] 16 25 p— PD12
PD4 -@—y 17 24 pag—PD11
PD5 w84 18 23 p~@—=- PD10
PD6 «g—»1 19 22 pegt— PD9
PD7 -@—»] 20 21 f=g— PD8
Pin Name Description Type
DO - D7 CPU Data/Address Bus Bidirectional, tristate
PDO - PD15 Peripheral 1/0 Port Bidirectional
BDIR, BC1, BC2 Bus Control signals Input
CK1 Clock signal Input
CE Chip Enable Input
PE 1/0 handshake control Output
AR 1/0 handshake control Input
@5 Interrupt request Output
TCI Terminate current interrupt Input
IMSKI Daisy chain priority Input
IMSKO Daisy chain priority Output
@ Error interrupt request Input
PCLR Reset Input
Vee: Vpp. GND - Power, Ground

Figure 2-12. CP1680 10B Signals and Pin Assignments
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.
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ERROR ——— ]
ERROR ——~
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ERROR ———

Figure 2-13. A CP1600-CP1680 Microcomputer Configuration



THE CP1680 INPUT/OUTPUT BUFFER (10B)

The CP1680 IOB is a parallel 1/0 device designed specifically for the CP1600 CPU. This device provides a single
16-bit parallel 1/0 port, which may optionally be configured as two 8-bit 1/0 ports. Primitive handshaking control
signals are available with the parallel 1/O logic. Elementary interval timer and prioritized interrupt logic is also
provided.

Figure 2-1 also illustrates that part of our general microcomputer system logic which has been implemented on
the CP1680 10B.

The CP1600 10B is packaged as a 40-pin DIP. It requires two power supplies. +5V and +12V. All inputs are TTL com-
patible. The device is implemented using N-channel MOS technology.

Figure 2-13 illustrates a CP1600 microcomputer system with three CP1680 10B devices in the configuration.
CP1680 IOB PINS AND SIGNALS

The CP1680 IOB pins and signals are illustrated in Figure 2-12. We will summarize these signals and the func-
tions they serve before examining device operations in detail.

Let us begin by looking at the interface between the CP1680 0B and the CP1600 CPU.

DO - D7 provide an 8-bit parallel Data/Address Bus via which all communications between the CPU and 10B oc-
cur. This bus must connect to the low-order eight bits of the 16-bit CPU Data/Address Bus.

The three bus control signals, BC1, BC2, and BDIR, connect the CP1680 to the CP1600 as illustrated in Figure
2-13. The CP1680 I0B decodes these three bus control signals internally.

A clock input is required by the CP1680. This clock input (CK1) is used by internal logic to determine when BC1,
BC2, and BDIR are valid. CK1 must have the following wave form:

T1:T2|T31T4 T1!T2:T3:T4
{ 1

P1

P2

CK1

CK1 must be derived from the CP1600 clock signals by external logic.
Let us now look at the interface between external logic and the CP1680 |0B.

PDO - PD15 provide a 16-bit parallel /0 port which can optionally be configured as | CP1600 1/0

two 8-bit I/0 ports. While PDO - PD15 are in theory bidirectional, these pins are more ac- | PORT PIN

curately described as pseudo-bidirectional. This is because when a zero has been written | CHARACTERISTICS
to one of these pins, the output can sink 1.6 mA for an output voltage of +0.5V. External
logic will have a hard time overcoming this sink in order to pull the pin high. In contrast. when a 1 is written to one of
these pins, the output sources just 100uA at +5V. External logic will have little problem sinking 100uA in order to pull
a pin low. Therefore, you should output a 1 to any pin that is subsequently to receive input data. External logic will then
leave the pin high when inputting 1. while pulling the pin low to input 0.

The handshaking control signals which link the CP1680 10B with external logic are PE and AR. PE is a control signal
which is output by the CP1680, and AR is a control signal which is input to the CP1680.

Now consider CP1680 interrupt signals.

An interrupt request is transmitted to the CP1600 CPU via INTRQ. The CPU acknowledges the interrupt via the
INTAK combination of BDIR, BC1, and BC2. TCI must be output low by the CPU at the end of the interrupt ser-
vice routine. This signal is required by CP1680 interrupt logic. which uses the low TCI pulse in its priority arbitration,
as described later in this chapter.
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Interrupts may be generated by conditions internal to the CP1680. or by a low input at ERROR. The ERROR input is
reserved for error conditions detected by external logic.

IMSKI and IMSKO are interrupt priority input and interrupt priority output signals, respectively. These signals are
used to generate daisy chain interrupt priorities between CP1680 10B devices, as illustrated in Figure 2-13. We will
describe CP1680 interrupt priorities in more detail later in this chapter.

‘MCLR is the master reset controf input for the CP1680. This signal must be input low for at least 10 milliseconds in
order to reset the CP1680 10B.

CP1680 ADDRESSABLE REGISTERS
The CP1680 has eight addressable locations, which may be illustrated as follows:

pr— s

Control

Data, low PDO - PD15

Data, high <::>

DO - D7 Timer, low

IR

Timer, high

1/0 interrupt
vector

Timer interrupt
vector

i

Error interrupt
vector

I

These eight addressable locations are all 8-bit registers; they are addressed using the first eight addresses in a 256-ad-
dress block. as follows:

Register Address
Control 0
Data buffer, low-order byte 1
Data buffer, high-order byte 2
Timer, low-order byte 3
Timer, high-order byte 4
1/0 interrupt vector 5
Timer interrupt vector 6
Error interrupt vector 7
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The actual 266 addresses will be identified by the eight high-order CP 1600 Data/Address Bus lines, which will be used
to create CP1680 device select logic. This device select logic creates CE (the chip enable signal); it may be illustrated
as follows:

- - = 0o
- . » D7
- s D.8

- ¢ & D5

XXXXXXXX v '

causes CE
low DO - - - D7 at CP1680
— — N s’
XXXXXXXX 00000Y VY Y Valid CP1680 addresses

L May be 000, 001, 010, 011, 100, 101, 110, 111

§ May have any 8-bit pattern that device select logic
1 has been designed to create CE low in response to.

THE CP1680 CONTROL REGISTER
We will summarize the individual bits of the CP1680 control register before describing the operations they control.
Here are CP1680 Control register bit assignments:

7 6 5 4 3 2 1 0 <ag——Bit No.

CP1680 Control register

. This is called the
Ready bit.
PE=Ready

ERROR input signal level held here

{o - Parallel 1/0 active }
1 - Parallel I/O inactive

0 - PDO-PD15 configured as two 8-bit ports
1 - PDO-PD15 configured as one 16-bit port

{0 - Disable parallel 1/0 and Error interrupts
11 - Enable parallel 1/0 and Error interrupts

O - Disable timer interrupts
1 - Enable timer interrupts

0 - Disable clock logic
{1 - Enable clock logic

0 = even parity
1 = odd parity

Parity of D8-D15 byte }

Parity of DO-D7 byte

2-32



Bit O is always the complement of the PE controt output. This bit may be interrogated by the CPU. If parallel data
transfer interrupts are disabled. this allows the CPU to poll on status when monitoring parallel data transfers. PE signal
levels are illustrated in Figures 2-14 and 2-15.

Bit 1 reflects the level of the ERROR input. If parallel data transfer interrupt logic is disabled. then the Error interrupt
logic is also disabled. Thus, the CPU must also examine the Error status bit when polling the CP1680.

Bit 2 determines whether PDO - PD15 will act as a single 16-bit /O port. or as two 8-bit /O ports. This is only important
when outputting data.

Control register bits 3 and 4 are used to enable and disable parallel data transfer and Error interrupt logic, and timer in-
terrupt logic.

Control register bit 5 is used to enable and disable CP1680 interval timer logic. If this bit is 0. the interval timer will not
decrement. -

Bits 6 and 7 report the parity of the high-order byte and low- order byte for data that is input or output via PDO - PD15. 0
indicates even parity while 1 indicates odd parity.

All Control register bits may be written into or read. You should be very careful when setting or resetting individual bits
not to simuitaneously modify other Control register bits. This means you should use a three-instruction sequence with
an AND or OR mask to set or reset any Control register bit. For details see Volume 1, Basic Concepts.

CP1680 DATA TRANSFER OPERATIONS
The CPU inputs and outputs data via the CP1680 I0B by executing MVI and MVO instructions, respectively.

The CPU must access the CP1680 in byte mode. since an 8-bit Data/Address Bus (DO - D7) connects the CPU and the
CP1680 I0B. Whether the 1/0 port PDO - PD15 is configured as a single 16-bit port or as two 8-bit ports has no bearing
on the fact that the CPU must access the CP1680 in byte mode.

The most efficient way of accessing the CP1680 is by using the SDBD instruction with implied memory ad-
dressing. Consider data input. If PDO - PD15 is configured as two 8-bit 1/0 ports and you wish to access just one of
these I/0 ports. then you can use implied memory addressing via R1, R2, or R3. We may illustrate input from the high-
order byte of 1/0 Port PD8 - PD15 as follows:

i 1
Register 0 PDO - PD7
i | s -

/\
- D0 - D7
R1| 2 02 < —
v’
Register 02 PD8 - PD15
T mor >
CP1600 N :
cPU

CE
2E ’
generates

CE=0
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If PDO - PD15 are configured as two 8-bit 1/0 ports or as a single 16-bit I/O port, and you want to read both 1/0 ports.
then you should use the SDBD instruction with implied memory addressing via R4 or R5. This may be illustrated as
foltows:

‘ Register 01 PDO - PD7
pa I~
RO 3A 4 - 4F
< DO - D7 >
R4 2E 01 ~ v
-
Register 02 PD8 - PD15
N
CP 1600
CPU
CE
Y ]
gener
E=0

Control register bit 2 configures PDO - PD15 as a single 16-bit [/O port or as two 8-bit 1/O ports.

Given the fact that MV! and MVO instructions (in byte mode) should be used to access the CP1680, when should these
accesses occur? :

The answer is that the PE and AR signals control event sequences.
Consider parallel data input, as illustrated in Figure 2-14.

When the CPU is ready to input data in resets the
Control register READY bit low. This forces the PE
output high

External logic uses PE high to trigger data transfer
to the PD1680. External logic signals the end of
data input by inputting AR low

PE

INTRQ

INTAK

Figure 2-14. PD1680 Handshaking with Data Input
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When the CPU is ready to receive data. it resets Control register bit O to O; this forces the PE control signal high.

When external logic senses PE high. it must transmit data to the PDO - PD15 1/0 port. At this point it makes no
difference whether pins have been configured as two 8-bit ports or as a single 16-bit port. External logic will pull to
ground selected high pins, while leaving other high pins alone. When external logic has completed data input, it sig-
nals the fact by inputting AR low. It is the high-to-low transition of the AR control input which indicates the presence of
new data for the CPU to read. When AR makes its high-to-low transition, PE also makes a high-to-low transition. and
Control register bit O is set to 1. If interrupts have been enabled. then an interrupt is requested via INTRQ. Figure 2-14
assumes that interrupts have been enabled: therefore TNTRQ is shown making a high-to-low transition.

The CPU will acknowledge the interrupt request, as described earlier in this chapter, by outputting INTAK via BC1,
BC2, and BDIR. Logic internal to the CP1680 uses INTAK to reset INTRQ high again.

There are many ways in which external logic can determine when to set AR high again. In Figure 2-14 we show exter-
nal logic using PE to set AR high. Clearly, when PE makes a low-to-high transition, the CPU must have acknowledged
AR low: therefore external logic can now set AR high. Now that AR is high again, external logic can input new data. An
alternative scheme would be for external logic to constantly hold AR low, using the level of the PE output to determine
when new data could be transmitted. When PE is high, external logic will transmit new data to the CP1680 once. As
soon as it transmits new data, external logic will strobe the data with a short, high AR pulse, then wait for PE to go low
and high again before inputting more data. This may be illustrated as follows:

pe_{ N

T
1

AR

1

CPU ready External CPU is External
for input logic inputs ready logic inputs
data again data
for input

Data output handshaking is illustrated in Figure 2-15.

When CPU outputs data, PE is automatically set
high

External logic uses PE high as a "'valid data ready”
.signal. After reading this data it resets AR low

DO - D7 I j —X

M

INTAk

Figure 2-15. PD1680 Handshaking for Data Output
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The most important point to note is that there is no control bit which specifies data input mode or data output
mode. Thus, the signal sequences we described for data input and those we are about to describe for data out-
put occur automatically; the input or output mode is purely a function of CPU and external logic interpretation.

Whenever the CPU outputs data to the PD1680, the arrival of data forces PE output high. If PDO - PD15 has been con-
figured as two 8-bit ports, then the arrival of a single data byte to either port will cause PE to be output high. if PDO -
PD15 is configured as a single 16-bit I/0 port, then PD will not be output high until two bytes of data have been
received from the CPU by the PD1680.

Once PE is output high. nothing more happens until external logic responds. External logic cannot tell by the simple in-
spection of any control signals whether a data input operation or a data output operation is in progress. It isup to you,
when designing your system, to dedicate CP1680 devices to input or output; or you must generate your own identifica-
tion logic in the event that a CP1680 IOB is bidirectional. In Figure 2-15 we simply assume that external logic knows
data is to be read, and knows whether the data is 16 bits or 8 bits wide. Furthermore, if the data is 8 bits wide, external
logic must know which 8 bits to read. In any event. when external logic has completed its undefined operations, it must
input AR low. The high-to-low transition of AR forces PE low again. and if interrupts are enabled. an interrupt will be re-
quested via INTRQ. When the CPU acknowledges the interrupt by outputting INTAK via BC1, BC2. and BDIR, the
PD1680 uses the INTAK pulse to reset INTRQ high.

The method used by external logic to reset AR high again is undefined. In Figure 2-15, we show PE going high as the
trigger which external logic uses to reset AR high. This is clearly a viable scheme; PE will not go high again until fresh
data has beén output, at which point it is safe to assume that the CPU knows prior data has been read by external logic.
It would be equally viable for external logic to hold AR continuously low. transmitting a short. high pulse whenever it
reads data. This may be illustrated as follows:

PE , I

o ' !

CPU has External CPU has External
output logic has output logic has
data read data more data read data

Because there are no control signals which identify the PD1680 operating in input mode or output mode, there
is no straightforward scheme for handling bidirectional data transfers with a single PD1680 device.

THE CP1680 INTERVAL TIMER

The CP1680 has very elementary interval timer logic. A 16-bit Timer register, addressed as two separate 8-bit loca-
tions, decrements once every eight CK1 pulses, providing the timer has been enabled. You enable and disable timer
logic via Control register bit 5. As a separate event, timer interrupts may be disabled via Control register bit 4. If timer
interrupts are enabled. then when the timer decrements to 0, an interrupt request will occur. (Timer interrupt logic is
described with other CP1680 interrupt logic later in this chapter.) If timer interrupts are not enabled. then the timer it-
self is effectively disabled, since you cannot test any timer status flag to see if the timer timed out; nor can you ac-
curately read the contents of the Timer registers on the fly, since there is no protection against reading timer contents
while it is in the process of being decremented.

The only timer programmable option you have is to load an initial value before the timer is enabled. The timer
has no buffer; therefore, once it times out it begins decrementing again, if still enabled, beginning with the
value FFFFqg. This may be illustrated as follows:

l"——XXXX‘B'CH —’I‘_ FFFF*8*CK1 _-"‘———FFFF‘S‘CH ——.'l

Time intervals

Load Timer Time out. Time out. Time out.
starting Restart Restart Restart
value XXXX

and start

Timer
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The only accurate long time intervals you can compute are exact multiples of FFFF1g + 8 » CK1.

The CP1600A uses a 4MHz two-phase clock. which generates a 500 nanosecond cycle time. Thus, CK1 equals 500
nanoseconds, and long CP1600A time intervals must be an exact multiple of 262.144 milliseconds — the time it will
take for the counter to decrement from FFFFqg to 0000.

The CP1600 uses a 3.3MHz two-phase clock. which generates a 600 nanosecond cycle time; therefore, long time.inter-
vals must be exact multiples of 314.5672 milliseconds.

The CP1610, which runs on a 2MHz two-phase clock and has a one microsecond cycle time, will compute long time in-
tervals that are exact multiples of 524.288 milliseconds. .

You cannot attempt to generate clock periods that are multiples of shorter time intervals by loading some initial value
into the timer following each time out; an unknown amount of time will elapse between the interval timer interrupt oc-
curring and being acknowledged. The length of this unknown period of time will depend on the number of non-inter-
ruptable instructions which may be executing in sequence when the interrupt request first occurs, plus any higher
priority interrupts which may exist. Therefore, if you load an initial value into the timer, it should be to compute an isol-
ated time interval only. Here is an appropriate instruction sequence:

MVI |I0B.RO ;JINPUT CONTROL REGISTER CONTENTS

ANDI CFH.RO ;ZERO BITS 4 AND 5 .
MVO RO.10B ;RETURN TO CONTROL REGISTER

Mvil 2AH.RO ;TRANSMIT LOW-ORDER TIMER

MVO RO.I0B+3 ;INITIAL BYTE

Mvil 34H.RO ;TRANSMIT HIGH-ORDER TIMER

MVO RO.JOB+4 ;INITIAL BYTE

MV 10B.RO ;LOAD PRIOR CONTROL REGISTER CONTENTS

ADDI 30H.RO :SET BITS 4 AND 5
MVO RO.I0B ;START TIMER

The instruction sequence above begins with three instructions that load the CP1680 Control register contents into
Register RO. Bits 4 and 5 are zeroed, then the result is returned to the Control register. Thus, the timer and timer inter-
rupts are disabled. We do not bother with an SDBD instruction. Since the data source is eight bits wide, only the low-
order byté of Register RO will be significant. This being the case, we can use an 8-bit immediate AND mask to modify
Register RO contents before returning the low-order byte to the Control register.

Next, we load the initial timer value, one byte at a time, into Register RO. Each byte is written out to the appropriate half
of the Control register. Once again we do not need to use the SDBD instruction. Since an 8-bit data path connects the
CPU to the 1680 IOB. only the low-order byte of Register RO will be significant during the data output.

Finally, we start the timer by loading Control register contents into Register RO, setting bits 4 and 5 to 1 and writing
back the result.

When you write into the Timer registers. you clear any timer interrupt requests which may at that time be pending.

CP1680 INTERRUPT LOGIC

A CP1680 I10B will generate an interrupt request by outputting a low signal at INTRQ if any one of these three
conditions occurs:

1) A low input at ERROR. External logic can request an interrupt via the CP1680 using the ERROR input.
2) The AR handshaking control input makes a high-to-low transition. This is illustrated in.Figures 2-14 and 2-15.
3) The Interval Timer decrements from 1 to O.

Recall that there are two separate interrupt enable/disable control bits in the Control register. One control bit applies to
the Interval Timer, while the other control bit applies to both the AR handshaking and ERROR interrupts.

Interrupt priorities among the three sources within a single CP1680 10B are as follows:

ERROR highest
AR handshaking
Timer lowest

When more than one CP1680 {OB is present in a CP1600 microcomputer system, then daisy chain priority is im-
plemented using the MSKI input signal and the MSKO output signal. Signal connections are illustrated in Figure
2-13. The manner in which interrupt priorities are handled by the CP1680 is a little unusual.

Two or more CP1680 devices may combine their interrupt request signals, which are wired ORed and input to the
CP1600 via INTRQ. The CP1600 acknowledges an interrupt via the INTAK combination of BC1, BC2, and BDIR. We de-
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scribed this process earlier in the chapter. All CP1680 devices simultaneously receive the INTAK combination;
however. a CP1680 which is acknowledged raises its IMSKO signal high, causing it to become the IMSKI input to the
next CP1680 in the daisy chain. Any device that receives a high IMSKI input ignores the interrupt acknowledge. Thus.
only the highest priority, interrupt requesting CP1680 device in the daisy chain will process the interrupt acknowledge.
However, it takes a finite amount of time for IMSKO high signals to propagate as IMSKI signals, and thus ripple through
the daisy chain. Consequently, a maximum of eight CP1680 devices may be present in the daisy chain. A ninth device
will receive its IMSK! high signal too late and will respond to an interrupt acknowledge.

CP1680 I0B devices maintain their interrupt priority status until they receive a high TCl pulse. At that time. prior inter-
rupt priorities are reset at all devices. and new priority arbitration begins. Thus. when using CP1680 10B devices, you
are required to end all interrupt service routines by executing a TCI instruction.

Note that if one CP1680 IOB has more than one active interrupt request (for example. an ERROR interrupt request and a
timer interrupt request), then this internal interrupt priority will take precedence over the daisy chain interrupt priority.
That is to say, the ERROR interrupt request will be acknowledged and serviced first. After the next TCl instruction is ex-
ecuted, the timer interrupt request will be serviced before any interrupt request from a lower priority CP1680 device is
acknowledged.

Every CP1680 device has three 8-bit Interrupt Vector registers, one dedicated to each of the three interrupt
sources. These three Interrupt Vector registers were illustrated earlier in the chapter. Following an interrupt
acknowledge, when the IAB combination appears at BC1, BC2, and BDIR, the contents of the Interrupt Vector
register for the highest priority active interrupt will be returned to the CPU. Interrupt acknowledge timing is il-
lustrated in Figure 2-9. At the interrupt service location a Jump-to-Subroutine instruction will probably be stored.
Since the Jump-to-Subroutine object code is three words long. @ maximum of 85 interrupts can be origined in the first
256 words of memory. This is more than sufficient. since only eight CP1680 devices with 24 interrupts can be sup-
ported in a single daisy chain.
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DATA SHEETS

This section contains specific electrical and timing data for the following devices:

- CP1600 CPU

» CP1600A CPU

- CP1610 CPU

+ 10B1680 /0O Buffer
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CP1600-CP1600A-CP1610
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CP1600
ELECTRICAL CHARACTERISTICS (CP1600)

Maximum Ratings*

. “Exceeding these ratings could cause
Voo, Vec, GND and all other input/output voltages

permanent damage to these devices.

St‘(';g';;e?g;‘;:;:’azj‘r‘e """""" _;g;%v‘?:;é%?g Functional operation at these conditions is
Operating Temperature . . . . . . . . . . ... 0°C to +70°C not implied—operating conditions are

specified below.
Standard Conditions: (uniess otherwise noted)
Vop=+12V+5%, 70mA(typ), 110mA(max.) Ves=—3V+10%, 0.2mA(typ) , 2mA(max.)
Vec=+5V+5%, 12mA(typ) , 25mA(max.) Operating Temperature (T,)=0°C to +70°C

Characteristic Sym Min Typ** Max Units Conditions

DC CHARACTERISTICS
Clock Inputs
High Vine 104 - Voo \
Low Vie 0 - 0.6 v
Logic Inputs
Low Vi 0 - 0.65 v
High (All Lines except BDRDY) Viu 24 - Vee v
High (Bus Data Ready Line

See Note) Vize 3.0 - Vee \
Logic Outputs .
High Von 24 Vee - v lon.= 100pA
Low (Data Bus Lines DO-D15) VoL - - 0.5 \ loL = 1.6mA
Low (Bus Control Lines,

BC1,BC2,BDIR) Vo - - 0.45 A loL = 2.0mA
Low (All Others) Vo | - -1 0.45 v loL = 1.6mA
AC CHARACTERISTICS
Clock Pulse Inputs, ¢1 or ¢2
Pulse Width tg2, tg2 120 - ns
Skew (¢1, 2 delay) t12, t21 0 - - ns
Clock Period tey 0.3 - 20 HS
Rise & Fall Times tr, tf - - 15 ns
Master SYNC:

Delay from ¢ tms - - 30 ns
DO-D15 Bus Signals
Output delay from ¢1

(float to output) tso - - 120 ns 1TTL Load & 25 pF
Qutput delay from ¢2

(output to float) ter - 50 — ns
Input setup time before ¢1 te1 0 - - ns
Input hold time after ¢1 gy 10 - - ns
Bus Control Signals

BC1,BC2,BDIR
Output delay from ¢1 toe _ _ 120 ns
BUSAK Output delay from ¢1 tay - 150 - ns
TCI Qutput delay from ¢1 tro - 200 - ns
TCI Pulse Width trw - 300 - ns
EBCA output delay from BEXT

input toe - - 150 ns
EBCA wait time for EBCI input ta - - 400 ns Y
CAPACITANCE TA =+25°C; Vop = +12V; Vcc = +5V;

Ve =-3V; t¢1t¢2=120ns
#1, $2 Clock Input capacitance |Ce¢1,Cd¢2 —_ 20 30 pF
Input Capacitance
DO-D15 CIN - 6 12 pF
All Other — — 5 10 pF
Output Capaclitance
DO-D15 in high impedance state Co - 8 15 pF

**Typical values are at +25°C and nominal voltages.

NOTE:
The Bus Data ReaDY(BDRDY) line is sampled during time period TS| after aBAR or ADAR bus control signal. BDRDY must
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BDRDY may go high
asynchronously. in response to BDRDY, the CPU will extend bus cycles by adding additional microcycles up to a maximum
of 40 usec duration.
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CP1600A
ELECTRICAL CHARACTERISTICS (CP1600A)

Maximum Ratings*
Voo, Vcc, GND and all other input/output voltages

*Exceeding these ratings could cause
permanent damage to these devices.

withrespecttoVas . . . . . . .. .. .. ~0.3V to +18.0v Functional operation at these conditions is
g0 o
ST 1L S ol opereind ‘andnons a1

Standard Conditions: (unless otherwise noted)
Vppo=+12V£5%, 70mA(typ) , 140mA(max.)
Vec=+5Vi5%, 12mA(typ) , 25mA(max.)

specified below.

Ves= —3V110%, 0.2mA(typ) , 2mA{max.)
Operating Temperature (T,)=0°C to +70°C

Characteristic Sym Min Typ** Max Units Conditions
DC CHARACTERISTICS
Clock Inputs
High Vinc 104 - Vop v
Low ViLe 0 - 0.6 v
Logic inputs
Low Vio 0 = 0.65 \
High (All Lines except BDRDY) Vin 24 - Vee \
High (Bus Data Ready Line

See Note) Vius 3.0 - Vee v
Logic Outputs
High Vou 24 Vee A lon = 100pA
Low {Data Bus Lines DO-D15) VoL - - 05 \ loo=1.6mA
Low (Bus Control Lines,

BC1,BC2,BDIR) Vo - - 0.45 v loL = 2.0mA
Low (All Others) VoL - - 0.45 \' lo. = 1.6mA
AC CHARACTERISTICS
Clock Pulse Inputs, ¢1 or ¢2
Pulse Width t¢2, te2 95 - ns
Skew (¢1, $2 delay) ty2, t21 0 - - ns
Cloick Period tey 0.25 - 20 us
Rise & Fall Times tr, tf - — 15 ns
Master SYNC:

Delay from ¢ tms - - 30 ns
DO-D15 Bus Signals
Output delay from ¢1

(float to output) tso - - 95 ns 1TTL Load & 25 pF
Output delay from ¢2

(output to float) ter - 50 - ns
Input setup time before ¢1 tel o - - ns
Input hold time after ¢1 taz 10 - ns
Bus Control Signals

BC1,BC2,BDIR
Output delay from ¢1 toc _ - 200 ns
BUSAK Output delay from ¢1 tay - 150 - ns
TCI Output delay from ¢1 tro - 200 — ns
TCI Pulse Width trw - 300 - ns
EBCA output delay from BEXT

input toe - - 150 ns
EBCA wait time for EBCI input ta - - 400 ns |
CAPACITANCE TA =+25°C; Voo = +12V; Ve =+5V;

Ves =—3V; t¢1te2=120ns
@1, $2 Clock Input capacitance |Ce1, C¢2 — 20 30 pF
Input Capacitance
DO-D15 CiN - 8 12 pF
All Other - — 5 10 pF
Output Capacitance
DO-D15 in high impedance state Co - 8 15 pF

“*Typical values are at +25°C and nominal voltages.
NOTE:

The Bus Data ReaDY(BDRDY) line is sampled during time period TS| after aBAR or ADAR bus control signal. BDRDY must
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BDRDY may go high
asynchronously. In response to BDRDY, the CPU will extend bus cycles by adding additional microcycles up to a maximum

of 40 usec duration.
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CP1610

ELECTRICAL CHARACTERISTICS (CP1610)
Maximum Ratings*
Vop, Ve, GND and all other input/output voltages

withrespecttoVes . . . . . . . . . . .. —0.3V to +18.0V
Storage Temperature . . . . . . .. . ... -55°C to +150°C
Operating Temperature . . . . . . . . . . . .. 0°C to +70°C

Standard Conditions: (unless otherwise noted)
Voo=+11V£5%, 70mA(typ) , 110mA(max.)
Vee=+5V+5%, 12mA(typ) , 25mA(max.)

*Exceeding these ratings could cause
permanent damage to these devices.
Functional operation at these conditions is
not implied—operating conditions are
specified below.

Ves= ~3VE10%, 0.2mA(typ) , 2mA(max.)
Operating Temperature (TA)=0°C to +70°C

Characteristic Sym Min Typ** Max Units Conditions

DC CHARACTERISTICS
Clock Inputs
High Vinc 10.0 - Voo \
Low Vie 0 - 0.6 A
Input current — — —_ 15 mA Ve = Voo -1
Logic Inputs
Low Vi 0 - 0.65 v
High (All Lines except BDRDY) Vi 24 - Vee v
High (Bus Data Ready Line ‘

See Note) Viup 30 - Vee \
Logic Outputs
High Von 24 Vee — \ lon = 100pA
Low (Data Bus Lines DO-D15) VoL - - 0.5 \ loo = 1.6mA
Low (Bus Control Lines,

BC1,BC2,BDIR) VoL - - 0.45 \ foL=2.0mA
Low (All Others) Vor - - 0.45 \ loL = 1.6mA
AC CHARACTERISTICS
Clock Puise Inputs, ¢1 or ¢2
Pulse Width te2, to2 250 - ns
Skew (¢1, ¢2 delay) t12, t21 o - - ns
Clock Period tey 0.5 - 2.0 S
Rise & Fall Times tr, tf - - 15 ns
Master SYNC:

Delay from ¢ tms - - 30 ns
DO-D15 Bus Signals
Output delay from @1

(tloat to output) tso - - 200 ns 1TTL Load & 25 pF
Output delay from ¢2

(output to float) ter - 50 - ns
Input setup time before ¢1 tel 0 - - ns
Input hold time after ¢1 ez 10 - ns
Bus Contro! Signals

BC1,BC2,BDIR
Output delay from ¢1 toc — _ 200 ns
BUSAK Output delay from ¢1 tau - 150 - ns
TCI Output delay from ¢1 tro - 200 - ns
TCI Pulse Width trw - 300 - ns
EBCA output delay from BEXT

input toe - - 150 ns
EBCA wait time for EBCI input ta - - 400 ns \
CAPACITANCE TA =+25°C; Voo = +12V; Vcc = +5V;

Ves=—3V; t¢1t¢2=120ns
#1, $2 Clock Input capacitance |Cé1, Co2| —_ 20 30 pF
Input Capacitance
DO-D15 CIN - 6 12 pF
All Other — - 5 10 pF
Output Capacitance
DO-D15 in high impedance state Co - 8 15 pF

**Typical values are at +25°C and nominal voltages.
NOTE:

The Bus Data ReaDY(BDRDY) line is sampled during time period TS| after aBAR or ADAR bus control signal. BDRDY must
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BDRDY may go high
asynchronously. In response to BDRDY, the CPU will extend bus cycles by adding additional microcycles up to a maximum

of 40 usec duration.

2-D5



10B1680
ELECTRICAL CHARACTERISTICS

Maximum Ratings*
Vpp and V¢e and all other input/output voltages

withrespeCttoGND ........coiviiiiiiiiiiiiii e -0.3Vto+18vV . . )
Storage Temperature .. -55°Cto +150°C Exceeding these ratings could cause
Operating TEMPErature ............coueeeeanueeeanneernneenns 0°Cto+70°C permanent damage. Functional operation of
this device at these conditions is not
Standard Conditions (unless otherwise noted) ;"Ip”ed—we’aﬁng ranges are specified
elow.
All voltages referenced to GND
Vpp = +12V =5%
Vge = +5V *5%
Operating Temperature (Ta) = 0°C to +70°C
Characteristic Symbol Min Typ** Max Unit Condition
DC CHARACTERISTICS
Clock Input: High Vine 2.4 — Voo v
Low Vi 0 - 5 v
Logic Inputs: High Vin 24 — Veo v
Low Vi 0 — .65 \'
Logic Outputs: High Voh 2.4 Voo — Vv Ion = 100pA
Low Vo — — 5 \ loy = 1.6MA
AC CHARACTERISTICS
Clock inputs
CKT Clock period tuc 0.4 — 4.0 us
Clock width tel 70 —_ — ns
Rise & Fall times ter.tef — — 10 ns
CAPACITANCE (T, = 25°C,
Vpp = +12V,
Vee = +5V)
Input Capacitance: DO-D7 Cin - 6 12 pF Vin = 0V
All others — 5 10 pF Vip = 0V
Output Capacitance: Cout — 8 15 pF
**Typical values are at +25° C and nominal voltages.
TIMING DIAGRAM
| TSty | Ts2; | Ts3; | Ts4 TS1 TS2 TS3 TS4 TS1 TS2 1S3
! LI l§ T L | I I I
le f >l
we 1
{ |
o M
J \__/
o —>] bl —1,
I
BDIR |
BC2,8C1
! f _ Note: CK1* not drawn to scale.
—> tyo e
CIRCUIT DESCRIPTION Register Address Descri

This circuit is designed to provide all the data buffering and N
control functions required when interfacing the Series 1600 N +
Microprocessor System to a simple peripheral device. Data is N+2
transferred to and from the peripheral on 16 bidirectional lines, N+3
each of which can be considered to be an input or output. The N+4
transfer of information with the CP1600is accomplished viaan 8- N+5
bit highway, the 16-bits being transferred as two 8-bit bytes. the N+6
register addresses are assigned CP1600 memory locations, as N+7
follows (N is an arbitrary starting address):
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Control Register

Data Register Low Order 8-bits
Data Register High Order 8-bits
Timer Low Order 8-bits

Timer High Order 8-bits

Peripheral Interrupt Address Vector
Timer Interrupt Address Vector
Error Interrupt Address Vector



Chapter 3
THE TEXAS INSTRUMENTS TMS 9900,
TMS 9980, AND TMS 9940 PRODUCTS

The TMS 9900 was the first 16-bit microprocessor that could compete effectively in the minicomputer market. In fact.
the TMS 9900 is a one-chip implementation of the TM 990 series minicomputer Central Processing Units.

The TMS 9900 is packaged as a 64-pin DIP; it generates signals for a 15-bit Address Bus and a separate 16-bit Data
Bus. whereas other 16-bit microprocessors multiplex their Data and Address Busses. The TMS 9980 series
microprocessors are 40-pin DIP versions of the TMS 9900; in order to reduce pin counts, the TMS 9980 series
microprocessors access external memory via an 8-bit Data Bus and 14-bit Address Bus. The TMS 9940 is a one-chip
microcomputer containing a subset of the TMS 9900 Central Processing Unit, together with on-chip memory and real-
time clock logic.

The TMS 9900 product line has for some time been one of the enigmas of the microprocessor industry. Even a
casual examination of the TMS 9900 instruction set shows that from the programmer’s viewpoint. this microprocessor
was at least two years ahead of its time. While it may have had problems competing in high-volume. simple applica-
tions. it was certainly the microprocessor of choice for data processing-type. program-intensive applications, yet it was
not widely used in these markets.

The reason for this lack of acceptance has been poor support from Texas Instruments.

Texas Instruments initially offered little support for the TMS 9900 because this microprocessor was designed as a low-
end product of the TM 990 minicomputer series. That is to say. customers were expected to develop products around
the TM 990 minicomputers; then. if they chose to. they could build production models around the TMS 9900
microprocessor. This development path did not call for extensive TMS 9900 support. In all probability. Texas Instru-
ments was caught by surprise by the buoyancy of the microprocessor market — as a market in its own right. Certainly.
if Texas Instruments had given the TMS 9900 the same level of support that Intel gave the 8080A. we would see en-
tirely different microprocessor product distributions today. But the TMS 9900 and its derivative products are powerful
enough that the belated support they are now receiving from Texas Instruments will give the product line a reasonable
share of future markets.

Texas Instruments now provides full support for the TMS 9900 microprocessor line.

TMS 9900 support devices are designed specifically for the TMS 9900 and can be used with the TMS 9900,
‘TMS 9980, or TMS 9940 products. The following devices are described:

The TIM 9904 Clock Generator

The TMS 9901 Programmable System Interface

The TMS 9902 Asynchronous Communications Controller
The TMS 9903 Synchronous Communications Controller

Texas Instruments is the primary manufacturer for all of the TMS 9900 series products. TMS 9900 series pro-
ducts are handled out of the following Texas Instruments office:

TEXAS INSTRUMENTS., INC.

P.0. Box 1443
Houston, Texas 77001

Second sources for the TMS 9900 family are:

AMERICAN MICROSYSTEMS, INC.
3800 Homestead Road
Santa Clara. California 95051

SMC MICROSYSTEMS CORP. (TMS 9980 series only)
35 Marcus Blvd.
Hauppage. N.Y. 11787
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THE TMS 9900 MICROPROCESSOR

The TMS 9900 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 64-pin DIP. Three
power supplies are required: -5V, +5V. and +12V.

Using a 3 MHz clock. instruction execution times range between 3 and 10 microseconds.

A TMS 9900 FUNCTIONAL OVERVIEW

Figure 3-1 illustrates that part of our general microcomputer system logic which is implemented by the TMS 9900
CPU.

The most important features of Figure 3-1 are:

» The absence of programmable registers

« The presence of significant interrupt handling logic

» The presence of serial-to-parallel data conversion logic

« The absence of I/0 port interface logic

Clock Logic

Accumulator
Register(s)

Data Counter(s)

Stack Pointer

Direct Memory
Access Control
Logic

=
o

x
-
.

v
=

.
(?ié?

1/0 Ports
Interface Logic

Programmable Read Only Read/Write
Timers Memory 170 Ports Memory

Figure 3-1. Logic of the TMS 9900 CPU
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Let us first consider the manner in which the TMS 9900 handles programmable registers.

TMS 9900 PROGRAMMABLE REGISTERS

Within the logic of the TMS 9900 itself. there are just three 16-bit programmable registers: a Program Counter. a
Workspace register, and a Status register.

The Program Counter and Status register are straightforward. The Program Counter contains the address of the
next instruction to be executed. The Status register maintains various statuses. which we describe later in this chapter.
The Workspace register is a unique and powerful programming feature of the TMS 9900. This register identifies
the first of sixteen 16-bit memory locations which act as 16 General Purpose registers. This may be illustrated
as follows: o

16-BIT MEMORY
LOCATION

™ e e,
Any memory HIGH= LOW- —

addresses ER ORDER
0231-5 BYTE
P A et~

Special Functions
AN

o -
m-—-» XXXX 1 RO cannot be an Index register.
XXXX + 2 R1 Shift instruction will seek shift
wp count in low-order four RO bits if
xxxx + 4 R2 . . . B
instruction object code specifies
XxXXX + 6 : R3 0 shifts.
xxxx + 8 R4
xXxx + A RS
xxxx + C R6
XXXX + E R7
xxxx + 10 R8
xxxx + 12 R9
XxXxx + 14 R10
xxxx + 16 R11  Subroutine return address or XOP effective
xxxx + 18 R12  CRU Bit address address
xxxx + 1A R13  Save old WP
xxxx + 1C 1 R14 Save old PC
xoox + 1E H R15  Save old ST

Some of the 16 registers serve special functions, as defined by the text on the right-hand side of the illustration
above. For the moment. do not attempt to understand these special functions. They are described later in the chapter.

In TMS 9900 microcomputer systems, external memory consists of 16-bit memory words. | TMS 9900
Each 16-bit memory word has its own memory address. Within the TMS 9900 CPU, | MEMORY
however, memory is addressed as a sequence of 8-bit locations. For this to occur, the CPU | ADDRESSES




generates an internal 16-bit memory address; the high-order 15 bits of the internal memory ad-
dress create the external memory addresses. This may be illustrated as follows:

This 16-bit address is created
by program logic to address 65536 bytes

1
These 15 address bits are output ]
|

to access 32768 external, 16-bit memory words . Byte Discrimination Bit
| 0 = Even Byte
1 1=0dd Byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 9_ Bit No

(ITTT T T T T T T TITTIT]

A A YW}
ERNRNEY! T“—i?““’

A7 External Address Bus

A9

Al0

A11

A12

A13

A14 (MSB)

When designing hardware around the TMS 9900. you will implement external memory as 16-bit words. which are ad-
dressed by a 15-line Address Bus. That is to say, 32.768 16-bit words may be addressed.

But when you are programming the TMS 9900 you will visualize memory as 65.536 bytes. addressed by a 16-bit ad-
dress. An even byte address will access the low-order byte of an external 16-bit memory word, while an odd
memory address will access the high-order byte of an external 16-bit memory word.

Any 16 contiguous words of read/write memory may serve as the current 16 general purpose registers for the
TMS 9900.

You may have as many sets of 16-bit registers as you wish, limited only by the size of implemented memory.

If you are using more than one set of 16-bit registers, then at any time just one set of 16-bit registers can be
selected. The WP register identifies the first of the 16 contiguous memory locations serving as the current 16
general purpose registers.

Each of the 16 general purpose registers may be used to store data or addresses. Thus. each general purpose register
may serve as an Accumulator or as a Data Counter.

Registers R11 through R15 are used as special Pointer storage buffers; we will be describing the way in which
these registers are used as the chapter proceeds.

Having 16 general purpose registers in read/write memory, rather than in the CPU, is the single most important
feature of TMS 9900 architecture. The advantage of having 16 general purpose registers located anywhere in
read/write memory is that you can have many sets of 16 general purpose registers. For example. following an interrupt
acknowledge. you no longer need to save the contents of general purpose registers — all you need to do is save the
contents of the Program Counter. the Workspace register and the Status register. and that is done automatically by
TMS 9900 interrupt handling logic. By loading new values into the Program Counter and the Workspace register. you



can begin executing a new program, accessing 16 new memory words — which will be treated as a new set of 16
general purpose registers.

The disadvantage of having 16 general purpose registers in read/write memory is that no TMS 9900 microcom-
puter system can be configured without read/write memory; and if you are going to use many different sets of 16-
bit registers. then you are going to require a significant amount of read/write memory. Furthermore. you lose the speed
associated with executing register-to-register operations; there are no source and destination locations left in the CPU.
Every register access becomes a memory access.

TMS 9900 literature refers to the process of switching from one set of general purpose | TMS 9900
registers to another as a context switch. This terminology reflects the complete change of pro- | CONTEXT
gram environment that results from the switch. SWITCH

Special instructions allow you to perform a forward context switch or a backward context switch.

During a forward context switch. you load new values into the Workspace register and Program Counter. while
simultaneously saving the old Workspace register. Program Counter. and Status register contents in the new General
Purpose Registers R13, R14, and R15.

A backward. or reverse context switch loads the current contents of General Purpose Registers R13. R14. and R15 into
the Workspace register. Program Counter. and Status register. respectively. thus returning you to your previous set of
general purpose registers.

You can perform context switches as often as you like and whenever you like. For example. a very effective way of
using context switching is to group data into contiguous memory words which you can identify as a register set. Upon
entering a subroutine. you can perform a context switch which automatically creates all necessary initial data and ad-
dress values in appropriate general purpose registers. This may be illustrated as follows:

MEMORY Arbitrary

WORDS Memory

. <)
When performing con- A1 0202
text switch on calling R2 0204
subroutine previous RO R3 0206

address is saved in new
R13

Ri2 0218
R13 021A
R14 021C
R15 021€ J Registers

used by
main
program

Data and parameters
used by subroutine are RO 0280
stored here by the caling ~J» R1 EMI 0282

program before calling R2 0284
the subroutine R3 %‘ 0286

R4 0288
etc

R10 0294

R11 0296

R12 0298

Registers
used by
subroutine

Subrouting starts here =y} — 0800

Main program subrouting call ==
Return here from SUDFOULING  emmmewemmemin

When performing con-
text switch on caling
subroutine, return ad-
dress is saved in new
R14




As illustrated above. when you perform a forward context switch, the current Program Counter | TMS 9900
contents. Status register contents, and WP register contents are saved in what will become the | FORWARD
new Registers R13. R14 and R15. respectively. Here is the exact sequence in which events oc- | CONTEXT
cur: SWITCH

1) The new WP register contents are loaded into the CPU and held in temporary storage.

2) The current Status register contents are written out to the memory location which will become the new Register
R15.

3) The current Program Counter contents are written out to the memory location which will become the new Register
R14.

4) The current WP register contents are written out to the memory location which will become the new Register R13.
5) The new WP register contents. which were held in temporary storage. are moved into the WP register.
6) The new value is loaded into the Program Counter.

Thus. when a forward context switch is performed. an audit trail ensures that program logic knows the exact machine
state at the instant of the forward context switch.

When a backward context switch occurs, the contents of the current General Purpose | TMS 9900
registers R13, R14, and R15 are loaded into the WP register, the Program Counter, and the | BACKWARD
Status register, respectively. Thus, program logic returns to the location of the forward context | CONTEXT
switch. SWITCH

TMS 9900 MEMORY ADDRESSING MODES
The TMS 9900 provides these four methods of addressing memory:

1) Direct memory addressing

2) Direct, indexed memory addressing

3) Implied memory addressing

4) Implied memory addressing with auto-increment

The way in which the TMS 9900 implements these four memory addressing modes is exactly as described in Volume 1.
Chapter 6. The important point to note is that the TMS 9900 looks upon its address space as consisting of 32,768 16-

bit memory words which are addressed using 15. rather than 16. Address Bus lines; yet programs compute all ad-
dresses as 16-bit words. This logic was described earlier.

Direct memory addressing instructions provide the memory address in the second word | TMS 9900
of an instruction’s object code: DIRECT
ADDRESSING

MsSB LSB
15 14 13 12 11 0 9 8 7 6 5 4 3 2 1 O «a@——BitNo.

Instruction Object Code

Y
? Byte identifier recognized by CPU logic

Direct address output via Address Bus

Direct, indexed memory addressing instructions provide a base address in the second | TMS 9900
object code word, but they also identify a general purpose register whose contents are | INDEXED

to be added, as a signed binary number, to the base address. Again. the low-order bit of the | ADDRESSING
computed address is not output via the Address Bus. but is interpreted by CPU logic as a byte
identifier.

General Purpose Register RO cannot be specified as an index register.

Direct. indexed addressing is very useful in a TMS 9900 microcomputer system. It allows you to address the previous
set of general purpose registers, following a context switch. without knowing where the previous registers were. Sup-
pose you want to access the contents of the memory word which was being used as General Purpose Register RS
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before you switched to your current set of general purpose registers. Recall that the previous Workspace register con-
tents are stored in your current General Purpose Register R13. You could thus address the previous General Purpose
Register R5. without knowing where this general purpose register may have been. by using direct. indexed addressing

as follows:

Instruction

0jX

Base Address

J

Read/Write
Memory
r———
High- Low-
Order Order
Byte Byte
PN A=,

L e

[Base Address] + [R13] RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

RO

R1

P L o)

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

- -

R12

R13

XX XX

R14,

R15

4.1

-

ARBITRARY

MEMORY
ADDRESSES

XXXX
XXxXX + 2
XXXX + 4
XXXX + 6
xxxx + 8
xxXxx + A
xxxx + C
xxxx + E
xxxx + 10
xxxx + 12
xxxx + 14
xxxx + 16
xxxx + 18
xxxx + 1A
xxxx + 1C

xxxx + 1E J

YYyy

yyyy + 2
yyyy + 4
YYyy + 6
yyyy +8
yyyy + A
yyyy +C
yyyy + E
yyyy + 10
yyyy + 12
yyyy + 14
yyyy + 16
yyyy + 18
yyyy + 1A
yyyy + 1C
yyyy + 1E

An implied memory addressing instruction will specify one of the 16 current general pur-

pose registers as providing the effective memory address.

If you specify implied memory addressing with auto-increment, then the contents of the
identified general purpose register will be incremented after the memory access has
been performed. If the instruction specifies a byte operation. the register contents will be incremented by one. the

register contents will be incremented by two after a full-word
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Six object code bits identify the data memory addressing option selected by any TMS 9900 instruction that accesses
data memory. The six object code bits are interpreted as follows:

T R
i A ——a—

HEEEEE

N— v ap— | ——

‘ { 0000 through 1111 select the general purpose register to be ac-

cessed during the memory address computation

00 - Not a memory reference instruction. The selected register is
accessed directly.

01 - Implied memory addressing

10 - Direct addressing if register RO is selected.
Direct, indexed addressing otherwise.

11 - Implied memory addressing with auto-increment

Two-address instructions will include 12 memory addressing option bits:

T T T T T T T T T T T T T T T reesster rercionotier ot

™ RD TS RS
\’\~ — e’
Destination Source
address address

Some instructions allow a source to be anywhere in memory. but the destination must be a general purpose register.
These object codes include TS. RS, and RD. but not TD.

TMS 9900 Jump instructions use program relative, direct addressing. These are one-word | TMS 9900
instructions. where the low-order byte of the instruction object code provides an 8-bit. signed | PROGRAM
binary value, which is added to the incremented contents of the Program Counter. This is | MEMORY
straightforward program relative. direct addressing. ADDRESSING

TMS 9900 1/0 ADDRESSING

As compared to other microcomputers described in this book. the TMS 9900 has unusual I/0 logic. In addition to ad-
dressing I/0 devices as memory locations, you can address a separate 1/0 field of up to 4096 bits. Texas Instru-
ments’ literature refers to this field as the “Communications Register Unit’* (CRU). If you are programming a TMS
9900 microcomputer system that has already been configured by Texas Instruments. then it is justifiable to look upon
the Communications Register Unit as a form of /0 port. If you are building your own interface to a TMS 3900 CPU. then
instructions that are supposed to access the Communications Register Unit in reality simply make alternative use of
part of the Address Bus in conjunction with three control signals: CRUCLK, CRUIN. and CRUQUT.

There are two classes of TMS 9900 CRU instructions. The first class accesses individual bits (or signals), while
the second class accesses bit fields that may be between 1 and 16 bits wide. .

There are three single-bit CRU instructions; they set. reset. or test the identified CRU bit. This is equivalent to set-
ting. resetting. or testing an external signal or single I/0 port bit. When a bit is to be set or reset. the new levei is output
via CRUOUT. and a CRUCLK pulse indicates that valid data is on the CRUOUT line. When the condition of a bit is to be
input or tested. then external logic is required to return the level of the tested bit via CRUIN.
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A CRU bit instruction outputs a 12-bit address which is computed as follows:

Instruction Object Code
e Nl
r N

MSB 15 14 13 1271110 9 8 7 6 5 4 3 2 1 0 LSB

CE LI T Ixivlvl Y]YIY]YIT‘I ' General Purpose Register R12

e N

N\

MSB 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 LSB

L1 zlzfzfz]z]z)z]2fz]z]z]z] |

8-bit,
signed
binary

number

12-bit, unsigned
binary number:

X X X X XY YYYYYY
Z 2 2 Z Z Z Z Z Z Z Z Z

C—-Sum becomes effective CRU address ) X, Y and Z represent any binary digits

The 12-bit address is output on the 12 lower-order address lines; the three higher-order address lines are all 0 to
designate a CRU address. :

Now during the execution of a CRU bit instruction. the address which is output is supposed to be a bit address — that
is. an address identifying one bit in a possible 4096-bit field. So far as external interface logic is concerned. the address
can be interpreted in any way. However. data output will occur via CRUOUT only; data is input via CRUIN, and
stored in the Equal bit of the Status register.

There are two multi-bit CRU instructions: one. LDCR. transfers data from an addressed memory location to any ad-
dressed CRU bit field. The other, STCR, transfers data from an addressed CRU bit field to any addressed memory loca-
tion. Anywhere from 1 to 16 bits of data may be transferred by the LDCR and STCR instructions. Instruction object
codes are interpreted as follows: )

MsB : T R LSB
§ A et g et
151413 1211109 8 7 6 5 4 3 2 1 0. gjNo.

[TTTTITITTITTTITTIIT] Mutibit cRU mstruction

A These four bits identify the general purpose register which is to be
used in the memory address computation 0000 = RO to 1111 =
R15.

00 - Register is the memory location

01 - Implied memory addressing via address in the register

10 - If Register RO is selected, then direct memory addressing is
specified; the direct address is in the next program memory
word. If any register other than RO is selected, then direct, in-
dexed addressing is specified. The contents of the selected
register are added to the contents of the next program memo-
ry word.

11 - Implied memory addressing with auto-increment

CRU bit field length (0 is interpreted as 16)

4001100 = LDCR
1001101 = STCR
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The source/destination memory location is identified as it would be for any memory reference instruction.

The address of the first CRU bit is specified by Register R12. For a multi-bit CRU instruction, the CRU bit address is in-
cremented for each succeeding bit access. but the incremented address is held in @ temporary storage location. The
contents of Register R12 are not incremented.

Thus, multi-bit CRU instructions may transfer anywhere from 1 to 16 bits between any memory location and any CRU
bit field. Note that memory must be divided into 16-bit words, each of which has identified bit boundaries, but
there are no equivalent bit boundaries in the CRU bit field. That is to say. any CRU bit may be identified via Register
R12 as the first bit in a multi-bit field. while the length of the multi-bit field is identified by the instruction object code.
This may be illustrated as follows:

CHP
MSB LsB
1514131211109876543210
LT Dxlxpx[xfx]x]x]x{x{x]x[x] ]
R12 Start of CRU
Bit Field
MSB LSB
1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
) [}
HEEEEEMANMERERER - u
CRU Instruction N v’
Object Code
End of CRU
Bit Field

If YYYY is 0000, the CRU bit field is assumed to be 16 bits in length.
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When bits are transferred from a memory location to a CRU bit field, the contents of the memory location are not
actually modified, but the transfer occurs as though bits had been right shifted out of the memory location. Bits

arriving within the addressed CRU bit field are stored in sequential CRU bit locations with ascending addresses. This
may be illustrated as follows:

CRU
Data Memory
| — 0 Lowest CRU Bit
"/ 1 Address
x{x[x]x]|x]1]1]ofof1]of[1[1][0]1]0 )
\ 1
\ 0
N 1
o
0
1
1 Highest CRU Bit
Address

Eleven bits have been transferred in the illustration above. If eight or fewer bits are transferred from a general purpose
register. only the more significant byte is accessed:

MsSB LSB
15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

[xIx]x]1JofoJi]1]v[v]v]v[v]v]v]v] ceneral purpose Register

CRU

Lowest CRU Bit Address

=lolol=]-

Highest CRU Bit Address

Our illustration shows a transfer of five bits.



If eight or fewer bits are transferred from a memory location, then the memory address will be considered a byte ad-
dress rather than a word address; that is. the transfer will be from the low-order bits of the addressed byte. which may
be either the upper or lower byte of a 16-bit memory word. Thus you can access the lower byte of a general purpose
register by addressing it as a memory location.

A data transfer from the CRU to data memory occurs as the exact logical reverse of the illustration above, except
that high-order bits of the destination data memory word are zeroed if unfilled. This may be illustrated as follows:

CR

c

I

Data Memory
Lowest CRU Bit Address

olofofofo]o]o]1]o]1[ofo]1]o]1]n
- ?f Y
~

Unused, Therefore Reset \

Highest CRU Bit Address

[2]ef-]ofe]=]ef=]-] |

[ ]

As with data transfers from memory to the CRU, if eight or fewer bits are transferred, only a byte will be affected. This
will be either the addressed memory byte:

CRU
——
Data Memory
0 ] Lowest CRU Bit Address
1
ofofof1]o]1]1]o 1
Nm—— ——— N 0
e
1 | Highest CRU Bit Address
These Bits Reset to 0 —




or the high-order byte of a general purpose register:

MsB LSB
15 14 13 121110 9 8 7 6 5 4 3 2 1 O

[0 I OIOF ] 1 lOJ 1 10 I xl X‘XIXLXIX I X—AILX]‘GeneralPurposeRegister
These o This Byte Unaffected CRU
0 Lowest CRU Bit Address
1
0
1
1 Highest CRU Bit Address

TMS 9900 STATUS FLAGS
The TMS 9900 CPU has a 16-bit Status register which may be illustrated as follows:

0 1 2 3 45 6 7 8 9 10 1112 13 14 15 g~ TMS 9900 Bit Number
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 e Our Bit Number

T[N]=
LINI=[clo]r]x

4 L—— Interrupt mask

Unused

XOP instruction executed
Parity status

Overflow status

Status register

Carry status
Equal condition

Arithmetic Greater Than condition

Logical Greater Than condition

The low-order four bits of the Status register represent an interrrupt mask which identifies the level of interrupt
which is currently enabled. As the 4-bit interrupt mask would imply, 16 levels of interrupt are allowed. We will describe
interrupt processing later in this chapter.

The X status is set to 1 while an XOP instruction is being executed. This instruction allows you to perform a soft-
ware interrupt — as described later in this chapter.

The P, O, and C are standard Parity, Overflow and Carry statuses.

The Equal status (=) identifies a condition that currently exists, as the result of the execution of a previous in-
struction, that will cause a Branch-if-Equal instruction to branch. A CRU bit to be tested also gets stored in the
Equal status.

The Logical Greater Than and Arithmetic Greater Than statuses are set or reset following arithmetic. logical, or data
move operations. A Logical Greater Than treats the source data as simple, unsigned binary numbers. An
Arithmetic Greater Than interprets the operand as signed binary numbers.

TMS 9900 CPU PINS AND SIGNALS
Figure 3-2 illustrates the pins and signals of the TMS 9900 CPU.
Being a 64-pin DIP, the TMS 9900 can afford to have separate Address and Data Busses.
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ves 1 U/ 64 €— TOD
vce 2 63 P—» WMEMEN
WAIT ¢— 3 62 p€— READY
[OAD —] 4 61 }—» WE
HOLDA —— 65 60 p—3p CRUCLK
RESET —»= 6 59 b—— Ve
AQ - 7 58 p—
P11 ——Tpt 8 57 P
P2 —pd 9 56 =P D15 (LSB)
(LSB) A14 -€¢—— 10 55 Leg—3 D14
A3 €— N 54 Lg D13
A12 E*——q 12 53 |- D12
A1 4——4 13 52l DIt
A0 & 14 51 = D10
A9 E——dq 15 50 € D9
A8 w— 16 TMS 9900 49 <€ D8
A7 — 17 48 P D7
A6 <—J 18 47 P D6
A5 €—— 19 46 € D5
A4 €1 20 45 PP Dy
A3 i 5 4 f€>» D3
A2 €— 22 43 € D2
Al -—q 23 42 € D
(MSB) A0 — 24 41 =P DO (MSB)
o4 —4 25 40 }—— Vsg
Vss 26 9 b—
VDD 27 38—
¢3 —Ppugd 28 37 p——
DBIN €——q 29 36 pg—— ICO {MSB)
CRUOUT -——f 30 35 pg— IC
CRUIN —34 31 34 p—— IC2
INTREQ —P 32 33— c3 (LSB)
Pin Name Description Type
A0 - A14 Address Bus Tristate, output
DO - D15 Data Bus Tristate, bidirectional
®1, $2, ¢3, P4 Clock Signals Input
MEMEN Memory Enable Tristate, output
IAQ Instruction Fetch Output
EN Data Bus In Tristate, output
WE Write Enable Tristate, output
READY Memory Ready Input
WAIT Wiait State Indicator Output
CRUCLK 1/0 Clock Output
CRUOUT Serial 1/0 Out Output
CRUIN Serial 1/0 In Input
INTREQ Interrupt Request Input
ICO - IC3 Interrupt Code Input
HOLD DMA Request Input
HOLDA Hold Acknowledge Output
LOAD Load Interrupt Input
RESET Reset Input

Vee Vcc: Vop: Vss

Power and Ground reference

Figure 3-2. TMS 9900 Signals and Pin Assignments




Pins AO - A14 provide the 15-bit Address Bus. Note that Texas Instruments’ literature numbers bits and pins
from left to right; therefore, address line AO represents the most significant address bit, where as address line
A14 represents the least significant address bit.

DO - D15 provide a 16-bit bidirectional Data Bus. Once again, DO represents the most significant data bit in Texas
Instruments’ literature.

Remaining signals may be divided into bus control, interrupt control, and timing.

External logic must provide four clock signals, ®1, ®2, ®3, and ®4. These are provided by the TIM 9904, described
later in this chapter.

Any memory access operation begins with an address being output via the Address Bus. The TMS 9900 CPU iden-
tifies a stable address on the Address Bus by outputting MEMEN low.

If the memory access operation is an instruction fetch, the IAQ is output high.

If the memory access is a read, then the TMS 9900 outputs a high level via DBIN. Memory interface logic must in-
terpret the high DBIN level as a signal to place data on the Data Bus.

If the memory access is a memory write, then the TMS 9900 CPU outputs a low pulse via WE. Memory interface
logic must use the low WE pulse to signal that valid data is on the Data Bus, and to store it in the addressed memory
location. WE low does not last as long as DBIN high.

When external logic cannot respond to a memory access in the available time, it requests a Wait state by input-
ting READY low. The CPU acknowledges by outputting WAIT high.

CRUCLK, CRUIN, and CRUOUT are three signals used to implement single-bit or serial data transfers via the
CRU interface.

CRUOUT is used to output bits of data to the 1/0 devices, and CRUIN is used to retrieve input data from the 1/O devices.
CRUCLK is active during output operations only, and defines when data bits on CRUOUT are valid.

Let us now look at interrupt control signals.

There is a single interrupt request input, INTREQ, which must be held low by any external device requesting an
interrupt. External devices identify themselves via control signals ICO - IC3. Thus, an interrupt request must be
accompanied by the appropriate input at ICO - IC3.

Observe that there is no interrupt acknowledge signal.

For DMA operations, external logic requests access to the System Bus by inputting HOLD low. The CPU
acknowledges the Hold request by outputting HOLDA high.

LOAD is a nonmaskable interrupt.

RESET is a typical system Reset signal. However, TMS 9900 Reset logic uses the device's interrupt capabilities;
therefore, we will describe the Reset operation in detail when discussing TMS 9900 interrupt capabilities in general.

TMS 9900 TIMING AND INSTRUCTION EXECUTION

TMS instructions execute as a sequence of machine cycles, each of which contains two clock periods. Clock
periods are timed by four clock signals, 1, 2, 3, and ®4, as illustrated in Figure 3-3. Note that ®2 is the first
phase of each clock period, and that ®1 is the last phase.

The simplest instruction execution machine cycle is an internal operations cycle. No external | TMS 9900
bus signals are active during this machine cycle, and no memory or I/0 access occurs. Timing for | INTERNAL
an internal operatlons machine cycle will consist of two clock periods, as illustrated in § OPERATIONS
Figure 3-3. MACHINE
CYCLE

MEMORY ACCESS OPERATIONS

TMS 9900 memory access operations may consist of a memory read or a memory write. An instruction fetch is
a minor variation of a memory read.

Figure 3-4 illustrates memory read machine cycle timing.

MEMEN goes low at the beginning of any memory access machine cycle and stays low for the entire machine cycle.
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Figure 3-3. TMS 9900 Clock Periods and Timing Signals as
Generated by the TIM 9904
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M .
P M M
) }) /—\ L
s Y]
DBIN /

AO-A14 ADDRESS OUT [ Y

P~

DO-D15 x INPUT MODE x DAT‘A IN I INPUT MODE

CPU READS DATA

Figure 3-4. A TMS 9900 Memory Read Machine Cycle



DBIN goes high at the beginning of the memory read machine cycle and stays high for the-entire machine cycle. Exter-
nal logic can therefore use MEMEN low as a memory address indicator while DBIN high identifies the read operation.

A memory address is output stable on the Address Bus for the entire machine cycle.

The Data Bus operations during a memory read machine cycle represent the only unusual characteristics of the
machine cycle. Input data needs to be stable during the ®1 high pulse of the second clock period. However, the Data
Bus is connected to input logic for the entire memory read machine cycle and for a portion of the next machine cycle.
Thus, during a memory read machine cycle, external logic cannot access the Data Bus to perform direct memory ac-
cess, or any other operations, on the assumption that the Data Bus is free until Data In becomes stable. Moreover, since
the Data Bus is held by data input logic of the CPU during the next machine cycle, a memory read machine cycle ¢an-
not be followed by a memory write machine cycle. A memory read machine cycle must be followed by an internal
operations machine cycle, or by another memory read machine cycle.

The only difference between an instruction fetch machine cycle and a memory read-machine cycle is the fact that dur-
ing an instruction fetch machine cycle, IAQ is output high, along with DBIN, for the duration of the machine cycle.

ONE MACHINE CYCLE

CLOCK PERIOD 1 CLOCK PERIOD 2

e T‘T

03 _ [\ \ [\ [ ]

= ¢

AOQ-A14 x ADDRESS OUT

_
s Y [N
N—

DO-D15 1 DATA OUT

Figure 3-5. A TMS 9900 Memory Write Machine Cycle

Memory write machine cycle timing is illustrated in Figure 3-5. In this illustration, we see that data is output sta-
ble on the Data Bus for the entire duration of the memory write machine cycte. The Data Bus is not held by output logic
beyond this single machine cycle. Thus, no restrictions are placed on the type of machine cycle which can follow a
memory write machine cycle. Even though data output is stable for the entire memory write machine cycle, the write
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enable strobe WE does not go low until close to the end of the first clock period. In many cases it is easier to use NOT

DBIN as a write control signal. Here is the necessary logic:

MEMEN

DBIN

__D-—— WRITE

TMS 9900 instruction execution machine cycle sequences are not always self-evident; therefore, let us look at
some memory reference examples.
Memory address computations make machine cycle sequences quite complex, particularly for two-operand instruc-
tions. Fortunately., the exact machine cycle sequences are rarely of any consequence to you as a programmer or logic
designer. The eventual number of machine cycles required to execute an instruction {and therefore its execution time)

is important.
Generally stated, instruction execution proceeds as follows:

1)
2)
3)
4)
5)

The instruction object code is fetched.
The first operand address is computed.
The second operand address (if there is one) is computed.

TMS 9800
INSTRUCTION
EXECUTION
SEQUENCES

Any operation that may be required is performed.
If a result is generated, it is returned to the second operand address.

Let us look at operand address computations using the ADD instruction (A) as a general example. First consider the in-
struction in its simplest form — where the contents of one register are added to the contents of another register:

Cycle
1

NOoOOR,WN

Type
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY WRITE

A

Figure

3-4
3-3
3-4
3-3
3-4
3-3
3-5

R1.R2

Function

Fetch instruction object code
Decode instruction

Fetch R1 contents

Fetch R2 contents
Add R1 and R2 contents
Store sum in R2

Now consider the same instruction’s execution. but using implied memory addressing for the first operand:

Cycle

©CONOOPDWN =

Type

MEMORY READ

ALU

MEMORY READ

ALU

MEMORY READ

ALU

MEMORY READ

ALU

MEMORY WRITE

A

Figure
3-4

VoL

W W W W Wwwww
Tgwbwhbhwhbw

*R1.R2

Function

Fetch instruction object code

Decode instruction

Fetch R1 contents

Use R1 contents as a memory address (implied addressing)
Fetch contents of imptied address location

Fetch R2 contents

Add data fetched in cycles 5 and 7
Store sum in R2
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If the second (destination) operand uses direct addressing. here is the machine cycle sequence:

Cycle

Type

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU .
MEMORY READ
ALU

MEMORY READ
ALU

MEMORY WRITE

A
Figure
3-4
3-3
3-4
3-3
3-4
3-3
3-4
3-3
3-4
3-3
3-5

“R1.@LABEL

Function

Fetch instruction object code .

Decode instruction

Fetch R1 contents

Use R1 contents as a memory address
Fetch contents of implied address location

Fetch the second instruction object code word; it holds the direct address
Fetch contents of directly addressed memory word

Add words fetched in cycles 5 and 11
Store sum in directly addressed memory word

Indexed. direct addressing results in the following sequence:

Cycle

CONOOORWN —

10
11
12
13

Type

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY WRITE

A

Figure
3-4
3-3
3-4
3-3
3-4
3-3
3-4
3-3
3-4
3-3
3-4
3-3
3-5

*R1.@LABEL({B)

Function

Fetch instruction object code

Decode instruction

Fetch R1 contents

Use R1 contents as a memory address
Fetch contents of implied address location

Fetch the second instruction object code word; it holds the direct address

Fetch R5, the Index register contents

Add direct address and index

Fetch contents of memory word addressed by cycle 10 addition
Add memory words fetched in cycles 5 and 11

Store sum in memory word addressed by cycle 10 addition

If the first operand-implied address specified an auto-increment, we must add one more machine cycle:

Cycle

Type

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY WRITE
MEMORY READ

-ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY READ
ALU

MEMORY WRITE

A
Figure
3-4
3-3
34
3-3
3-5
3-4

- 3-3

3-4
3-3
3-4
3-3
3-4
3-3
35

MEMORY SELECT LOGIC

MEMEN discriminates between memory and 1/0 accesses. It is therefore very important that MEMEN low be a
necessary component for any memory select.

*R1+.@LABEL(5)

Function

Fetch instruction object code

Decode instruction

Fetch R1 contents

Increment fetched R1 contents

Write incremented R1 contents back to R1
Fetch contents of implied address location

Fetch the second instruction object code word:; it holds the direct address

Fetch R5. the Index register contents

Add direct address and index

Fetch contents of memory word addressed by cycle 11 addition
Add memory words fetched in cycles 5 and 12

Store sum in memory word addressed by cycle 11 addition

You can map I/0 into the memory space of the. TMS 9900. This is true of any microprocessor. Memory addresses that
select 1/0 devices will. of course. also require MEMEN low as a contributor to I/O device select logic.



MEMEN as a contributor to select logic may be illustrated as follows:

. CRU - .
R SELECT B SELECT TRUE ONLY IF
— LOGIC . MEMEN IS HIGH AND
o : . A12-A14 ARE 000
- -
¢ T - MEMEN
¢ & A0 (LSB)
® .
- A1l
—= A12
I - — Afd  (MSB)
-
MEMORY .
AND .
0 MEMORY . (S)ELI_E;:TFTRUE
—®1  MAPPED
«  WMEMEN
1/0 SELECT 1S LOW
LOGIC ¢
L]
L

The three high-order address lines. A12, A13, and A14, are not used to address CRU bits. When addressing a CRU bit.
these lines are all low. They are not low during execution of externally defined 1/0 instructions; therefore A12, A13,
and A14 low must be a prerequisite for any CRU bit select.

TMS 9900 1/0 INSTRUCTION TIMING

All TMS 9900 1/0 instructions transfer serial data via the Commumcatlon Register Unit (CRU). (This excludes 1/0 which
is addressed as TMS 9900 memory space.)

There are four types of TMS 9900 1/0O instructions. They are:

1)
2)

3)

4)

Data input. Anywhere from 1 to 16 bits of data may be transferred from the CRU bit field to memory.

Data output. This is the simple reverse of data input. Anywhere from 1 to 16 bits of data may be output from
memory to the CRU bit field.

Bit test. Any bit in the CRU bit field may be tested. The tested bit is input and stored in the Equal bit of the Status
register. Thence. condition branch instructions can be used to test the bit level. i

Externally defined 1/0 instructions. These instructions generate I/O control signals. but they transfer no data.

Timing for CRU output and input machine cycles is illustrated in Flgures 3-6 and 3-7, respectively Each of
these figures shows two bits of data being transferred. (You should not attach any special significance to this fact; de-
pending on the instruction being executed. anywhere from 1 to 16 bits may be transferred.) CRU machine cycles are
executed contiguously. one per bit. )
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Every CRU I/0 instruction will require a memory reference machine cycle, together with one or more CRU machine cy-
cles. For example. when an STCR instruction is executed to input data from the CRU to the CPU, the following
machine cycle sequence will occur:

Cycle Type Figure Function
1 MEMORY READ 3-4 Fetch Instruction Code
2 ALU 3-3 Decode Instruction
aCycles,where0 <a<4 Obtain Destination Address
3+a MEMORY READ 3-4 Fetch Destination Memory Word Contents
4+a ALU 3-3
5+a MEMORY READ 3-4 Fetch R12
6+a ALU 3.3 Compute CRU Starting Address and Prepare
7+a ALU Control Signals
i Cycles CRU N 3-7 tnput i CRU Bits
8+a+i ALU - .
O+a+i ALU 3-3 Load CRU Bits in Temporary Register
Fill Upper Bits of Byte or Word With Zeroes
r Cycles 1fi>8,r=15-i; if i <8,r=7-i
10+a+i+rto
12+a+i+r ALU 3-3 Prepare to Store Memory Word
L Output Assembled Word to Memory Location Whose
1B+ati+r MEMORY WRITE 3-5 Contents Were Fetched in Machine Cycle 3 + a
MACHINE CYCLE 1 MACHINE CYCLE 2
CLOCK PERIOD 1] CLOCK PERIOD 2 | CLOCK PERIOD 1| CLOCK PERIOD 2
A0-A14 1 I \
CRUOUT ! - \ 8ITn BITn+1 \
CRUCLK

Figure 3-6. Two TMS 9900 Output-to-CRU Machine Cycles
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Figure 3-7. Two TMS 9900 Input-from-CRU Machine Cycles

An LDCR instruction outputs a sequence of 1 to 16 data bits to a CRU bit field. Here is the LDCR instruction
machine cycle sequence:

Cycle  Type Figure Function
1 MEMORY READ 3-4 Fetch instruction object code
2 ALU 3-3 Decode instruction
a Cycles where 0<ag4 } Obtain source address
3+a MEMORY READ 34 Fetch source memory word contents
4+a
to ALU 3-3 Prepare for data transmission
7+a
8+a MEMORY READ  3-4  Fetch R12
9+a ALU 3-3 Compute CRU starting address
i Cycles CRU OUT 3-6{ Output i bits to CRU
10+a+i  ALU 3-3 Machine cycle to conclude instruction

The SBO and SBZ instructions set orreset an addressed CRU bit; in essence, these instructions output one data
bit. Here is the machine cycle sequence via which the bit output occurs:

Cycle Type Figure Function
1 MEMORY READ 3-4 Fetch instruction object code
2 ALU 3-3 Decode instruction
3 ALU 3-3 Decode instruction
4 MEMORY READ 3-4 Fetch R12
5 ALU 3-3 Compute CRU address
6 CRU OUT 3-6 Output to addressed CRU bit

The TB instruction inputs one CRU bit; its timing is identical to the SBO and SBZ instructions, except that
machine cycle 6 is a CRU IN machine cycle.
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The Address Bus is used in an unusual way during a CRU machine cycle. As we have already stated, the CRU bit
field is 4096 bits wide — addressed by 12 of the 15 Address Bus lines. The three high-order Address Bus lines are
used to identify 1/0 control instructions, as defined in Table 3-1. We can conclude from Table 3-1 that when
MEMEN is high and the three high-order Address Bus lines are all low, an |/O transfer is occurring. Otherwise. one of
five externally defined 1/0 control instructions is being executed. There are dedicated functions for these five 1/0 con-
trols in TM 990 minicomputer systems: these are shown in Table 3-1. But to anyone who is simply building a
microcomputer system around a TMS 9900, these five I/0 states are undefined. Thus, Figure 3-8 illustrates TMS
9900 systems’ bus utilization during both CRU operations and externally defined 1/0 operations. If CRU SEL and
MEMEN are high, CRU Select logic will be active.

Externally defined instructions output O on the 12 low-order Address Bus lines, A0 - A11; in addition, CRUCLK
pulses are output as part of the instruction executions.

CRUCLK is an active CRU output strobe only. This signal pulses high whenever a valid level is present on the
CRUOQUT signal line. There is no pulse for CRUIN. External logic must generate its own strobe if it is needed. by com-
bining MEMEN high with a valid bit pattern on the Address Bus.

CRU instructions that test the level of a bit are. to external logic. no different from CRU input instructions. External logic
is required to return, via CRUIN the level of the selected bit. The fact that the CPU interprets this input as status. rather
than data, is immaterial to external logic.

THE WAIT STATE

Additional Wait State clock periods may be inserted between clock periods 1 and 2 of any memory access machine cy-
cle. Timing is illustrated in Figure 3-9. At the rising edge of ®1 of clock period 1. the CPU samples the READY input
signal. If this signal is low. then the next clock period is a Wait clock period. During a Wait cycle. the WAIT output sig-
nal is high: all other output signals hold the levels they had during clock period 1.

A Wait State can last for any number of clock periods. During the ®1 high pulse of every Wait clock period. the CPU
samples the level of the READY input. As soon as READY is sampled high, the Wait State ends. The next clock period
becomes clock period 2 of the machine cycle, and the memory operation is completed.

Tabte 3-1. High-Order Address Bus Line Used by TMS 9900 1/O Instructions

Instruction Instruction (MSB) Function
Mnemonic Type A14 A13 A12
LDCR Output [o] 0] (o] Output data to CRU
SBO Output 0 (o] 0 Set CRU bit to 1
SBZ Output o] (o] [o] Reset CRU bit to O
STCR Input o] 0] (o] Input data from CRU
TB Test (Input) 0 0 0 Input CRU bit to Equal status bit
IDLE Control - (o] 1 (0] Enter HALT condition
RSET Control [o] 1 1 Reset the Interrupt mask
CKOF Control 1 o] 1 Real time clock on ) These are
CKON Control 1 1 o] Real time clock off = Tnm 990 uses.
LREX Control 11 Execute bootstrap } nstructions
are undefined
ina TMS 9900
system.
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If CRU SEL and MEMEN are high, CRU Select logic will be active.

MEMEN

LREX
CKON
CKOF
UNUSED
RSET
HALT
UNUSED

CRU SELECT

SIGNALS

Figure 3-8. TMS 9900 System Bus Utilization During 1/0 Operations
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Figure 3-9. The TMS 9900 Wait State
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THE HOLD STATE

The TMS 9900 has a typical microcomputer Hold State, used to enable direct memory access operations. Exter-
‘nal logic initiates a Hold State by inputting HOLD low. At the beginning of the next non-memory reference machine
cycle, the CPU floats its Address and Data Busses, together with the DBIN, MEMEN and WE control signals. HOLDA is
output high as a Hold Acknowledge. Timing is illustrated in Figure 3-10.

(NON-MEMORY
" CYCLE)

CLOCK PERIOD 1 CLOCK PERIOD 1

o1\ N [\ A

o2 j j [\
s {\ / I—\_Q

¢ ~ M
4%[_3\ ,f_‘;‘\} \1
D0.D15 \ Q-—-&—--———-—-{;

AO-A14'W-_?' ‘ AEND GEND GINED GEED GEED GEED S G GEE) GEED GEED AN GHED SIS G GED
AT }ﬂ - {

Figure 3-10. TMS 9900 Hold State Timing

HOLD I HOLD

@

»H

The Hold State lasts until external logic raises HOLD high again.

It is up to external logic to perform all operations associated with a DMA transfer. The CPU simply floats the
System Bus in response to a Hold request.

The only nonobvious aspect of Figure 3-10 is'the fact that Data Bus timing, during normal instruction execution,
differs from other System Bus signal timing. Figure 3-10 highlights this fact by showing the Data Bus floating at
the beginning of the first HOLD clock period. while other signals float earlier in the preceding clock period. This is not a
particularly significant event. The entire System Bus is floating once the HOLD clock period has begun. However, the
actual tristate condition for any signal begins at that point in the preceding clock period when the signal is no longer
being driven by current operations.

THE HALT STATE

The TMS 9900 IDLE 1/0 instruction generates a Halt State. When this instruction is executed, the CPU suspends all
program execution and internal operations. You must terminate the Idle condition with an interrupt request or a low
LOAD or RESET input. (COAD and RESET are treated as interrupts as we will describe soon.)

The TMS 9900 CPU does not relinquish the System Bus while halted. That is to say. after an IDLE instruction has
been executed, no System Bus lines are floated.
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The IDLE instruction is usually executed when program logic requires that the CPU wait for an interrupt, or when exter-
nal logic is computing a real-time interval — which will be terminated with an interrupt request.

You can, if you wish, initiate a DMA transfer by executing an IDLE instruction. In order to do this, you must
create a HOLD request from the Address Bus output characteristic of the IDLE instruction’s execution. This may
be illustrated as follows:

A14 — A14 (MSB)
A13 — A13
A12 — A12
CRUCLK ~— CRUCLK
+ 5V
PRE
D Q
D= |
__| roo
7414_ s
CIR
4 END HOLD
HOLD <=
HOLDA — HOLDA

As illustrated above, the combination of 010 on the three high-order Address Bus lines, along with the CRUCLK pulse.
identifies the IDLE instruction. Since the process of floating the System Bus will remove the conditions which gener-
ated a Hold request. these conditions are used to clock a flip-flop. Thus, external logic which receives the Hold
acknowledge signal and takes control of the System Bus must subsequently reset the Hold request flip-flop in order to
remove the Hold condition. That is to say. program logic can begin a Hold state within a Halt state, but it cannot
end this combination. Two steps are needed to terminate a Hold within a Hait. The Hold request must be
removed, then an interrupt request must follow to terminate the Halt.

TMS 9900 INTERRUPT PROCESSING LOGIC

The TMS 9900 has complex and capable interrupt processing logic. Sixteen levels of external interrupt are
available. Sixteen software interrupts are also available. Fifteen of the sixteen external interrupts are maskable; the
nonmaskable interrupt has highest priority and is the system Reset interrupt. There is. in addition. a non-maskable Load
interrupt. External interrupts may be summarized as follows:

LOAD Non-maskable, Equal Highest
RESET Priority 0 } Priority Interrupts
( Priority 1
Priority 2
Priority 3
Priority )
Maskable Priorfty 5
Levels of Priority 6
External { Priority 7
Interrupt Priority 8
Priority 9
Priority 10
Priority 11
Priority 12
Priority 13
Priority 14
\ Priority 15 Lowest Priority Interrupt
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External logic identifies the priority of its interrupt request via the 1C0. IC1. IC2, and IC3 inputs. as follows:

ICO IC1 IC2 IC3 Priority

0 0 0 0 Should not be input by external logic - highest external
0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 1

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15 lowest external

Software interrupts are executed via the XOP instruction. There are, in addition, instructions that parallel the
RESET and LOAD interrupts. We will describe these instructions in due course.

Each one of the external interrupts has two dedicated memory words via which vectoring is | TMS 9900
enabled following an interrupt acknowledge. Figure 3-11 illustrates the memory map asso- | INTERRUPT
ciated with interrupt vectoring. The memory addresses in Figure 3-11 are byte addresses as | VECTOR MAP
seen by the programmer. Remember. the low-order bit of the address shown in Figure 3-11 isnot
output on the Address Bus; therefore, you must divide the memory addresses shown in Figure 3-11 by 2 in order to
generate the address which will be seen by external memory.

The memory words dedicated to interrupt vectoring. as illustrated in Figure 3-11 . can be read-only memory.
read/write memory, or any combination of the two. Obviously. read-only memory will be used in applications that have
dedicated interrupt service routines for specific interrupt requests. Read/write memory might be used in minicom-
puter-type applications where the interrupt response will depend on the application being serviced.

Interrupt masking and priorities apply only to external interrupt requests. Interrupt masking priorities cannot be
applied to software interrupts (the XOP instruction). Since program logic must generate the software interrupt. pro-
gram logic can equally be relied on to know which software interrupt is to be executed. and whether the software inter-
rupt is allowed by current program logic. That s to say. from the programmer’s viewpoint, a software interrupt is simply
the consequence of an XOP instruction’s execution; you. as a programmer, can include an XOP instruction anywhere in
a program, within or outside an interrupt service routine. XOP instructions might be used in response to error condi-
tions, or to call any frequently used subroutines.

Let us begin by looking at the way in which external interrupts are processed.

Any external device wishing to request an interrupt must pull the INTREQ input low while simultaneously plac-
ing a 4-bit code at the ICO - IC3 inputs. The CPU will acknowledge the interrupt, provided that its priority, as
identified by the ICO - IC3 inputs, is enabled. The interrupt will be acknowledged at the conclusion of the cur-
rently executing instruction. The BLWP and XOP instructions are exceptions; for the integrity of program logic.
they demand that the next sequential instruction be executed. Therefore. if an interrupt request occurs while either of
these two instructions is being executed. the interrupt will not be acknowledged until this instruction and the next in-
struction have been executed.
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MEMORY
ADDRESS,

AREA DERNITION ~

0000
0002
0004
0006
INTERRUPT VECTORS
003C
\ 003E
r 0040
0042
XOP SOFTWARE TRAP VECTORS 4
007C
\‘ 007€
r 0080
GENERAL MEMORY FOR
PROGRAM, DATA, AND
WORKSPACE REGISTERS
FFFC
LOAD SIGNAL VECTOR
FFFE

MEMORY WORD CONTENT

WP LEVEL O INTERRUPT

PC LEVEL O INTERRUPT

WP LEVEL 1 INTERRUPT

PC LEVEL 1 INTERRUPT

WP LEVEL 15 INTERRUPT

PC LEVEL 15 INTERRUPT

WP XOP 0

PC XOP 0

WP XOP 15

PC XOP 15

GENERAL MEMORY AREA
MAY BE ANY
COMBINATION OF
PROGRAM SPACE
OR WO§KSPACE

WP LOAD FUNCTION

PC .LOAD FUNCTION

Figure 3-11. TMS 9900 Memory Map
When an interrupt is acknowledged, the following machine cycles are executed:

Cycle Type Figure Function
1 ALU 3-3
2 MEMORY READ 3-4  Move new WP register contents from vector word to temporary storage
3 ALU 3-3
4 MEMORY WRITE 3-6  Store status in new R15
5 ALU 3-3  Store ICO - IC3 levels in four low-order Status bits
6 MEMORY WRITE 3-6  Store incremented PC in new R14
7 ALU 3-3
8 MEMORY WRITE 3-6  Store old WP register contents in new R13
9 ALU 3-3
10 MEMORY READ 3-4 Fetch new PC contents from vector word
1 ALU 3-3 Fetch new WP contents from temporary storage

Vector words are illustrated in Figure 3-11.
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At the conclusion of the interrupt acknowledge sequence listed above, the priority of the | TMS 9900
acknowledged interrupt request, less one. is recorded in the four low-order Status register bits. | NESTED
Thus, subsequent interrupt requests will be acknowledged only if their priority is higher than that | INTERRUPT
of the interrupt being serviced. That is to say. whenever an interrupt request occurs, CPU logic { PRIORITIES
compares the levels input at ICO - [C3 with the levels present in the four low-order Status register
bits. If ICO - IC3 is not greater than the mask. then the interrupt request will be acknowledged. If ICO - IC3 is higher.
then the interrupt request will not be acknowledged. Thus, in the normal course of events, TMS 9900 interrupt
priority logic disables all interrupts of equal or lower priority than an acknowledged interrupt, while leaving high-
er priority interrupts enabled. Priorities are maintained for the duration of the interrupt service routine. This is il-
lustrated in the following figure, which you should read in the sequence B -®-©-® -® -® -G :

@ Interrupts with

5 8 11 _-

priorities 5, 8 and 11 , -~ N
occur simuitaneously / \ @
7 \
) / Interrupt 7, having highest
Interrupt with /
7/
/

pth priority of three pending
priority 5 interrupts (7, 8 and 11) will
acknowledged immediately be acknowiedged

Main Program

@ Interrupt with

priority 7 occurs
and is denied

)
@ Interrupt with priority 2
occurs and is
acknowledged

Interrupt service routine 5
completes execution

Interrupt service
routine 2 executes

The interrupt priority arbitration logic of the TMS 9900 is exceptional among microcomputers. Most microcomputers
arbitrate priorities at the instant interrupts are being acknowledged. and once an interrupt has been acknowledged. all
interrupts are disabled. That is to say. interrupt priorities apply only during the acknowledge process. In contrast, the
TMS 9900 maintains interrupt priorities for the duration of the interrupt service routine, as illustrated above.

The net effect of the interrupt response steps illustrated above is to perform a context switch while disabling all inter-
rupts that have the same priority as the acknowledged interrupt. or that have a lower priority.

There are some very important and nonobvious advantages to initiating an interrupt service routine with a con-
text switch.

Since the 16 new memory locations that will be used as general purpose registers may lie anywhere in read/write
memory, you can store parameters that will be used by the interrupt service routine, in advance of the interrupt, in
those memory locations that are ultimately to serve as general purpose registers for the duration of the interrupt service
routine.

You can, if you wish, modify the interrupt priority scheme that will control nested interrupts. As we have already
stated. if you do nothing about interrupt priorities, then any interrupt service routine may be interrupted by a higher
priority external interrupt, but not by an external interrupt that has the same priority or a lower priority.

If you wish to eliminate nested interrupts entirely. then the first instruction executed within an interrupt service routine
must be an LIMI O instruction (Load Interrupt Mask Immediate). which clears the four low-order Status register bits,
thus disabling all maskable interrupts. A RESET or LOAD interrupt — or a level O external interrupt request — will still
be acknowledged: these should be alarm conditions and not part of the normal interrupt logic of any microcomputer.
You can execute variations of the LIMI instruction to increase or decrease the levels of priority that will be masked for
the duration of any interrupt service routine (or for that matter. any subsequent instruction within the interrupt service
routine) can load appropriate data into the four low-order bits of the Status register. thus changing the priority level at
which all subsequent interrupt requests will be disabled.
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All interrupt service routines should end with an RTWP (Return Workspace Pointer) instruction. The RTWP in-
struction performs a reverse context switch. which puts the central processing unit back to the logical environment
which was interrupted. Observe that since the Status register is also saved during a forward context switch. the return
instruction will restore whatever tevel of interrupt priorities existed at the instant the interrupt was acknowledged. You
can, of course, modify the contents of General Purpose Registers R13, R14, and R15 in the course of an interrupt ser-
vice routine’s execution. This allows program logic to alter the conditions that will be restored when the return instruc-
tion executes a reverse context switch.

The TMS 9901 PSI, which we describe later in this chapter, provides multiple interrupt handling for TMS 9900
series CPUs. If your system does not include a TMS 9901, then external hardware required to support muitiple
interrupts in a TMS 9900 microcomputer system will not be as straightforward as the software response.

First of all. we must cope with the fact that if more than one interrupt request occurs | TMS 9900
simultaneously. then there will be competition on the INTREQ input. but there will also be | MULTIPLE
competition at the four priority inputs, ICO - IC3. Resolving competition on the INTREQ inputis ] INTERRUPT

no problem; you can wire-OR interrupt requests from many devices to create the CPU input. | HARDWARE

But your external logic must make sure that only the highest priority combination of ICO - IC3 | CONSIDERATIONS

appears at the TMS 9900 inputs. One method of doing this is to use latched decoders that
create a 4-bit output corresponding to the highest level input. provided that the decoder is enabled by a latching sig-
nal. This may be illustrated functionally as follows:

+5V

INTREQ

LY

T™MsS (HIGHEST PRIORITY)
9900 ACO ENABLE ceee’ INT1

AC1

l@”S2] DECODER
acs|

sesssscscee

1
Y] B YY)

INT 15
(LOWEST PRIORITY)

In the illustration above. 15 external interrupt requests are input to a decoder. These interrupt requests are high true.
The 15 interrupt requests are buffered. inverted. and wire-ORed to create the master interrupt request INTREQ. which
is input to the CPU. This master interrupt request also enables the decoder. That is to say. when the enable input to the
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decoder is high. the four outputs, ICO - IC3 will be low. When the enable input to the decoder is low. ICO - IC3 will out-
put a 4-bit value as follows:

camewoOonronn oFe 232
8088 EEEELEEEEEEELEES
0 0GO 0 000O0O0ODOOOOOOOO OO
00 0 1 1 % % % %k % % % % %k %k % % % X
0010 0 1 % % % % % % % % X % % ¥ %
o0 0 1 1 0O 0 1 % % % % % % % % %k % X% X%
0100 0 0 O 1 x % % % % % % % % % %
01 0 1 0 0 0 0 1 % % % % % % % % % %
0110 0 0 0 0 0O 1 % % % % % % % % X
01 1 1 0 0 0 0 0 O T % % x % % % % %
1000 0 0 0 00 O 0 1 % % % % % % %
10 0 1 0 0 0 00 OO0 O 1 % % % % % %
1010 0O 0 OO OO O O 0 1 % % x % X
1.0 1 1 0 00 0O0O0UOO O OO0 1 % % % %
11 00 0O 0 0OOO OO OO O 1 % % %
11 0 1 0 00O0OO0CDOOOUODOUOUDO 1 % %
1110 O 00O0ODOOOOOOO OO 1 %
11 1 1 0 00O0OOOOOOOOOOTO O 1

% REPRESENTS A “DON'T CARE” BIT

If you do not use the TMS 9901. Texas Instruments suggests the following circuit to accomplish priority encoding:
+5V

iINTREO
INT 1 (HIGHEST
e PRIORITY)
L ]
*
T7
T™S 1C0
9900 <}>
T8
ict .
A2 141 PE——
us  Beg
1c2 ‘ (TiM oe——— .
A1 990 bag———
pt———— _ °
1c3 ¢ o@——— INT 15 (LOWEST
AD PRIORITY)
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External logic must maintain its interrupt request until it receives its own specific interrupt acknowledge. This
need is obvious, since an interrupt request may be denied for a long time while higher priority interrupts are being ser-
viced.

The problem is that the TMS 9900 has no interrupt acknowledge signals.

Interrupt acknowledge signals can be generated in one of two ways:

1) By using CRU bit instructions to set and reset external fiip-flops that create interrupt acknowledge signals.
2) By decoding appropriate addresses on the Address Bus.

Figure 3-12 illustrates two possible configurations that will allow CRU bit set and reset instructions to gener-
ate interrupt acknowledge signals. The logic in Figure 3-12A generates a short interrupt acknowledge pulse.
CRUOUT becomes the input to a flip-flop which is decoded to generate CRU select signals. The CRU bit select and
MEMEN are gated to the flip-flop’s Clear input. Therefore. when CRU bit “n” is selected. CLR is removed and CRUOUT
can be clocked through. A set bit (SBO) instruction switches the flip-flop on. As soon as the flip-flop address is removed
at the end of the CRU 1/0 machine cycle. the flip-flop is cleared. thus terminating the interrupt acknowledge pulse.

The logic illustrated in Figure 3-12A requires that you execute an SBO instruction at the beginning of every interrupt
service routine in order to generate an interrupt acknowledge. You could require every interrupt service routine to con-
trol the length of the interrupt acknowledge pulse by executing an SBZ instruction to terminate the pulse. Figure
3-12B shows logic to implement this scheme. When the flip-flop is selected by the appropriate CRU address, CRUCLK
will clock CRUOUT to INT ACK n. At other times. CRUCLK will merely clock the flip-flop’s output through. thus making
no change. In this way. only SBO and SBZ instructions which address INT ACK n can set or reset the flip-flop.

Figure 3-13 illustrates generation of an interrupt acknowledge signal by identifying specific addresses on the
Address Bus. Following any interrupt acknowledge. specific memory locations will be accessed. as identified in Figure
3-11 . in order to fetch the new values for the Program Counter and WP register. Figure 3-13 shows a very simple
scheme whereby Address Bus lines are combined with MEMEN low to generate high pulses for the duration of a valid
address. That is to say, the interrupt acknowledge signal will last for one machine cycle — the time that the valid ad-
dress exists on the Address Bus.

External logic which requested an interrupt removes its interrupt request and priority signals upon receiving an
interrupt acknowledge.
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Figure 3-12. A TMS 9900 Interrupt Acknowledge Pulse Generated Using an SBO Instruction
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Figure 3-13. TMS 9900 Interrupt Acknowledge Generated by Decoding Valid Addresses
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THE TMS 9900 RESET

You reset the 9900 microcomputer system by inputting a low RESET signal. This signal must remain low for at
least 3 clock periods. When the low RESET signal is removed, the following machine cycle sequence is ex-
ecuted:

Cycle  Type Figure Function

1 ALU 3-3  Prepare for Level O interrupt

2 ALU 3-3

3 ALU 3-3 )
4 MEMORY READ 3-4  Fetch new WP register contents from memory word 00001 ¢ to temporary

storage

5 ALU 3-3

6 MEMORY WRITE 3-5  Store Status register contents in new R15

7 ALU 3-3

8 MEMORY WRITE 3-6  Store Program Counter contents in new R14

9 ALU 3-3
10 MEMORY WRITE  3-5  Store old WP register contents in new R13
11 ALU 3-3
12 MEMORY READ 3-4  Fetch new Program Counter contents from memory word 000114
13 ALU 3-3 Load WP register from temporary storage

Thus. program execution begins with a program whose starting address is stored in memory word 1. The starting ad-
dress for the 16 general purpose registers is stored in memory word 0.

The TMS 9900 has a Reset instruction (RSET). In reality. this instruction resets only the interrupt mask in the Status
register; it also outputs a code on the Address Bus. as identified in Table 3-1 and illustrated in Figure 3-8. TM 990
minicomputer systems use this signal to generate a program-initiated Reset. If you are designing your own TMS 9900-
based microcomputer system. you are free to use the RSET instruction in any way.

THE TMS 9900 LOAD OPERATION

The LOAD input to the TMS 9900 is a non-maskable, highest priority interrupt. Load must be input low for at
least one instruction’s duration. Since the length of an instruction can vary, you must use the |AQ signal to con-
trol the LOAD input pulse width. Texas Instruments’ literature recommends the following circuit:

+5V
<
|
PRE PRE
=4 D Q —qD Q
1AQ
> CK 7474 I>CK 7474
™S [} __©
9900 CLR CLR
_——'I EXTERNAL LOAD
LOAD
d L
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The CPU checks LOAD at the end of each instruction’s execution.

After a valid LOAD input has been acknowledged. the following machine cycle sequence is executed:

Cycle Type Figure Function
1 ALU 3-3
2 MEMORY READ  3-4  Input new WP register contents from memory word 7FFE1g to temporary
storage
3 ALU 3-3
4 MEMORY WRITE 3-5  Store in new R15
5 ALU 3-3
6 MEMORY WRITE 3-5  Store incremented Program Counter contents in new R14
7 ALU 3-3
8 MEMORY WRITE 3-5  Store old WP register contents in new R13
9 ALU 3-3 :
10 MEMORY READ 3-4 Input new Program Counter contents from word 7FFF1g
11 ALU 3-3 Load WP register from temporary storage

There are two differences between Reset and Load. First, the RESET input provides a true hardware reset, syn-
chronizing internal operations, as well as a level O interrupt; LOAD provides only a non-maskable interrupt. Sec-
ond, the Reset vector in bytes O through 3, while the Load vector is in bytes FFFCq1g through FFFFqg.

In TM 990 minicomputer systems, the LREX instruction is frequently used as a software load. Output due to
LREX is identified in Table 3-1 and Figure 3-8 . In a TMS 9900 microcomputer system, you can use the LREX
signal in any way.

THE TMS 9900 INSTRUCTION SET |

The TMS 9900 instruction set is extremely powerful when compared to any 16-bit microprocessor described in
this book. When you consider that the TMS 9900 was first manufactured in 1976, the power of this instruction
set becomes more impressive.

With regard to instructions described in Table 3-2 , some explanations are required.

The ABS instruction converts the contents of a memory location to their absolute value. That is to say. this instruction
assumes that the memory location contains a signed binary number. If the number is positive. nothing happens. If the
number is negative, the twos complement of the number is taken.

A number of instructions act on specific bits within source and destination memory words. These include the SOC,
SOCB, S$ZC, SZCB, COC, and CZC instructions. In the OPERATION PERFORMED column of Table 3-2, the word
“corresponding” means that the source word bits are affected only if selected by the destination word bit pattern. For
example, the SOC instruction will be interpreted as follows:

Source:
Destination:
After SOC: Here are the new destina-

tion contents.

This is equivalent to an OR operation.

The SOCB instruction is identical to the SOC instruction. except that only one byte is affected. This may be any memo-
‘ry byte or the high-order byte of a general purpose register.

The SZC instruction may be illustrated as follows:

Source:
Destination:
After SZC:
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This is equivalent to complementing the source operand and then ANDing the two operands. The SZCB instruction is
identical to the SZC instruction, except that only one byte is affected.

The COC instruction compares Source Register 1 bits with general purpose register bits that happen to be in the same
bit positions. If all corresponding general purpose register bits are also 1. then the Equal status is set. Matches are not
significant in bit positions if the source register bit is 0.

The CZC instruction operates in the same fashion as the COC instruction, except that those source memory word bits
that are O become significant. That is to say. if every source memory word O bit has a corresponding Workspace
register O bit. then the Equal status is set. Matches are not significant in bit positions if the source register bit is 1.

The BLWP instruction is a subroutine call accompanied by a context switch. The operand memory address identifies
the first of two memory words within which the new WP register and Program Counter contents will be stored.

The BLWP instruction is remarkably powerful. The subroutine call and passing parameters to the subroutine become a
single operation. The memory words that are to serve as subroutine general purpose registers can be used as general
data memory locations prior to the subroutine call. Thus. the subroutine finds its registers pre-loaded with data when it
starts executing.

The RTWP instruction should be used to return from a subroutine that is called by the BLWP instruction.
One-bit position -arithmetic shifts may be illustrated as follows:

O AN £ 20 e daddr r'r’f
st0110101101001 100‘

Inserted

A one-bit-position logical right shift may be illustrated as follows:

1011010110100110

AMAAMAAAAALIN

010110101101001 1 Lost

Inserted

A one-bit right rotate (Shift Right Circuiar) may be illustrated as follows:

15 14 13 12 11 10 9 8

I_Tf—L’T’«L‘F—fF—L‘f—Lﬁ‘T’-L‘TJ

You can specify any number of bits, from 1 to 15. as the number of bit positions for any TMS 9900 shift or rotate in-
struction. If you specify O for the bit count. then the actual bit count is taken from the four low-order bits of general pur-
pose Register RO. If these four low-order bits are 0000, then the bit count is assumed to be 16.
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The following symbols are used in Table 3-2:

AG Arithmetic Greater Than status

C Carry status

CNT 4-bit count field

CRUA CRU base address from R12

d Destination memory word. There are five possible options for the destination memory word. They are

represented by these combinations of addressing modes:

Workspace Register D

Implied through Workspace Register D

Direct address

Direct, indexed address

Implied through Workspace Register D, auto-increment Workspace Register D
DATA4 4-bit data unit

DATA16 16-bit data unit

DISP 8-bit signed displacement

EQ Equal status bit of Status register

G Both the AG and LG statuses

LG Logical Greater Than status

orP Odd Parity status

ov Overflow status

PC Program Counter

R Any of the 16 Workspace registers

Rxx Workspace register. For example. R15 is Workspace Register 15
S Source memory location. Addressing options identical to destination memory location
ST Status register

WP Workspace Pointer register

x<y.z> Bits y through z of the quantity x. For example, ([S1* [R])<31,16> represents the high-order word of
the product of the contents of the Source Register S and the Workspace Register R.

[1 Contents of location enclosed within brackets. If a register designation is enclosed within the brackets.
then the designated register’'s contents are specified. If a memory address is enclosed within the brackets,
then the contents of the addressed memory location are specified.

. Multiplication

/ Division

A Logical AND

\ Logical OR

M Logical Exclusive-OR

Data is transferred in the direction of the arrow

Under the heading of STATUSES in Table 3-2. an X indicates statuses which are modified in the course of the instruc-
tion's execution. If there is no X, it means that the status maintains the value it had before the instruction was ex-
ecuted.

Byte-operand instructions will affect half of a 16-bit memory word. If the word is accessed as a general purpose
register, then only the high-order byte will be affected. If the word is accessed as non-register memory, then
the byte affected is determined by the least significant bit of the 16-bit address: O selects the high-order byte;
1 selects the low-order byte.
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Table 3-2. TMS 9900 instruction Set Summary

STATUSES
TYPE MNEMONIC OPERAND(S} BYTES OPERATION PERFORMED
G |Ea| c |ov]or )
LDCR S.CNT 2 X X X* [CRUA]—[S<CNT-1,0>]
Transfer the specified nhumber of bits from source memory word to the CRU.
STCR D.CNT 2 X X xX* [D<CNT-1,0>]—[CRUA]
o Transfer the specified number of bits from the CRU to destination memory word.
= SBO pisp 2 [CRUA + DISP]— 1
Set bit in CRU to 1.
SBZ oisp 2 [CRUA + DISP]1—0
Set bit in CRU to 0.
™ DISP 2 X If [CRUA +DISP] =0, then [EQ] = 1; or else [EQ] =0
Test bit in CRU.
> >0 MoV SD 2 X X [D1—I[S]
5 S z 16-bit move contents of sourcé memory word to destination memory word.
=25 Move ) 2 x | x X {pl~(s]
E - E 8-bit move contents of source memory byte to destination memory byte.

A S.D 2 X X X | X [D]~I[S1+[D]
16-bit add contents of source memory word to contents of destination memory word.
AB S.D 2 X X X X X [D)—([S]+ [D]
8-bit add contents of source memory byte to contents of destination memory byte.
S SD 2 X X X | X [D]~[D]- [S]
16-bit subtract contents of source memory from contents of destination memory word.
SB S 2 X X X | x X [D]—(D1- [S]
8-bit subtract contents of source memory byte from contents of destination memory byte.
C SD 2 X X Set status flags based on 16-bit comparison of source and destination memory word contents.
CcB S.D 2 X X X Set status flags based on 8-bit comparison of source memory byte contents and destination
memory byte contents.
XOR SR 2 X X [RI—[S]+ [R]
Exclusive-OR contents of source memory word with Workspace Register R.
MPY SR 2 [RI—[({[SI*[R])<31,16 >]

[R+11—[([SI*[R]}<150>]
Muitiply the contents of source memory word by contents of Workspace Register R. Store most
significant word of result in R. Store least significant word of result in Workspace Register R + 1.
DIV SR 2 X [R]—([R.R + 1)/ [SNquotient)
[R+ 11—({R.R + 1)/ [ SIXremainder)
Divide the 32-bit quantity represented by R (high-order word) concatenated with R + 1 (low
order) by the contents of the source memory word. Store the quotient in R, the remainder in
R+ 1 and set overfiow if quotient will exceed 16 bits.

SECONDARY MEMORY REFERENCE (MEMORY OPERATE)

INC D 2 X X X X [D]—[D]+1

Increment contents of memory word by 1.
INCT D 2 X X X X [Dl—[D]+2

Increment contents of memory word by 2.
DEC D 2 X X X X [Dl—ID]-1

Decrement contents of memory word by 1.

*OP status is affected only if between 1 and 8 bits are transferred.
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Table 3-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERANDI(S) BYTES OPERATION PERFORMED
G EQ c oV | OP
DECT D 2 X X X X [D]1—I[DI-2
Decrement contents of memory word by 2.
3 CLR D 2 [pl—o0000
g Clear the éestination memory word.
E SETO D 2 [ D]—FFFF
2 Set all bits of memory word.
8 INV D 2 x | x [D1—[D]
I Ones complement the destination memory word.
E NEG D 2 X X X | x ID1—[D1+1
W Twos complement the destination memory word.
3 ABS D 2 X X | x| x [DI—| [D]|
E Take the absolute (unsigned) value of the destination memory word's contents.
g SwpB D 2 [D<158>]1——[D<7,0>]
g Exchange the high and low bytes of the memory word.
o soc sD 2 X X if [S<i>1=1, then [D<i>]—1
g Set the bits in the destination memory word that correspond to 1s in the source memory word
w for all 16 bits.
v SocB SD 2 X X X If [S<i>1=1, then [D<i>]1—1
& Set the bits in the destination memory word that correspond to 1s in the source memory word
; for 8 bits.
g szc SD 2 X X if [S<i>1=1, then [D<i>]1~—0
w Clear the bits in the destination memory word that correspond to 1s in the source memory word
2 for all 16 bits.
E szCcB S.D 2 X X X If [S<i>]=1, then [D<i>]—0
=] Clear the bits in the destination memory word that correspond to 1s in the source memory word
3 for 8 bits.
2 coc SR X If for alt [S<i>1=1, [R<i>]=1, then [EQ]—1
o If the bits in the Workspace Register R that correspond to the set bits in the source memory
word are all- 1s, set the EQUAL status.
czc SR 2 X if for alt [S<i>1=1, [R<i>]=0, then [EQ]=1
if the bits in the Workspace Register wal correspond to set bits in the source memory word
are all Os, set the EQUAL status.
w
g u R,DATA16 4 x | x [R]—DATA16
E Load immediate to Workspace Register R.
H LWPI DATA16 4 [WR]—DATA16
g Load immediate to Workspace Pointer Register, WR.
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Table 3-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERANDIS) BYTES OPERATION PERFORMED
G | ea] c |ov|orP
u Cl RDATA16 4 X X Set the status flags based on 16-bit ison b of Workspace Register R and
g immediate data.
2 Al R.DATA16 4 x | x | x| x [R1—[R1+DATA16
3 Add immediate to Wc Register R
= ANDI R.DATA16 4 X | X [R1—[R] A DATA16
E AND immediate with Worksp: Register R
s ORI R,DATA16 4 X X [R1—[R]V DATA16
2 OR immediate with Workspace Register R contents.
a B S 2 [pPcl—[s]
s Branch unconditional to address in Source memory word.
3 VP DISP 2 [PC)—[PC]+DISP
Branch unconditional.
BL s 2 [R11]1—[PCI+1
[PC]—I[S]
Branch to subroutine at address in source memory word.
E BLWP S 2 {R13]1—[wpP]
w2 [R141—[PC]
E & [R15]—[ST]
o9 [wpl—I[s]
< [PCI—[S +2]
a = Branch to subroutine whose address is stored in source memory word + 1. Perform context
5 switch to RO address contained in source memory word.
RTWP 2 X X X X X [WP]—[R13]
[PC]—[R14]
[STIIR1B]  portorm a backward context switch.
JEQ DISP 2 If [EQ]=1; then [PC]—[PC] +DISP
Branch if equal.
JNE DISP 2 If {EQ]=0; then [PC]—[PC] + DISP
Branch if not equal.
E JGT Disp 2 If [AG]=1; then [PC]1—L[PC] +DISP
g Branch on arithmetic greater than.
2 JT DISP 2 If [AG]=0 and [EQ]=0; then [PC]—[PC] +DISP
8 Branch on arithmetic less than.
g JHE DISP 2 If [LG]=1 or [EQ]=1; then [PC]—[PC] +DISP
pe Branch on logical greater than or equal.
g JH DisSP 2 - If [LG]=1 and [EQ}=0; then [PC]—[PC]+DISP
g Branch on logical greater than.
a JL DISP 2 If [LG}1=0 and [EQ]=0; then [PC]l—[PC] +DISP
Branch on logical less than.
JLE DISP 2 If [EQl=1 or [LG]1=0; then {PC]—[PC] +DISP

Branch on less than or equal.
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Table 3-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED
G €Q [ ov | opP
JINC DISP 2 If [C1=0; then [PC]—[PC] +DISP
228 Branch on carry reset.
cou JNO DISP 2 If {OV]=0; then [PC]—[PC]+DISP
s 'a' E Branch on overflow reset.
E zz Joc DISP 2 if [C]=1; then [PC1—IPC]+DISP
oOO0 Branch on carry set.
= Jop DISP 2 If [OP1=1; then [PC]—[PC]+DISP
Branch on odd parity set.
-4 .Il_l SLA R.CNT 2 X X X X Arithmetic shift the Workspace Register R left the specified number of bits.
5 é SRA RCNT 2 X X X Avrithmetic shift the Workspace Register R right the specified number of bits.
E I SRL R.CNT 2 X X X Logical shift the Workspace Register R right the specified number of bits.
e O SRC R.CNT 2 X X X Rotate the Workspace Register R right the specified number of bits.
STST R 2 [R1—I[ST]
A‘Store the Status register into Workspace Register R.
STWP R 2 [R1—[wWP]
a . Store the Workspace Pointer into Workspace Register R.
2k LM DATA4 4 [SR<30>] —DATA4
:, E Load immediate data into the interrupt mask bits of the Status register.
P& XOP SR 2 X [R13]—[WP]
2 [R14]1—[PC]
@ [R151—[ST]
[R11]1—[S]
[wpPl—[40,, +(4* [R])]
[PCI—[41,, +(a* [R]
Perform a context switch. This is the software interrupt.
'.‘." X S 2 Execute the instruction represented by the data in the source location. If that instruction has im-
§ mediate operand words, those words must be located directly after the X instruction. The instruc-
5 tion [S] will affect the status flags but its fetch will not cause IAQ to go high.
IDLE 2 CPU enters Halt state.
CPU clears interrupt mask and outputs 001 on three high-order Address Bus lines.
RSET 011 on three high-order Address Bus lines.
; a CKOF 110 out on three high-order Address Bus lines.
; g CKON 101 out on three high-order Address Bus lines.
« E LREX 111 out on three high-order Address Bus lines.
Fo
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THE BENCHMARK PROGRAM
For the TMS 9900, our benchmark program may be illustrated as follows:
BLWP  MOVE CONTEXT SWITCH TO APPROPRIATE REGISTERS

Loop MOV @IOBUF(R1),"R2+ LOAD NEXT INPUT WORD IN NEXT TABLE WORD

DEC R1 DECREMENT COUNT
JNE LOOP RETURN FOR MORE
RTWP RETURN FROM SUBROUTINE

Let us look at how our benchmark program can collapse to just five instructions.

We assume that there is some set of 16 General Purpose registers within which we store the word count and the ad-
dress of the first free word in TABLE. We illustrated this idea when describing context switching earlier in the chapter.

Observe that Register R1 contains the word count. and is therefore used as an Index register. while Register R2 ad-
dresses the first free word in TABLE. Note that the contents of Register R2 are incremented automatically when the
next byte is loaded into the table.

The BLWP instruction will branch to the program which performs the required data move. but simultaneously it loads
the Workspace register with the appropriate initial address. We do not need to load any initial addresses or word
counts into registers, since we have adopted the memory space where this data is stored to serve as our General Pur-
pose registers.

After the move has been completed. we do not have to update any counters or pointers. because they were updated
“in situ”. All we have to do upon completing the move is store the contents of the current General Purpose Registers 13
and 14 to the Workspace register and Program Counter.

The following notation is used in Table 3-3:

aa Two bits determining the addressing mode for the destination memory word
bb Two bits determining the addressing mode for the source memory word
cceceecce 8-bit signed address displacement

dddd Four bits used with aa to determine the destination memory word

eeee 4-bit count field

reer Four bits choosing the Workspace register

SSSS Four bits used with bb to determine the source memory word

XX 16 bits of immediate data

If either aa or bb is 102, and the corresponding register specified is 0. then an additional 16-bit direct memory address
word. used in computing the effective memory address of the operand. will follow the instruction.

If aa and bb are 102, and both corresponding register specifications are O. then two additional 16-bit direct memory ad-
dressing words will follow the instruction: the first will be used in computing the source address; the second will be
used in computing the destination address.
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Table 3-3. TMS 9900 Instruction Set Object Codes

3-43

CLOCK CLOCK
INSTRUCTION OBJECT CODE BYTES PERIODS® INSTRUCTION OBJECT CODE BYTES PERIODS®
A SD 1010aaddddbbssss 2 14-30 (1) JOP DISP 00011100ccccecece 2 8/10(15)
AB S,D 1011aaddddbbssss 2 14-30 (1) LDCR  S,CNT 001100eeeebbssss 2 22-52 (1)
ABS D 000001110%aadddd 2 12-20 (6) u R,DATA16 000000100000rrTT 4 12(19)
Al RDATA16 0000001000 10rrrr 4 1417 ) XX
XX umi DATA4 0000001100000000 4 16 (21)
ANDI R.DATA16 000000100100rrrr 4 14017 XX
XX LREX 00000011 11100000 2 6(14)
B S 000001000 1bbssss 2 8-16 (7) LWPI DATA16 0000001011100000 4 10 (20)
BL s 0000011010bbssss 2 12-20 (9) XX
BLWP S 0000010000bbssss 2 26-34 (10) MOV S.D 1100aaddddbbssss 2 14-30 {1}
Cc SD 1000aaddddbbssss 2 14-30 (1) MOVB SD 1101aaddddbbssss 2 14-30 (1)
cB SD 100taaddddbbssss 2 14-30 (1) MPY SR 001110rrrrbbssss 2 52-60 (2)
Cl SD 000000101000 4 14(18) NEG D 0000010100aadddd 2 12-20 (5)
XX ORI R.DATA16 0000001001 10rrrr 14(17)
CKON 0000001111000000 2 6(14) XX
CKOF 0000001 110100000 2 6{14) RSET 0000001101100000 2 6(14)
CLR ] 000001001 1aadddd 2 10-18 (5) RTWP 00000011 10000000 2 14(8)
coc SR 001000rrrrbbssss 2 10-18 (1) S sD 0110aaddddbbssss 2 14-30 (1)
czc SR 001001mrbbssss 2 14-22 (1) SB S.D 0111aaddddbbssss 2 14-30 (1)
DEC D 0000011000aadddd 2 14-22 (5) SBO Disp 00011101ccceccee 2 12(13)
DECT D 0000011001aadddd 2 10-18 (5) SBzZ DISP 00011110ccccceee 2 12(13)
olv SR 001111mrbbssss 2 10-18 (3) SETO D 0000011100aadddd 2 10-18 (5)
IDLE 0000001101000000 2 6(14) SLA R.CNT 00001010eeserm 2 14-52 (16)
INC D 0000010110aadddd 16-124 (5) SoC SD 1110aaddddbbssss 2 14-30 (1)
INCT D 000001011 taadddd 2 10-18 (5) SOCB SD 1111aaddddbbssss 2 14-30 (1)
INV D 000001010 taadddd 2 10-18 (5) SRA R,CNT 00001000eeeerrT 2 14-52 (16)
JEQ DISP 0001001 1¢cceceecce 2 10-18 {15) SRC R,CNT 0000101 teeeermr 2 14-52 (16)
JGT DISP 00010101ccececeee 2 8/10 (15} SRL R,CNT 0000100 teesernr 2 14-52 (186)
JH DISP 0001101 1ccceccee 2 8/10(15) STCR DCNT 001101eeeeaadddd 2 42-60 (12)
JHE DISP 00010100ccccecee 2 8/10(15) STST R 000000101100 2 8(23)
Ju DIsP 00011010cccecece 2 8/10{15) STWP R 000000101010 2 8(22)
JLE DISP 00010010ccececee 2 8/10(15) SWPB D 000001101 taadddd 2 10-18 (23)
AT DISP 00010001cccececee 2 8/10 (15} szc S,D 0100aaddddbbssss 2 14-30 (1)
JMP DISP 00010000cccecece 2 10(15) SZCB  SD 0101aaddddbbssss 2 14-30 (1)
JINC DISP 00010111cceeecee 2 8/10(15) L] DISP 00011111ccceccce 2 12(8)
JNE DISP 00010110ccececce 2 8/10(15) X S 00000100 10bbssss 2 8-16 (7)
JNO DISP 00011001¢ccceeeee 2 8/10(15) XOoP SR 001011mrbbssss 2 44-52 (4)
Joc DISP 00011000cccceeee 2 8/10(15) XOR SR 001010rmrrbbssss 2 14-22 (1) .
* The number in brackets identifies the ir ion’s hine cycle as defined in the preceding text.




The minimum and maximum number of clock periods for the execution of each instruction are shown in the
CLOCK PERIODS column of Table 3-3. Remember that a machine cycle consists of two clock periods. The
bracketed number after the number of clock periods identifies the machine cycle sequence. Machine cycle se-
quences associated with each bracketed number are listed below. In the machine cycle list below, the follow-
‘ing abbreviations are used:

R represents a memory read machine cycle as identified in Figure 3-4.
‘A represents an ALU machine cycle as illustrated in Figure 3-3.

W represents a memory write machine cycle as illustrated in Figure 3-5.
C represents a CRU machine cycle as illustrated in Figures 3-6 and 3-7.

A subscript associated with any machine cycle notation identifies that machine cycle repeated a number of times. Thus
A3 is equivalent to -A-A-A-.
M represents memory address computation machine cycles. Memory address computations were described earlier in
this chapter. In summary. here are the various possibilities for M:
Register addressing: R
Implied memory addressing: R-A-R
Implied memory addressing with auto-increment {for byte operand): R-A-W-R
Implied memory addressing with auto-increment {for word operand): R-A-A-W-R
Direct addressing: A-A-R-A-R
Direct, indexed addressing: R-A-R-A-R
)] R-A-M-A-M-A-W
2 R-A-M-A-R-A1g-W-A-W
3 R-A-M-A-R-A-A-R-Ay-W-A-W (51 £ x < 35)
(@) R-A-M:-A3-R-A-W-A-W-A-W-A-W-A-R-A
) R-A-M-A-W
®) R-A-M-A3-W-A
v R-A-M-A
8) R-A-A-R-R-R-A
) R-A-M-A-A-W
(10) R-A-M-A-A-W-A-W-A-W-A-R-A
(11) R-A-M-Ag-R-A-Cy-A (16 < x < 1)
(12) R—A-M—A-R—A-A-CX—AV-W M6gxg 111Ky B
(13) R-A-A-R-A-C
(14) R-A-A-C-A-A
(15) R-Ayx (x=3 or 4)
(16) R-A-R-A-A-R-A,-W-A (18 £ x £ 3)
17) R-A-A-R-R-A-W
18) R-A-R-A-R-A-A
19) R-A-A-R-A-W
20) R-A-A-R-A
21) R-A-A-R-A3
22) R-A-A-W
(23) R-A-M-A-R-Ag-W

THE TMS 9980A AND THE TMS 9981 MICROPROCESSORS

The TMS 9980A and the TMS 9981 are low-cost variations of the TMS 9900. The principal differences be-
tween the TMS 9900 series and TMS 9980 series microprocessors are summarized in Table 3-4. Differences
between the TMS 9980A and the TMS 9981 are summarized in Table 3-5.

This discussion of the TMS 9980 series microprocessors covers only differences as compared to the TMS 9900.

The TMS 9980 series microprocessors are manufactured using N-channel silicon gate MOS technology. They are
packaged as 40-pin DIPs. The TMS 9980A uses three power supplies: -6V, +5V, and +12V. The TMS 9981 uses two
power supplies: +5V and +12V.

Typically. a clock cycle time of 400 nanoseconds will be used with TMS 9980 series microprocessors. This generates
instruction execution times ranging between 4 and 14 microseconds.
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Figure 3-14 illustrates that part of general microcomputer system logic which is implemented by the TMS
9980 series microprocessors. This figure is identical to Figure 3-1, with the exception of clock logic. which is now
shown present.

Programmable registers are implemented and used in exactly the same way the TMS 9900 and TMS 9980
series microprocessors. Note, however, that the TMS 9980 series microprocessors address a 2048-bit CRU;
therefore. bits 1 through 11 of Register R12 identify the origin of any CRU bit field. The TMS 9900 uses bits 1 through
12 of Register R12 to identify the CRU origin within a 4096-bit CRU.

Table 3-4. A Summary of Differences Between the TMS 9900 and TMS 9980 Series Microprocessors

FUNCTION TMS 9900 TMS 9980A/TMS 9981
Addressable external memory 32,768 x 16-bit words| 16.384 x 8-bit words
DIP pins 64 40
Data Bus © 186 bits 8 bits
Address Bus 15 bits 13 bits
External interrupt priorities 15 4
CRU field width 4096 bits 2048 bits
Clock logic Four external inputs One external input

or internal (TMS 9981
only)

Table 3-5. A Summary of Differences Between the TMS 9980A and TMS 9981 Microprocessors

FUNCTION TMS 9980A TMS 9981
Power supplies -BV. +5V, +12V +5V. +12Vv
Clock logic One external input | One external input
or crystal only
Pin incompatibility ties DO - D7. INTO - INT2. @3

The TMS 9980 series microprocessors have a 14-line Address Bus, used to address up to 16,384 bytes of
memory. In contrast, the TMS 9900 addresses up to 32,768 16-bit words of external memory. Thus, TMS 9980 pro-
grams address memory as bytes. while externally generated addresses also select bytes. The TMS 9900. by way of con-
trast. addresses memory as bytes within the CPU. but as 16-bit words externally.

The TMS 9980 series microprocessors use exactly the same memory and CRU addressing techniques as the
TMS 9900. General-purpose registers are used in the same way. and instruction object codes are identical.

The Status register and Status flags used by the TMS 9980 series microprocessors are identical to those which
we have already described for the TMS 9900.

TMS 9980 SERIES MICROPROCESSOR PINS AND SIGNALS

Figure 3-15 illustrates pins and signals for the TMS 9980A. Figure 3-16 provides the same information for the
TMS 9981. In both of these illustrations, signal names conform to Texas Instruments nomenclature. For the Data and
Address Busses. our notation is given in brackets. Differences result from the fact that we number bits from right to left
(0 being the low-order bit), while Texas Instruments numbers bits from left to right (0 becomes the high-order bit). TMS
9980A/TMS 9981 pin-out differences are shaded in Figures 3-15 and 3-16 so that you can identify them
quickly.

For descriptions of the individual signals, refer to the earlier TMS 9900 discussion.
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Figure 3-14. Logic of the TMS 9980A and TMS 9981 Microprocessors
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(LSB) (AO) CRUOUT/A13 -~

(A10) A3 ——— 14
(A11) A2 -4—— 15
(A12) A1 -— 16
(MSB) (A13) A0 -g——q17
DBIN -¢—— 18
CRUIN —119
(+5V) Ve 20
Pin Name
AO0-A13
DO-D7 Data Bus
CKIN
#3
MEMEN
1AQ
DBIN
WE
READY
WAIT
CRUCLK 1/0 ctock
CRUOUT
CRUIN

INTO, INT1, INT2

HOLD

HOLDA

VBB'

\Y

cc’

v

HO LD ———p
HLDA -—
1AQ ~ap—yf

(A1) A12 —
(A2) A11 ~4—
(A3) A10 -@——
(A4) A9 a——
(A5) A8 -—] ¢
(A6) A7 -§——1 10
(A7) A6 -— 11
(A8) A5 -—r71 12
(A9) A4 -——— 13

VCONODOHWN=

40
39

38—

37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

TMS
9980A

|— . MEMEN

e— READY
WE

. CRUCLK
Vpp (+12V)

Vgg (GND)

CKIN

ft——

Description

Address Bus

Clock signal in

Synchronizing clock

Memory Enable

Instruction Fetch

Data Bus in

Write Enable

Memory Ready

Wait State indicator

Serial 1/0 out

Serial 1/0 in

Interrupt request and priority

DMA request

Hold acknowledge

DD’ VSS

Tristate, output

Tristate, bidirectional

Input

Output

Tristate, output

Output

Tristate, output

Tristate, output

Input
Output
Output
Output
Input
Input
Input

Output

Power and Ground reference

Figure 3-15.
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(LSB) (AO) CRUOUT/A13 ~—

ACLD —
HLDA
inc -]
(A1) A12 a—
(A2) A1 -—]
(A3) A10 -—
(A4) A9 ~a—Ay
(A5) A8 ~——
(A6) A7 <— 10
(A7) A6 ~a—] 11
(A8) A5 ~-a— 12
(A9) A4 -@——F 13
(A10) A3 — 14
(A11) A2 -@— 15
(A12) A1 t—] 16
(MSB) (A13) AQ ~—117
DBIN -4—] 18
CRUIN ——={19
(+5V) Ve ——{20

OCONOODWN=

40
39
38
37
36
35
34
33
32
TMS 31
9981 30
29
28
27
26
25
24
23
22
21 |

|——» MEMEN

l@— READY
WE

s CRUCLK
- Vpp (+12v)

Vgg (GND)
:: SS

(LsB)

(MSB)

Description

Type

Tristate, output

Clock or crystal connection
Crystal connection
Synchronizing clock
Memory Enable

Instruction Fetch

Wait State indicator

Pin Name
A0-A13 Address Bus
DO-D7 Data Bus
CKIN
OoscouT
%3
MEMEN
1AQ
DBIN Data Bus in
WE Write Enable
READY Memory Ready
WAIT
CRUCLK 1/0 clock
CRUOUT Serial 1/0 out
CRUIN Serial 1/0 in

INTO, INT1, INT2
HOLD
HOLDA

VCC' VDD' VSS

Interrupt request and priority
DMA request
Hold acknowledge

Power and Ground reference

Tristate, bidirectional
Input

Output

Output
Tristate, output
Output
Tristate, output
Tristate, output
Input

Output

Output

Output

Input

Input

Input

Output

Figure 3-16. TMS 9981 Signals and Pin Assignments
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TMS 9980 SERIES MICROPROCESSOR TIMING AND INSTRUCTION EXECUTION

The TMS 9980A and TMS 9981 microprocessors have the same signal relationships and instruction execution
sequences as the TMS 9900. The few minor waveform differences are identified in the data sheets at the end of
this chapter.

The only significant difference between the TMS 9800 and TMS 9980 series is in clock logic. The TMS 9900 re-
quires four clock inputs, as identified in Figure 3-3.

The TMS 9980A requires a single clock signal. input via CKIN. The frequency of this clock input | TMS 9980
must be four times the desired clock frequency. That is to say. CKIN will be divided by four in | SERIES
order to create one clock period. The TMS 9981 can operate with the same CKIN input as the TMS | CLOCK
9980A; however, you can also connect a crystal across CKIN and OSCOUT. This may be illustrated |} LOGIC
as follows:

CKIN

HOH

OSCcouT

1L 1L

c2 Cc1

C1 and C2 must have values between 10pf and 25pf, typically 15pf.

The crystal must be of the fundamental frequency type. The frequency will be divided by four in order to create the in-
ternal clock frequency. B

Both the TMS 9980A and the TMS 9981 output 3, a synchronizing clock signal. 3 is the inverse of the ®3 clock sig-
nal shown in Figure 3-3 and in subsequent timing diagrams for the TMS 9900.

Thus you can create the timing diagram for any TMS 9980 operation by looking at the equivalent timing diagram for
the TMS 9900 and replacing the four TMS 9900 clock signals by a single timing pulse which will be the complement of
®3.

The following operations are identical within TMS 9900 and TMS 9980 systems:

« Memory references. However. note that memory reference will consist of two memory access cycles, as a 16-bit word
is handled as two bytes.

+CRU I/0 operations (remember that the TMS 9980 series CRU is only 2048 bits wide).

+CRU control operations

+The Wait state

«The Hold state and direct memory access operations

»The Halt state

*The interaction of Hold and Halt states

Refer to the TMS 9900 discussion for any of the above topics.

TMS 9980 SERIES INTERRUPT LOGIC

The TMS 9980A and TMS 9981 microprocessors support four levels of external interrupt, together with a Reset and a
Load. Reset and Load are non-maskable interrupts. In contrast, the TMS 9900 supports 15 levels of external interrupt.
along with Reset.

The TMS 9980 series microprocessors identify external interrupts via the INTO, INT1, and INT2 inputs as
shown in Table 3-6. Figure 3-17 shows the interrupt vector map.
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Table 3-6. TMS 9980 Interrupts

INTO INT1 INT2 Interrupt Decoded
0 0 0 Reset
0 0 1 Reset
0 1 0 Load
0 1 1 Level 1 (Highest Priority)
1 0 0 Level 2
1 0 1 Level 3
1 1 0 Level 4 {Lowest Priority)
1 1 1 No Interrupts

Observe that the TMS 9980A and the TMS 9981 have no INTREQ input. Also. the Reset and Load non-maskable inter-
rupts are decoded from the INTO - INT2 inputs.

Figure 3-18 shows some pin connections for various levels of interrupt complexity in a TMS 9980 series microcom-
puter system. The three illustrations shown are self-evident; they simply implement the INTO - INT2 codes defined
above.

The TMS 9980 series microprocessors provide all 16 XOP software interrupts available with a TMS 9900.

Observe that Figure 3-17 shows memory as 8-bit units in contrast to Figure 3-11, which shows memory as 16-bit
units. This reflects the fact that external memory is addressed as bytes by the TMS 9980A and the TMS 9981.
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Memory Memory Byte
Content

Address

s 0000
Reset 0001
0002

0003

0004

0005

0006

0007

ooog

0009

000A

External Interrupt ooos
) oooc

000D
000E
O00F
0010
0011
0012
0013

Unassigned Memory

for Programs or Data
0040
0041
0042

0043

XOP Vectors, Use
Same Memory Space
as the TMS 9900

007C

007D
007E

007F
Unassigned Memory

3FFC

3FFD
Load

3FFE |

3FFF

WP

H1

wp

LO

PC

HI

PC

LO

wpP

HI

wP

LO

PC

HI

PC

LO

WP

Hl

WP

LO

"PC

HI

PC

LO

WP

Hi

WP

LO

PC

Hi

PC

LO

wPpP

HI

WP

LO

PC

Hl

PC

LO

A .

wpP

HI

WP

LO

PC

HI

PC

S ——

LO

wp

HI

WP

LO

PC

HI

PC

LO

S~ ——

wP

HI

wp

LO

PC

H!

PC

LO

WP

PC

wpP

PC

WP

PC

WP

PC

wpP

PC

wpP

PC

WP

PC

WP

PC

%
|
|
}
|
}
}

Reset Vector.

Level 1 Vector

Level 2 Vector

Level 3 Vector

Level 4 Vector

XOP 0 Vector

XOP 15 Vector

Load Vector

Figure 3-17. TMS 9980 Memory Map
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LEVEL 1 ———
D——- INTO
INTO
I TMS 9980A/
RESET INT1 TMS 9981

LEVEL 4 — 1 INT2 RESET INT1
TMs 9980A/ COAD INT2
TMS 9981
A) Using Reset and One B) Using Reset, Load and
External Interrupt One External Interrupt
Vce

1

b E1 =

RESET 6

LOAD - 5 A2 P INTO
CEVEL 1 —q 4 Al Jo INT1
LEVEL 2 -q 3 A0 o INT2
LEVEL 3 —q] 2
LEVEL 4 ——( 1

SN74148 TMS 9980A/
—d (TIM 9907) TMS 9981

C) Using Reset, Load and Four External Interrupts

Figure 3-18. Some TMS 9980A/TMS 9981 Interrupt Interfaces

The interrupt acknowledge process and interrupt priority arbitration logic are identical in TMS 9900 and TMS
9980 series microprocessors. For a discussion of these subjects. refer to the earlier TMS 9900 description.

THE TMS 9980 SERIES INSTRUCTION SET

The TMS 9900 and TMS 9980 series microprocessors have identical instruction sets. Instructions execute in almost the
same sequences of machine cycles — the only difference is that each memory reference will have twice as many
memory access cycles. Refer to Tables 3-2 and 3-3, together with their accompanying text. for details. Remember to
substitute two memory cycles for each TMS 9900 memory cycle.

THE TMS 9940 SINGLE-CHIP MICROCOMPUTERS

The TMS 9940 is a single-chip microcomputer based on the TMS 9900 microprocessor. Figure 3-19 illustrates
that part of our general microcomputer system logic provided by the TMS 9940 series microcomputer.

Specifically, this is the logic provided by the TMS 9940 series microcomputers:

+A Central Processing Unit, essentially equivalent to the TMS 9900 Central Processing Unit

<2048 bytes of read-only memory. Erasable Programmable Read-Only Memory (EPROM) is provided by the TMS
99400E. Normal mask programmable Read-Only Memory (ROM) is available with the TMS 9940M.

+128 bytes of read/write memory. This read-write memory is frequently organized as four sets of sixteen 16-bit
registers.
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-Two levels of external interrupt

-An on-chip timer/event counter with its own interrupt logic
+32 1/0 pins accessed as 32 CRU bits

+A single +5V power supply

-On-chip clock logic
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Figure 3-19. Logic of the TMS 9940 Single-Chip Microcomputers
The TMS 9940 microcomputer has very little expansion logic; 256 external CRU bits can be addressed, but
there is no provision for executing programs directly from external memory.

But the TMS 9940 is easily included in multiprocessor configurations. For multiprocessor configurations, the TMS
9940 has internal Hold request/acknowledge logic. together with a serial I/O path via which data can be transferred
between processors.

The TMS 9940 has two +5V power supplies: a standard operating power supply and a standby power supply.
Under program control. it is possible to shut down the TMS 9940, in which case only the standby power supply is ac-
tive. An external interrupt can subsequently restart the TMS 9940.

The TMS 9940 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 40-pin DIP.

Using a 3 MHz clock, instruction execution times range between 3 and 10 microseconds.
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This description of the TMS 9940 microcomputer relies on the preceding detailed description of the TMS 9900.
This description of the TMS 9940 does not stand alone, and you should not read it until you understand the TMS
9900 in detail.

TMS 9940 REGISTERS AND READ/WRITE MEMORY

There are some important conceptual differences between the read/write memory/registers of the TMS 9940
and those of the TMS 9900.
The TMS 9940 has only 128 bytes of read/write memory, with all the read/write on the chip itself. and you cannot

create an external Data/Address Bus. Therefore, it makes no difference whether memory is addressed as bytes or
words. The only remaining restriction is that 16-bit words must be origined on even byte address boundaries.

0000 ‘X,V,f L’.1C|> WP
Reset Vector
PC HI
0002 | o' o PC
0004 | WP HI }{
wp Lo | ( WP
e Level 1 Interrupt Vector
0006 | oc 10 PC A
/ 8300 RO
0008 “I’VV; 1':'«5 WP 8302 | R1
— Decrementer Vector H Regi Set 1
i egister Set
000A | oc'Lo | PC '
" 831C R14
I
000C WP LO WP 831E R15
Level 2 Interrupt Vector. 8320 R1
PC Hi
000E PC LO PC 8322 R2
0010 - E Register Set 2
0012 833C R14
Unused and Available for Programs 833E | R15
ROM 8340 R1
< 004E Ram { 8342 R2
ooso [ Weri Il , y
XOP 4 Vector 4 Register Set 3
PC HI
0052 | pc'| o PC 835C R14
835E R15
WP HI
oosa | S AL we 8360 R1
XOP 5 Vector 8362 R2
PC HI
P
0056 | pc Lo c ; Register Set 4
} XOP 6 — XOP 14 Vectors 837¢c R14
v \ 837E R15
007C | we Lo } wp
P XOP 15 Vector
007E 1 e Lo } PC
0080 I
s Unused and Available for Programs
k 07FF

Figure 3-20. TMS 9940 Memory Map
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The TMS 9940 does introduce one additional read/write memory restriction: the 128 bytes of read/write memory
are divided into four non-overlapping sets of sixteen 16-bit registers, as illustrated in Figure 3-20. Note that the
128 bytes of read/write memory have specifically defined addresses. Both the TMS 9900 and the TMS 9980 series
microprocessors allow any sixteen 16-bit words of memory to serve as a set of general purpose registers. whether or
not they overlap with another set.

The TMS 9940 has the same three CPU registers as the TMS 9900: the Program Counter. the Workspace register,
and the Status register. The TMS 9940 sets aside general-purpose registers to serve specific functions. as does the
TMS 9900.

Given the configuration of the TMS 9940. many register designations can be justified only as a means of preserving
TMS 9900 series compatibility. For example. a 16-bit TMS 9940 Workspace register makes no sense when there are
only 64 locations that the Workspace register can possibly address. Moreover, the whole idea of context switching —
and tying up three 16-bit registers in order to execute a context switch — is ridiculous, given the few places to which
you can context switch.

But there is long-range sense in the TMS 9940 design. Over the next few years, enhancements of the TMS 9940 will
appear with substantially more memory — both read-only memory and read/write memory. Since it is absolutely im-
perative that TMS 9940 programs be compatible with new. enhanced one-chip microcomputers that are likely to ap-
pear. it is necessary that addressing modes and architectural features that influence the instruction set be included in
the TMS 9940 if they will be useful in later enhancements.

Despite the fact that the TMS 9940 has only 128 bytes of read/write memory and 2048 bytes of read-only memory. the
TMS 9940 has all of the TMS 9900 memory addressing modes. Note carefully that so far as memory addressing is con-
cerned, there is no difference between read-only memory and read/write memory. Many one-chip microcomputers
have a scratchpad read/write memory which can only be accessed as data memory. while a separate program memory
can only store instruction sequences. the TMS 9940 makes no such distinction between its read-only memory and
read/write memory. Data and instructions can be stored in read-only memory or in read/write memory.

The TMS 9940 and TMS 9900 CRU addressing techniques are identical; however, the TMS 9940 has just 32 exter-
nal CRU bits, each with its own dedicated pin. By configuring 11 of these pins as address lines and CRU controls, you
can expand external CRU to 256 bits.

There are some small differences between the TMS 9930 Status register as compared to the TMS 9900 Status register.
The TMS 9940 Status register may be illustrated as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15« TMS 9900 Bit Number
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0= OurBit Number

[tl'é]%]i]olr:[olAquo|o|o]o]o] [ stotus Register

FErrreg} T
Interrupt Mask

Unused

Half Carry Status
Parity Status
Overflow Status

Carry Status

Equal Condition
Arithmetic Greater Than Condition
Logical Greater Than Condition

TMS 9940 L. N, =, C, O, and P statuses are the same as those of the TMS 9900.
The TMS 9940 has no XOP instruction executed status, which the TMS 9900 holds in Status register bit 9.
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The TMS 9940 has an AC status in bit 8. This is a half-carry status. For byte-oriented instructions, AC represents the
carry from the low four bits to the higher four:

7 6 5 4 3 2 1 0-=BitNo.

Iplplplplalolorql Memory Byte

AC = 1 for Carry
AC =0 for No Carry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O= BitNo.

lRIR[R[R]SISlSlS[NININININTNIN[NJ General-Purpose Register
A

W

Byte instructions operate on the
high-order byte of a register.

For 16-bit instructions, the AC status represents a carry from bit 11 to bit 12:

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O «BitNo.

Lelelrlrfoafolafnrfrlnrir]s]s]s]s]Gmertruposs Rogts

AC = 1 for Carry
AC =0 for No Carry

Since there are just four levels of external interrupt, the TMS 9940 uses Status register bits O and 1 for its interrupt
mask. In contrast, the TMS 9900 uses Status register bits 0. 1. 2, and 3 for its interrupt mask.

TMS 9940 CPU PINS AND SIGNAL ASSIGNMENTS
Figure 3-21 illustrates the pins and signals of the TMS 9940 microcomputer.

PO - P31 and 32 I/0 pins addressed as 32 CRU bits. Some of these pins serve additional functions which can be
selected under program control.
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The TMS 9940-can, in fact, use standard TMS 9900 CRU instructions to-address up to 512 CRU bits. But 512 is the
maximum number of CRU bits that the TMS 9940 can address. Therefore, the TMS 9940 uses just 9 bits of General Pur-
pose Register R12 to create CRU bit addresses. For a single-bit CRU instruction, this may be illustrated as follows:

Instruction Object Code

Vel e N N

MsB LsB
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ll TP T Ixfelv]vivviv]~]

General Purpose Register R12

~ A . ~

MSB LSB
15 14 13 1211 10 9 8 7 6 5 4 3 2 1

LL 11 1 [ [z]z]z]z]z]=][z]z]z] J

8-Bit Signed
Binary Number

9-Bit Unsigned
Binary Number

X XYYYYYYY

2 2 2 2 2 2 Z Z 2

Sum Becomes Effective
CRU Address

+
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P23 -w—py 1 40 pb——— Vgg (GND)
P22 -t—] 2 39 la— P31
P21 -ug—py 3 38 Lag— P30
P20 -w—b] 4 37 j¢—— INT2/PROG
P19 <-a—9=] 5 36 fm— P29
P18 ~-g—P»] 6 35 fa—p P28
EC/P17 -g—Bf 7 34 j—p P27
IDLE/P16 -—{ 8 33 jg— P26
HLDA/P15 ~g—{ 9 32 jag— P25
HLD/P14 <—.-1 10 TMS 31 jg—p P24
TD/P12 -w—f 11 9940 30 j-—d P7/A8 (LSB)
(+5V) Voo — 12 29 fa— P6/A7
(+5V) VCCZ - 13 28 fLag— P5/A6
TC/P11 -] 14 27 faa—8 P4/AS
/P13 a—f 15 26 fag—m P3/A4
CRUCLK/P10 -@—P»1 16 25 Lag—P P2/A3
CRUOUT/PY9 -w— 17 24 fag— P1/A2
CRUIN/PS -a—3»{ 18 23 fa—» PO/A1 (MSB)
INT1/TST —b~] 19 22 p——— XTAL2
RST/PE —»4 20 21 XTAL1
Pin Name Description Type
PO - P31 CRU 1/0 pins Bidirectional
INT1/TST External interrupt and Test select Input
INT2/PROG External interrupt and EPROM programmer Input
RST/PE System reset and EPROM programmer enable Input
AO - A7 External CRU bit address Output
CRUCLK External CRU clock Output
CRUOUT External serial |/0 output Qutput
CRUIN External serial 1/0 input Input
TC Multiprocessor data 1/O clock Bidirectional
T Muttiprocessor data 1/0 Bidirectional
EC Event counter input Input
IDLE Idle state indicator Output
HLD Hold request Input
HLDA Hold acknowledge Output
] Synchronizing clock Output
XTAL2, XTAL1 External crystal connections
Vees Standby +5V power
Veez Normal + 5V power
Vgs Ground reference

(In this figure, Pn and An numbering conforms to Texas Instruments’ policy of beginning with N=0 for the high-order bit. We use N=0

for the low-order bit.)

Figure 3-21. TMS 9940 Microcomputer Signals and Pin Assignments
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Table 3-7 shows how the TMS 9940 interprets its 512 available bit addresses.

Table 3-7. TMS 9940 CRU Bit Address Assignments

CRU

' A

Address Read Function Write Function

000 to External CRU bits; the address is output via A1-A8. Data is transferred via CRUIN, CRUOUT
OFF } and CRUCLK

1(7)2 to } Unused Unused

180 INT1 state Unused

181 Decrementer interrupt level Clear decrementer interrupt

182 INT2 state Unused

183 Unused Configuration bit 0 (CBO)

184 Unused Configuration bit 1 (CB1)

185 Unused Configuration bit 2 (CB2)

186 Unused Configuration bit 3 (CB3)

}ggto } Decrementer register. 190 is the least significant bit and 19D is the most significant bit

19E Unused Timer (high) or Counter (low) select

19F Unused Unused

1A0 to Multiprocessor System Interface buffer register

1AF 1AOQ is the least significant bit and 1AF is the most significant bit

}gg to } General purpose flag bits

1CO0 to } Unused Identify direction for PO (via 1C0) through P31 (via 1DF).
1DF 1 specifies output. O specifies input

162t |} Local CRU pins (PO = 1E0, P31 = 1FF

The place to begin looking at Table 3-7 is at CRU bits 183, 184, 185, and 186. These four
CRU bits represent write-only locations which determine how the 32 CRU pins illustrated in Figure
3-21 will be used.

If you look again at Figure 3-21, you will see that PO through P17 have shared functions. P18
through P31 are simple /O pins without other programmable options.

TMS 9940
CRU BIT
UTILIZATION

CRU addresses 183, 184, 185 and 186 control the functions of PO through P16, as illustrated in Table 3-8 .P17

options depend on real-time clock logic. which we will describe later.
Let us look at the programmable options available with CRU pins PO through P31.

It does not matter what options you have selected; you will actually access the 32 CRU pins PO - P31 via CRU ad-

dresses 1E04g through 1FFqg.

In the simplest case, all 32 pins, PO - P31, will be used for input or output. We call this Sim-
ple 1/0 mode. In order to use all 32 pins for data input or output. {that is. in Simple 1/0 mode). all
four of the configuration bits, CBO, CB1, CB2, and CB3. must be 0. At any time. a CRU bit can
either input data or output data, but it cannot be used for bidirectional data transfer. You must
identify the direction for each pin by outputting appropriate data to CRU addresses 1C0q¢

TMS 9940
SIMPLE
CRU I/0
MODE

through 1DF 6. As shown in Table 3-7 . each pin has a dedicated CRU address. beginning with pin PO controlled by
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1C016 and ending with pin P31 controlled by CRU address 1DF1g. A 1 written to any Direction CRU bit causes the as-
sociated pin to output data only. A O written to any CRU Direction bit causes the associated pin to input data only. Of
course, you can at any time change a pin from input to output or from output to input. under program control, by
rewriting control information to Direction CRU bits 1C01g through 1DF1g.

Table 3-8. TMS 9940 CRU Bits Whose Functions are Determined Under Program Control

CRU Function as Configured
Bit Address Pin CBO=0 CBO =1 CB1,CB2,CB3
07 1E0-1E7 23-30 PO-P7 A1-A8 No Effect
8 1E8 18 P8 CRUIN No Effect
9 1E9 17 P9 CRUOUT No Effect
10 1EA 16 P10 CRUCLK No Effect
CB1=0 CB1=1 CBO, CB2, CB3
11 1EB 14 P11 TC No Effect
12 1EC 1 P12 ™ No Effect
CB2=0 cB2=1 CBO, CB1,CB3
13 1ED 15 P13 ¢ No Effect
CB3=0 cB3 =1 CBO, CB1, CB2
14 1EE 10 P14 HLD No Effect
15 1EF 9 P15 HLDA No Effect
16 1F0 8 P16 iDLE No Effect

You will always have to define the direction of data transfer for pins P18 through P31 — assuming that you are using
these pins. When pins PO through P17 are being used in any of the special ways which we are about to describe, then
the data direction associated with the special operation will apply. and it makes no difference what you output to the
associated Direction CRU bit.

If you wish to use 266 external CRU bits, then you must set CRU bit 183 (CBO) to 1. Thisis | TMS 9940
called I/0 expansion mode. |/O expansion mode modifies the functions of pins PO through P10. | CRU 1/0
When you use CRU addresses 00 through FFqg in I/0 expansion mode. the address is output via | EXPANSION
pins PO - P7. which now function as CRU address lines A1 - AB. P8, P9, and P10 serve as the stan- | MODE

dard CRU data transfer lines: CRUIN, CRUOUT, and CRUCLK. Timing for data input and output via
these three lines has been described for the TMS 9900. Refer to the TMS 9900 description for details. In order to il-
lustrate the use of external CRU, consider execution of the instructions:

LI R3.>00 LOAD 1010 BINARY INTO UPPER BYTE OF R3
Li R12,>140 LOAD A BASE ADDRESS OF 82 HEX INTO R12
LDCR R3.4 OUTPUT FOUR LOW-ORDER BITS OF R3 TO CRU

Note that R12 contains 01401¢ to represent the address 0821g, since R12 bit O is unused; therefore the internal ad-
dress is. in effect, doubled.

This instruction outputs 1010 to CRU bit 0821 (0), 08316 (1). 08414 (0). and 08516(1). Since fewer than eight bits will
be transferred. they will come from the upper byte of the general purpose register. This is the event sequence which
occurs:

1) The address 821 is output via A1 - AB. Remember. Texas Instruments’ literature uses O to represent the high-
order bit: therefore A1 represents the high-order address bit. and A8 represents the low-order address bit. CRUIN is
inactive, but CRUOUT is low to represent 0 while CRUCLK is pulsed high to time the O bit on CRUOUT.
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2) The address output on A1 - A8 increments to 831, and CRUOUT goes high, then CRUCLK pulses high.
3) The address on Al - A8 increments to 8415, CRUOUT goes low again, and CRUCLK pulses high.
4) The address on A1 - A8 increments to 8516, and CRUOUT goes high. and CRUCLK pulses high.

1010 has now been transmitted to four external CRU bits.

Note that it is up to external logic to decode the CRU address output; however, the Parallel System interface (which we
will describe in later editions) will connect directly to the TMS 9940 Address and CRU outputs that we have just de-

scribed.

When you write 1 to CRU bit 184¢¢g (CB1), pins P11. and P12 function as serial data
transfer pins. The purpose of this logic is to allow the TMS 9940 to operate in multi-CPU
configurations. This logic is very simple. You output data by writing the data to CRU bits
1A016 through 1AF1g. This data is immediately transmitted via TD {P12) as a serial data
stream which is clocked by TC (P11). In keeping with normal bit sequence protocol. data is

transmitted low-order bit first. Thus, 16 bits of data being output may be illustrated as follows:

1A0  4(HIGH-ORDER)
AF16(LOW-'ORDER)

L1[°l1L1l1i°liFl1T1l1l°l1|°l1l:l

TMS 9940
MULTIPROCESSOR
SYSTEM
INTERFACE

[
2
o,
=
2
o
[
%4
o
w
w
I
-
@
@
I
-

SEEN BY EXTERNAL LOGIC

When a TMS 9940 has a 1 written to CB1. it can also receive data via TD. Data input is again clocked by TC. Input logic
is the reverse of the output logic illustrated above; that is say. as a data stream is input. the first input bit is loaded into

CRU bit 1AF16. and the sixteenth input bit is loaded into CRU bit 1A01¢.

TMS 9940 multiprocessor system interface logic is used to transfer data from a memory location in one TMS
9940 to a memory location in another TMS 9940. You will not normally use this logic to transfer data betweena
TMS 9940 and external logic; the CRU serves that purpose better. There are three reasons why you may want

to use the TMS 9940 multiprocessor system interface; they are:

1) To transmit status information. For example, one TMS 9940 could tell another how far it has progressed through
- various phases of a task by transmitting a status word whose bits have some predefined interpretation.

2) To transmit data. One TMS 9940 may generate data which another TMS 9940 needs in order to execute its pro-

grams.

3) To transmit instruction sequences. Instructions could be transmitted from the read-only memory (or the
read/write memory) of one TMS 9940 to the read/write memory of another TMS 8940. The receiving TMS 9940

could then execute the instruction sequence out of its read/write memory.
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Figure 3-22. Handshaking Logic in a TMS 9940 Multi-Microcomputer Network Communicating via the TD Data Line
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You could use the CRU to perform any of the three data transfers described above, but the multiprocessor system inter-
face is somewhat easier to use. We say that data transfer via the multiprocessor system interface is 'somewhat’” easier
to use because many problems still remain when you use the multiprocessor system interface. These problems arise
from the fact that there is absolutely no handshaking protocol associated with the multiprocessor system inter-
face. For example. there is absolutely no protection against two TMS 9940s simultaneously trying to output data via
TD and TC. There is no predefined protocol whereby a transmitting TMS 9940 identifies the receiving TMS 9940 or the
instant data has been transmitted and should be read. Any protocol is your responsibility — to be provided by logic ex-
ternal to the TMS 9940s. Fortunately. this protocol is easy to implement. Figure 3-22 ' shows how eight TMS
9940s can communicate with each other, such that each TMS 9940 may transmit data to, or receive data from,
any other TMS 9940. The logic illustrated in Figure 3-22 is more complex than the logic you would need for a small
system — for example. a two-microcomputer system, or a system where there are dedicated transmitters and receivers.

While Figure 3-22 shows TMS 9940s communicating with each other, you will in fact use TMS 9940s just as fre-
quently with other microprocessors — such as a TMS 9900. Nevertheless. the concepts embodied in Figure 3-22
would apply. from the viewpoint of the TMS 9940, in any other configuration.

Let us look at how the logic in Figure 3-22 works.

The first problem we must resolve is the problem of transmission contentions. How will we make sure that one TMS
9940 does not try to transmit data while another TMS 9940 is already transmitting data? A simple scheme would be to
set aside a particular CRU pin to serve as a “Busy” line. For example, every TMS 8940 could use P31 as a “Busy’’ output
pin and P30 as a “Sense” input pin. We could wire-OR together all P31 Busy outputs and input this wire-OR to all P30
Sense inputs. Now any TMS 9940 that wishes to transmit data will read its P30 CRU bit. If this bit is O, then it will out-
put 1to P31. Outputting 1 to P31 causes all other TMS 9940s to receive 1 at their P30 inputs. Thus, no other TMS 9940
will begin transmitting data if another TMS 9940 was in the process of transmitting data. This logic may be illustrated
as follows:

P31

TMS 9940 All TMS 9940s Another
no. 1 sense now receive TMS 9940
P30 low. a high P30 senses P30
output 1 ‘ high — so
to P31 does not
try to
output

The problem with the logic illustrated above is that two TMS 9940s could simultaneously read P30, find it was 0. out-
put 1 to P31, then output competing data on TD. While the chances of two microcomputers executing identical in-
structions at exactly the same time are very small. a well-designed microcomputer system must account for every po-
tential error. In Figure 3-22 we resolve our problem by using a 74148 8-10-3 decoder. The P31 output from every TMS
9940 is connected to a different 74148 input. The 74148 outputs, via 00, O1. and 02. the line number for the highest
priority active input. This three-line output is connected to the P28. P29, and P30 pins of every TMS 9940; we assume
that these three pins are inputs at every TMS 9940. Now every TMS 9940 that wishes to transmit data via TD must out-
puta 1 to P31. It must then input the contents of P30. P29, and P28. Upon detecting its own ID on these three inputs. it
begins data transmission. If a TMS 9940 outputs 1 via P31 and then reads in some other ID via P30. P29, and P28, then
it must wait. Here is an appropriate instruction sequence:

LI R12,>3F8 LOAD P28 ADDRESS, X2. INTO R12
SBO 3 SET P31 ON

LoopP STCR R2.3 INPUT P28, P29. AND P30
Cl R2.ID COMPARE INPUT WITH DEVICE ID
JNE LOOP RETURN AND RE-ENTER CODE IF NOT CORRECT ID
LI R12,>340 LOAD MPSI OUTPUT DATA BASE ADDRESS X2
LDCR R3.16 OUTPUT CONTENTS OF R3 VIA TD
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Assuming that a TMS 9940 has output 1 to P31 and has received back its own ID via P28, P29, and P30, the TMS 9940
is ready to transmit data. However, in addition to simply transmitting the data, the TMS 9940 must tell the intended
recipient that the data has been transmitted. In Figure 3-22 we use a 74138 3-t0-8 demultiplexer for this purpose.
Pins P25, P26, and P27 of every TMS 3940 are outputs that connect to the 10, 11, and 12 inputs of the 74138. The
transmitting TMS 9940 outputs data which will be received by every other TMS 9940; however, the transmitting TMS
9940 follows up by outputting a 3-bit code via P25, P26, and P27; this 3-bit code identifies the intended recipient. The
3-bit code is input to the 74138, which generates one of eight possible outputs. These eight outputs become external
interrupt request inputs to the eight TMS 9940s. Only the single TMS 9940 will receive the data which was transmitted
by the eighth TMS 9940, only one TMS 9940 will receive an interrupt request signal; this is the TMS 9940 for which
the transmitted data was intended. The TMS 9940 which receives data simply executes an STRCR instruction to move
the data from CRU bits 1A01g through 1AF1g to the appropriate general purpose register.

CRU bit 1854¢, the CB2 bit, serves the very limited purpose of outputting a synchronizing | TMS 9940
signal. When you output 1 to CB2, P13 ceases to be an I/0 pin and instead outputs the inter- | SYNC MODE
nal TMS 9940 clock signal.

CRU bit 1864¢ (CB3) controls idle and hold logic for the TMS 9940. When you write a 1 to CRU bit 1861¢. pins P14
and P15 act as hold request input (ALD) and hold acknowledge output (ACDA) signals. respectively. P16 generates an
DLE output.

The Hold request/acknowledge logic of the TMS 9940 is quite standard. The purpose of this | TMS 9940

logic is to remove the TMS 9940 from any shared busses when some other microprocessor or § HOLD LOGIC
microcomputer is bus master. If CB3 is 1, then a low signal arriving at the TMS 9940 HLD input
will cause the TMS 9940 to enter a Hold state at the conclusion of the current instruction’s execution. A low HLDA out-
put marks the beginning of the Hold state.

The IDLE signal is output low when an IDLE instruction is executed and CB3 is 1. The only | TMS 9940
way in which you can terminate an Idle state is by requesting an interrupt via INT1 or INT2. The | IDLE LOGIC
TMS 9940 three-state signals are not floated in the Idle state. You must additionally enter the Hold
state for this.

The purpose of the IDLE instruction and signal is to enable standby power logic. This may be illustrated as follows:

+5V O
* & Vel
IDLE LOW OPENS SWITCH - iDLE
HLD

L

. Vcc2

Under normal circumstances, the power supply will input power to Vg1 and V2. When IDLE goes low, the power
input to V2 is switched off. While Ve 1 only is receiving power. the TMS 9940 read/write memory and interrupt
logic is active, but all other logic is inactive. since the interrupt logic is active. any arriving interrupt request will be
acknowledged. The process of acknowledging an interrupt request sets IDLE high again. This closes the switch and
restores power to Vc 2. which allows the TMS 9940 to resume normal execution.

In the illustration above. note that IDLE is connected to HLD.
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TMS 9940 GENERAL PURPOSE FLAGS

If you look again at Table 3-7 , you will see that CRU addresses 1B01¢ through 1BF1¢ address 16 general pur-
pose flags. These general purpose flags have no special hardware functions. They are programming aids and that
is all. You can write data out to these flags, and you can read back the data. How you use this data is entirely up to pro-
gram logic.

TMS 9940 TIMER/EVENT COUNTER LOGIC

The TMS 9940 has a timer which can also be used as an event counter. CRU bit 19E1g determines whether this
logic will function as a timer or as an event counter. If CRU bit 19E1¢ is high, then this logic serves as a Timer. If
CRU bit 19E4¢ is low, then this logic serves as an event counter.

Timer and Event Counter logic both use CRU bits 1901g through 19D g as a 14-bit register whose contents are decre-
mented by Timer or Event Counter logic. This 14-bit register is buffered. That is to say. the initial value which you out-
put to CRU bits 1901¢g through 19D1¢ is stored in a buffer. in addition to being loaded into CRU bits 1901¢g through
19D16. Subsequently. CRU bits 1901g through 19D1g are decremented. but the buffer contents remain unaltered.
When CRU bits 1901 through 19D16 decrement to O, they are reloaded from the buffer. Thus Timer/Event Counter
logic runs continuously. An interrupt request is generated internally when CRU bits 19016 through 19D1¢ decrement
to 0.

Remember, CRU bit 19016 is the low-order bit, and CRU 19D1 g is the high-order bit. This is the reverse of normal Texas
Instruments bit numbering. where the high-order bit has the lowest bit number. However. this is consistent with the
fact that Texas Instruments outputs data to the CRU low-order bit first, and addresses CRU bits in numerically ascend-
ing address sequence.

When you write O to CRU bits 19016 through 19D16. you disable Timer/Event Counter logic.

When the Timer/Event Counter is operating as a timer, the 14-bit register represented by CRU bits 1901¢
through 19D1¢ are decremented once every 30 internal clock oscillations. The crystal connected across XTAL1
and XTAL2 determines clock oscillation frequency. When CRU bits 19016 through 19D1g time out to zero, an interrupt
request is generated.

When Timer/Event Counter logic is operating as an event counter, pin P17 serves as an input, receiving the
event sequence to be counted. Every low-to-high transition of the signal input at P17 decrements the counter. Once
again, when the counter counts out to 0. an interrupt request occurs and the counter is reloaded from its buffer
register.

TMS 9940 INTERRUPT LOGIC

The TMS 9940 has four external interrupts and twelve internal software interrupts.
These are the four external interrupts:

1) Reset. This has highest priority.

2) A level 1 interrupt occurring at the INTT pin. This has second highest priority.

3) A Decrementer/Event Counter interrupt. This has third highest priority.

4) A level 2 interrupt occurring at the NTZ pin. This has lowest priority.

As described for the TMS 9900. you execute XOP instructions to generate software interrupts. XOP4 through XOP15
are active. XOPO through XOP3 do not exist on the TMS 9940.

TMS 9940 interrupt vectors. together with a complete TMS 9940 memory map. are illustrated in Figure 3-20.

The actual interrupt acknowledge sequence for a TMS 9940 is identical to that which we have described for the TMS
9900.

TMS 9940 RESET

You Reset the TMS 9940 by inputting a low signal at RST/PE (pin 20). This low signal must last for at least five
clock cycles. A Reset resets to O the contents of all pointer registers and all CRU configuration bits. Following a Reset.
level O interrupt response begins — which means that read-only memory bytes O through 3 provide the initial Program
Counter and Word Pointer register contents. and therefore the address of the program which will be executed follow-
ing the Reset.
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Note that the TMS 9940. being a smaller and simpler system than the TMS 93900. can use elementary logic to generate
an interrupt acknowledge. For the TMS 9900 we suggested an Address Bus decoding technique in order to create an
interrupt acknowledge signal. For the TMS 9940 a CRU bit will do just fine. The following circuit is recommended by
Texas Instruments:

VCC

LD Q

INT REQ—#]CLK

7474 G }—=TNT7 or INT2
CLR

L——n\rr ACK

A simple D-type flip-flop has its D input connected to +5V. Every time an interrupt request pulse is input to the clock
pin. the Q output will go low — generating a valid interrupt request at the TMS 9940. In order to acknowledge the in-
terrupt and remove the interrupt request signal. you can output a low pulse via any of the P pins. This low puise clears
the D-type flip-flop and forces Q high again.

PROGRAMMING A TMS 9940E ERASABLE, PROGRAMMABLE READ-ONLY MEMORY

The TMS 9940E has a transparent guartz lid over the device in its dual in-line package. In order to erase the TMS
9940E EPROM, you should expose it to a high-intensity ultraviolet light with a wavelength of 2637 angstroms.
An intensity of 10 watt-seconds per square centimeter is recommended.

After the TMS 9940E EPROM has been erased. all EPROM memory bits will be 0.
These are the steps required in order to program a TMS 9940E EPROM:

1) Reset the device.

2) Apply the first data byte — to be stored in memory location 0000 to pins P24 through P31. Remember. P24 repre-
sents the most significant bit of the byte. and P31 represents the least significant bit of the byte.

3) Apply a 26-volt level to pin 20, the RST/PE pin. This being the first programming pulse. it resets the internal pro-
gram memory address point at 0000 and writes the data byte at P24 through P31 into memory location O.

4) After at least 80 clock cycles. apply 26 volts to pin 37, INT2/PROG., for 50 milliseconds while changing the data .
byte (step 5).

5) Apply the next data byte to P24 through P31. At the high-to-low transition of PROG. the data will be written into -
the next location.

6) Remove the 26 volts from pin 37 for a minimum of 50 clock cycles. Then apply 26V to pin 37 for 50 milliseconds.
7) Return to Step 5 until all of program memory has been programmed.

LOADING A PROGRAM INTO TMS 9940 READ/WRITE MEMORY

You can load a program directly into TMS 9940 read/write memory via pins P24 (MSB) through P31 (LSB) for either the
TMS 9940E or the TMS 9940M. Typically. this is done in order to load a small test program. The procedure for loading
data into the TMS 9940 read/write memory is exactly as described in the previous section for loading data into EPROM,
except: the_&volt level is applied to pin 19, the TST pin, after the device has been reset by inputting a low signal to
pin 20, the RST/PE pin; and the high puises at PROG are logic ‘1 level rather than 26 volts.

When you input data to a TMS 9940 read/write memory using the TEST pin and P24 through P31, the address pointer
is initialized to address 830016. The address keeps incrementing the high-to-low transition of each 50 millisecond pro-
gramming pulse applied at pin 37. When you finally stop applying programming pulses. the last 16 bits of data input
are interpreted as the beginning address for the program to be executed. This address may point to a read/write memo-
ry location, or to a read/write memory location. That is to say. the test program may be in read/write memory. in read-
only memory. or in both areas.

THE TMS 9940 INSTRUCTION SET
The TMS 9940 instruction set is identical to the TMS 9900 instruction set, with these exceptions:

1) The RSET, CKOF, CKON and LREX instructions have been deleted. That is, all the external instructions except
IDLE.
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2) The XOP instructions will not work with operands 0, 1, 2, or 3.
3) There are new DCA and DCS instructions that enable 8-bit binary-coded decimal arithmetic.

Assuming that you start with two valid 8-bit binary-coded decimal operands. you can add these two 8-bit operands
using normal binary addition. The result will be a meaningless 8-bit number; however. if you immediately execute the
DCA instruction, this meaningless 8-bit number will be converted to a meaningful 8-bit. 2-BCD-digit number.

DCS. likewise. allows you to perform 8-bit binary-coded decimal subtraction. Assuming that the subtrahend and mi-
nuend are both valid 8-bit binary-coded decimal numbers. you perform a subtraction using binary arithmetic and you
generate a meaningless 8-bit result. By executing the DCS instruction. you convert this meaningless 8-bit result into a
valid 8-bit. 2-BCD-digit binary-coded decimal difference.

The DCA and DCS instructions both generate in the low-order eight bits of the 16-bit word.

For a discussion of decimal adjust logic in BCD addition or subtraction, see Volume 1. Chapter 3.

The LIIM instruction loads a 2-bit interrupt mask into the two low-order bits of the Status register.
Here are the instruction object codes used by the DCA. DCS. and LIIM instructions:

Clock

Instruction Object Code Bytes Periods
DCAr 0010110000bbssss 2 7
DCSr 0010110001bbssss 2 7
LIIM n 001011001 xxxxxnn 2 10

The object code notation above conforms to that which we have described for Table 3-3. For the LIIM instruction, x
represents “don’t care” bits and n represents the two binary digits that get loaded into the two low-order Status
register bits.

THE TIM 9904 FOUR-PHASE CLOCK GENERATOR/DRIVER

This part is also given the generic TTL name: the SN74LS362. The TIM 9904 provides TMS 9900
microprocessors with the four clock signals: ®1, ®2, 3, and 4. These are +12V MOS driver signals. In addi-
tion, four complementary +5V clock signals, $1, B2, $3, and D3, are generated for use elsewhere in a TMS
9900 microcomputer system.

The TIM 9904 device may be driven by an external crystal, an external LC circuit, or a single external clock sig-
nal.

The TIM 9904 is manufactured using low-power Schottky technology; hence the 74LS part number. It is packaged as a
20-pin DIP. All signals. other than the four MOS level clocks. are TTL-compatible.

The TIM 9904 aliows one asynchronous input signal to be synchronized. via a D flip-flop. with the ®3 signal. The syn-
chronized signal is output, frequently to be used as a RESET input to the TMS 9900.

Figure 3-23 illustrates TIM 9904 pins and signal assignments.
The four clock signals, 1,02, d>3 and ®4, conform to Figure 3-3 . ®1, ®2, $3, and 4 are complements of

$1, &2, $3, and 4.
A logic level input at D will be output at Q on the high-to-low transition of ®3:

03 [R [ N
P o2\
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TANK 1 1 20p———vcc1 (+5V)
TANK2 | 2 19 XTAL2
GND1 3 18 p———— XTAL1
Qegg— 4 ™ 17 jatl—— OSCIN
D —1 5 9904 16 —PO_S_COUT
D4-g——] 6 15— 2
- 7 14 ——m 37
P3 ———4 8 13 Vee2 (+12v)
d4 <——J 9 12 p—=a ®1
GND 10 11 p— 02
Pin Name Description Type
o1, P2, O3, P4 + 12V clocks to drive a TMS 9900 Output
@1, P2, T3, B4 +5V clock complements Output
D Asynchronous control Input
Q Synchronized control Output
TANK1, TANK2 Crystal overtone controls
XTAL1, XTAL2 External crystal connections
OSCIN External clock Input
0SCOUT Clock with frequency 4 Output
Veel. Vo2, GND1, GND2  Power, Ground

Figure 3-23. TIM 9904 Signals and Pin Assignments

0SCOUT provides a clock frequency four times that of the ® clocks. its phase relationship to the @ clocks may be
illustrated as follows:

o _ M\ NN
o [\ L
. \ ~
o amW
T\ '
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When an external quartz crystal is used to drive the TIM 9904, the following connections are required:

TANK 1
1
22 pF
0.47 puH
2 19 XTAL 1
TANK 2 20 ohm to 75 ohm crystal,
TIM 2 mw power dissipation.
9904 (May substitute a
0.1 uF capaciton)
18 XTAL 2
+5V
17 OSCIN

OSCIN must be tied to a high logic level for the internal clock logic to work properly.

Required capacitor and inductance values are shown in the illustration above for a TMS 9900 microprocessor operating
with its standard 3 MHz frequency. The crystal must have a resonant frequency of 48 MHz. For 48 MHz operation. a
third overtone crystal is used.

For less precise timing. the quartz crystal may be replaced with a 0.1 uf capacitor. The LC-tuned circuit now estab-
lishes the clock frequency according to the following equation:

fosc = 1/2m~/LO)

‘where L is the inductance. with units of Henries. and C is the capacitance with units of Farads. This includes the
capacitance of the circuit into which the components are mounted.

If an external clock signal is input, it must occur at OSCIN. The crystal connections XTAL1 and XTAL2 should be
connected to Vg as follows:

+ 5V
V.1
<
NOT {TANK1—- 1 20 <1 2
CONNECTED XTAL2
2| 19
TANK 2 oM XTALT }TIED TO LOGIC 1’
9904 18
17 P23EIN__ ¢l ock inpuT
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The clock input OSCIN must have a frequency which is four times the clock period frequency and has a 25% duty cycle.
Thus, for a 3 MHz frequency. a 12 MHz signal must be input via OSCIN:

83.3ns "l

won __ [\ M

e

In TMS 9900 microcomputer systems, the D input is used for an asynchronous reset; Q is output as a syn-
chronous reset. This may be illustrated as follows:

VCC
TIM TMS
10KQ 9904 9900
1000
D Q - RESET
“”:I
-_— -
- -

The illustration above shows recommended resistor and capacitor values.

THE TMS 9901 PROGRAMMABLE SYSTEM INTERFACE (PSI)

The TMS 9901 Programmable System Interface {PS)) is a special support part designed for the TMS 9900 series
of microprocessors. This relatively primitive device uses 32 bits of the TMS 9900 CRU bit field to support
parallel 1/0 and interrupt request logic. Programmable timer logic is also availabte.

Figure 3-24 illustrates that part of general microcomputer system logic which has been implemented on the
TMS 9901 PSI.

The TMS 9901 PSl is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL-com-
patible. The device is implemented using N-channel silicon gate MOS technology.
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Figure 3-24. Logic of the TMS 9901 Programmable System Interface
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RSTI —8f 1 40 f—— V¢ (+5V)
CRUOUT — 1 2 39 j<—— S0 (MsB)
CRUCLK ——— 3 38 f— PO

CRUIN -—— 4 37 j—P1

CE—f 5 36 p—— S1
W16 ——P1 6 35 f— s2
NTE ——=) 7 34 j=— INT7/P15
wNFg — 8 33 j=— INT8/P14
i — 32 jeg—= iNT9/P13
T—={ 10 T™S 31 j— INT10/P12
INTREQ -— 9901 30 j=g— INT11/P11
(LsB) Ic3 ——] 12 29 j-a— iNT12/P10
Ic2 <— 13 28 ft— INTT3/P9
Ic1 ~—ri] 14 27 =a— NT14/P8
(MSB) ICO -———] 15 26 f-—— P2
Vgg —1 16 25 j—— S3
TNTT] ——=t 17 24 j-l—— S4 (LSB)
WNTZ —f 18 23 f=g— iNT15/P7
P6 -g—y 19 22 F¢—p P3
P5 <—y 20 21 p—P P4

Pin Name Description Type

CRUIN CRU data output Output

CRUOUT CRU data input Input

CRUCLK CRU data input strobe Input

PO-P15_ 1/0 data Input or Output

INT1 - INT15 External interrupt requests Input

INTREQ Interrupt request to CPU Output

1CO - IC3 Interrupt priority designation Output

CE Chip Enable Input

SO - S4 CRU bit select Input

B_T1 Chip reset Input

[ Synchronizing clock signal Input

Vee: Vss Power, Ground reference

Figure 3-25. TMS 9901 Programmable System Interface Signals and Pin Assignments

In the illustration above, Address lines have been numbered using our standard notation, whereby A14 is the highest-
order address line and AO is the lowest-order address line. This is the opposite of Texas Instruments’ notation. The CRU
select lines are numbered according to Texas Instruments’ notation and Figure 3-25. Therefore, S4 is connected to
AQ, and SO is connected to A4.
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TMS 9901 PSI PINS AND SIGNALS

The TMS 9901 pins and signals are illustrated in Figure 3-25. The signals which connect the TMS 9901 to a
TMS 9900 series microprocessor are quite straightforward; they consist of the CRU and interrupt signals.

The CRU signals include CRUIN, CRUOUT, and CRUCLK.
The interrupt signals consist of INTREQ, ICO. IC1, IC2. and IC3.
For a description of CRU and interrupt signals. refer back to our TMS 9900 discussion.

Device select logic includes a chip enable input, CE, together with five CRU bit select pins, SO - $4.CE and SO -
S4 will connect to the Address Bus as foilows:

>— : - A14
. .
g A5
- A4
»- A3
> A2
- Al
# AD
! (XX R ]
sa
DEVICE —
, S
SELECT 3,
S2
— T™S
s1 9901
S0 |
CE .|

In the illustration above, Address lines have been numbered using our standard notation, whereby A14 is the highest-
order address line and AQ is the lowest-order address line. This is the opposite of Texas Instruments’ notation. The CRU
select lines are numbered according to Texas Instruments’ notation and Figure 3-25. Therefore. $4 is connected to
A0, and SO is connected to A4.
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Device select logic determines the CRU address space that will be reserved for the TMS 9901
ated as follows:

PSI. This may be illustr-

o MEMEN

Al4

A13

A12

A1

A5

A4

A3

A2

M LA ALT]

Al

- '....‘

CRU
ACCESS

DEVICE
SELECT

CE S0 [s1]s2 [s3|s4a
v YYVYOYY
000 N N NN n nNnn X X X X X

These three bits zero These seven bits These five bits select
and MEMEN inactive identify the a CRU bitin the
(high) indicate a TMS 9901 address TMs 9901 PsI
CRU address space.

A0

The high-order three address lines, which we call A14, A13, and A12, are all zero during a CRU access, at which time
MEMEN is inactive (high). Thus we decode address lines A11 through A5 to select a particular TMS 9901 device.

Since the TMS 9980 uses the Address Bus differently during a CRU operation, TMS 9901 device select logic would
connect to the Address Bus in a different way. The CRU bit select lines SO - S4 would be tied to lines A5 - A1; device
select logic would decode lines A11 - A6; and lines A13 and A12, along with MEMEN, would indicate a CRU access.

We illustrate this as follows:

MSB

LSB
A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 -=& AddressBus
o] o} n n n n n n x x x x X
N——— N\ s ~ —
These six bits identify These five bits
the TMS 9901 select a CRU bit CRUOUT

address space

These two bits zero,

along with MEMEN

inactive, indicate a
CRU address

Disa synchronizing clock signal used to time data output and to sample interrupts. ‘D is the complement of $3. For

the TMS 9900, 3 is generated by the TMS 9904. The TMS 9980 outputs ©3 directly.

The best way of understanding the interface between a TMS 9901 and external logic is to look at functions per-

formed, as illustrated in Figure 3-26.
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1CO —i

1C1 atifommmmmmeneet

1C2 -—i
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INTERRUPT
PRIORITY
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ENCODER

INTREQ <—O<}——<>

CLOCK
READ

INTREQ |15 | BUFFER

[gle]e[~]ofofefo]s]-]

-
-

-
N

ftrj i2]

CLOCK
LOAD
BUFFER

[Blwlmlﬁ%;lml*1w1~1*]

-
-

[ N N
AIW]N

b
0
éq
N

v[-1[]
0
m
r
m
0O
4
@
-

] INT1-INT6

Elelo<[-]-]-]=]~]-

el

- -]
W N g -

-
»

-
a

|

INT7-INT15
PINS

23,
27-34

< ]

—

CRUOUT ommm——po
CRU
CRUCLK ————®,\TERFACE C
A
CRUIN -
(s} ——ﬁ
S ——
RU
22— (I:BIT
SELECT
S3—
LOGIC
$4 ——
CE—»

L -
slp[sls]e]vis]efe] [alz]a[s]z[s]c]e]v] [o]o]>]e]

P15-P7

PO-P6

B858888H

Figure 3-26. TMS 9901 PSI General Data Flows and CRU Bit Assignments
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From the programmer's viewpoint, a TMS 9901 looks like 32 contiguous CRU bits. Thus. you will access any part of a
TMS 9901 device's logic using CRU input and output instructions.

As you read through the TMS 9901 description that follows, you should bear in mind the power of multi-bit CRU
load and store instructions as they apply to TMS 9901 architecture. A single instruction transferring an appropri-
ate bit pattern can frequently perform multiple control and data transfer operations.

The manner in which CRU bits are used by the TMS 9901 is not straightforward. This is because CRU bits share
functions and pins. Functions and pins are shared in different ways.

Let us first look at pin connections. CRU bits 1-6 connect to pins INT1 - INT6; thus, in interrupt mode each of these CRU
bits has its own dedicated input pin.

CRU bits 7-15 share nine input or output pins with CRU bits 23-31. CRU bits share pins as follows:

r Device Pins

31 7 - 34
30 8 -+ 33
29 9 -+ 32
28 10 | -————— 31
27 1 - 30
26 12 - 29
25 13 B — 28
24 14 - 27
23 15 <—>EE

?

Each of the CRU bits shown above shares a pin with another CRU bit. That is to say, within the illustrated CRU address
range, there are two CRU bits which will access the same pin, although each CRU bit performs a different operation.
Thus you use the same pin in one of two different ways, using a bit address to select one operation. This may be illustr-
ated as follows:

These CRU bits support interrupt logic
These CRU bits are dedicated to data 1/0

If you select CRU bit 27,

Pin 30 supports data |/0

If you select CRU bit 11,

and interrupt mode,

Pin 30 serves as an
interrupt request input

CRU bits 16-22 connect to parallel /0O pins. These bit addresses are not shared with any other TMS 9901 functions.

CRU bit 0 is a select bit that is not connected to any pin. A 1 written into this bit causes bits 1-15 to support real-
time ciock logic. A O written into CRU bit O selects interrupt logic. When CRU clock logic is selected, bits 1-14 function
as two 14-bit real-time Clock Buffer registers — one a read-only register. the other write-only. Real-time clock logic is
separate from, and operates.simultaneously with, and/or parallel /0 logic. That is to say. the process of selecting real-
time clock logic does not disable any other logic. The select bit merely chooses which registers CRU addresses will ac-
cess, rather than enabling or disabling any operations.

TMS 9901 PSI INTERRUPT LOGIC
The easiest place to start understanding the TMS 9901 is at its interrupt logic.

External logic can input data to CRU bits 1-15 via their connected pins. These input data signals will be in-
terpreted as interrupt requests if interrupts are enabled. If interrupts are disabled, then these CRU bits act
simply as data input.
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You access interrupt logic through the CRU when the select bit, CRU bit 0, contains a 0.

CRU bit addresses 1-15 each access separate read-only and write-only locations. The read-only location stores the sig-
nal level input at the attached pin. The write-only location accesses an interrupt mask bit. This may be illustrated as

follows:

Write- Read-
Only Only
Mask Data
| B 1 ] - 1
h Bit \ ' Bit |
N N -———
From Pins
N+ 1 N+ 1 jf————
] | ] ]
] [} ] ]
CRU Bit N { -

CRU Bit N + 1 { -

Signals arriving at pins connected to CRU bits 1-15 are immediately reflected by CRU bit contents:

Read-
Only
} Data i
[ Bit 1

o] lag)——— Low
1 lag——— High

A low level {that is, a O bit) is interpreted as an interrupt request. The interrupt request is passed on to the mask bit. If
the mask bit contains 1, the interrupt is enabled and the interrupt request is passed on:

Write- Read-
Only Only
f Mask i ) Data
' Bit i H Bit 1
Interrupt .
- jp——
Request 1 0 Low

1 le————— High

If the mask bit is 0. the interrupt request is disabled and therefore denied:

Write - Read-
Only Only
| Mask | Data
1 Bit ' ) Bit '
(o] o] ———— Low

1 la—————  High
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Quite apart from interrupt logic. the CPU can at any time read the contents of one or more CRU bits in the address
range 1-15. Here are some instructions that may access CRU bits 1-15 in various ways:

LI R12,PSi+1 LOAD CRU BASE ADDRESS INTO R12

L R1.MASK LOAD INTERRUPT MASK BITS INTO R1

LDCR R1.156 OUTPUT TO WRITE-ONLY MASK LOCATIONS
STCR R2,15 INPUT CRU BITS 1 THROUGH 15 AS DATA TO R2

For some randomly selected data levels, CRU bits 1-15 may be iliustrated as follows:

Interrupt CRU
. Mask Bits Bits
1 Bits Pass on 0 Bits Generate Interrupt

Interrupt Requests ‘ | Requests

/<—— 1 1 -————————11 O -—H
2 1 2 1 ————
/ 3 0 3 1 —»
!/ ,a—a2 1 42 0 |— =
/ / 5 1 5 1 ——
/7 6 0 l@m——J6 0 |—
Active 1/ 7 0 -7 © 1
Interrupt 8 O 8 1 ———]
Requests \\\\\\ 9 1 o 1 —
\\ 10 O ——————J10 0 —
\ -—11 1 11 0 ————]

\\ 12 1 -————————]12 0
\<—13 0 13 1 ::
14 1 -——————————}14 O -
15 0 15 1 —ﬁ

T—Bit Number—?
CRU Data -

to CPU

If one or more CRU bit's interrupt requests are low, and the corresponding mask bit is 1. then interrupt priority encoder
logic outputs INTREQ low. Simultaneously. the level of the active interrupt request which has highest priority is iden-
tified via ICO - IC3.

INT1, input to CRU bit 1, has highest priority:
INT15, input to CRU bit 15, has lowest priority.

The levels at ICO - IC3 are maintained until the interrupt request signal is removed at the external pin, or the interrupt
mask bit for the level is reset to O.

TMS 9901 PSI DATA INPUT AND OUTPUT

You can use CRU /0 instructions to input, output, or test external data at CRU bits 16-31. Data is output from
the CPU to the TMS 9901 via CRUOUT; it is input from the TMS 9901 to the CPU via CRUIN. Bits are addressed via SO -
S4, as we have already described.

Following a reset, pins connected to CRU bits 16-31 are in input mode. In this mode. external logic can assert high
or low levels at connected pins, in which case one or two CRU bits will be affected: a signal input to PO - P6 will gener-
ate data in CRU bits 16-22; if interrupt mode is selected (by a 0 in CRU bit 0), a signal input to INT7/P15-INT15/P7 will




generate data in two CRU bits, one in the CRU bit range 7-15, the other in CRU bit range 31-23. In interrupt mode, if
the CPU inputs data from CRU bits 7-15 or 31-23, then it will input the same data, but in reverse order. This may
be illustrated as follows:

CRU
Bits
u R12,PSI +7 7 6
STCR R1,9
8 1
019616 Loaded into R1 9 1
10 0
" ! Pins
12 [0}
13 0 34 --——0
14 1 33 P a—
15 1 32 laa——1
31 -+——0
30 -1
29 |=a—o0
28 -——0
Ll R12,PSI +23 23 1 27 -
STCR R1,9 - 1 23 --—1
OODS16 Loaded into R1 25 0
26 [}
27 1
28 o]
29 1
30 1
31 0

Note that, as in all CRU transfers, the first CRU bit transferred goes to the least significant bit position of the destination
register.

As soon as the CPU outputs data to any bit capable of supporting data output, the 1/0 logic associated with this
bit is put into output mode. In this mode, a pin will output a voltage level reflecting datain the corresponding CRU bit.
External logic cannot input data to a CRU bit that is in output mode; in fact, driving input currents into an output pin
may damage the TMS 9901.

Once a CRU bit has been placed in output mode, it remains in output mode until the TMS 9901 is reset. That is to
say, you cannot selectively return CRU bits from output mode to input mode. However, you can always read output bits
back to the CPU; that is, although external logic must never attempt to input to a pin that is in output mode, the
CPU can always read the contents of any I/0 bit, whether it is an input or an output.

You cannot output data via CRU bits 7-15, even though these bits are connected to the same pins as CRU bits 31-23.
When you output data to CRU bits 7-15, the data is routed to one of two write-only locations, depending on the con-
tents of CRU bit O: if the select bit is 0, the data goes to interrupt mask bits 7-15; if clock mode is selected (CRU bit O
contains 1), the data goes to the Clock Load Buffer register (bits 7-14) and RST2 (bit 15).

In interrupt mode you can input external data from CRU bits 1-6. Once again, you cannot output data via these CRU bit
addresses, since any data output will be routed to corresponding interrupt mask bits or Clock Load Buffer bits.
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TMS 9901 REAL-TIME CLOCK LOGIC

If you write a 1 into CRU bit 0 of a TMS 9901 device, then CRU bits 1-14 are used as two 14-bit Clock buffers,
which may be illustrated as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 -4 CRU Bit Number

crvout — -l T 1T T T T T T T T T T T T ] clook osdsurrer

msB LSB

CRUIN<—| l L] I l ] l | l [ [ ] IJ Clock Read Buffer

Besides these two buffers, real-time Clock logic contains a decrementing register which we call the Clock
Counter register. The CPU loads the Clock Counter register via the Clock Load Buffer. and reads the Counter contents
via the Clock Read Buffer. We illustrate this in the following way:

CLOCK

CRUOUT ——» :D BUFFER
REGISTER

CRU CLOCK
INTERFACE COUNTER
REGISTER

J

CLOCK
CRUIN -+— ———— reap

BUFFER

The Clock Counter register decrements continuously as long as the TMS 9901 is powered up. This will cause no
problems as long as the clock interrupt is disabled.

When you write any non-zero value into the Clock Load Buffer (CR!_bits 1-14), the Clock Counter register
starts decrementing from that value. A decrement occurs once every 64 ® clock pulses. Thus, with a 3 MHz clock, a
decrement occurs once every 21.3 microseconds. When the CRU Clock Counter register decrements to 0, an inter-
rupt request is generated, the previously output starting value is reloaded, and the clock starts to decrement
again. Thus, with a 21.3-microsecond time interval between decrements, the maximum time interval between inter-
rupt requests will be 249 milliseconds.

An enabled clock interrupt request causes INTREQ to be output low, together with a level 3 interrupt identified
via ICO - IC3. That is to say. the INT3 external interrupt and the Clock logic share the same interrupt level and interrupt
mask bit. In clock mode, CRU bit 15 is used to record the state of the INTREQ signal. Thus, if interrupt requests are dis-
abled, the CPU program can check for a time-out by testing the level at CRU bit 15. This bit will be low if no time-out
has occurred, and it will be high if a time-out has occurred: thus this bit is the complement of INTREQ.

Following a CRU real-time clock interrupt request, you must write into interrupt mask bit 3 in order to clear the
interrupt request. You can write a O or a 1 into the interrupt mask bit. Normally, you will write a 1 in order to keep in-
terrupts enabled. Writing a O will clear any active real-time clock interrupt request, and will simultaneously disable
further real-time clock interrupt requests.

The Clock Read Buffer register contents do not change as long as the TMS 9901 is in clock mode. This charac-
teristic insures that the Clock Read Buffer will hold a stable value while the CPU is reading it — even though the Clock
Counter may decrement during the read operation.
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Either of the following two events will cause the Clock Counter contents to transfer to the Clock Read Buffer:

« The ® pulse which causes the Clock Counter to decrement.
- An exit from clock mode.

Thus, the Clock Read Buffer register is updated whenever the TMS 9901 leaves clock mode, and every time the
Clock Counter decrements outside of clock mode.

Beware — even if CRU bit 0 contains a 1, the TMS 9901 will exit clock mode for as long as it sees a 1 on select line SO:
this will happen whether or not CE is active. Thus the Clock Read Buffer will not hold the same value indefinitely
just because the TMS 9901 select bit is set. The PS! will leave clock mode whenever the CPU reads to or writes from
CRU bits 16-31, or if any device accesses a memory address with a 1 on the address line connected to SO (A4 in a TMS
9900 system).

The logic controlling clock mode and the Clock Read Buffer may be illustrated as follows:

DECREMENT cLOCK

COUNTER

SELECT BIT ﬂ
(CRU BIT 0)

CLOCK READ
BUFFER

® ——rA <64

SO

This logic summarizes our discussion above. There are two important things to note about clock mode and Clock Read
Buffer update. First. you cannot inadvertently exit clock mode while you are reading the Clock Read Buffer, since you
access it as CRU bits 1-14. Second. you cannot enter clock mode solely by accessing CRU bits 0-15; SO changes clock
mode only when the select bit is 1 {clock mode selected).

In order to read the most recent Clock Counter value, you must do two things:

- Exit clock mode so the Clock Read Buffer will receive the current Clock Counter contents.
+ Enter clock mode so the Clock Read Buffer will be stable during the read itself.

Here is the appropriate instruction sequence:

LI R12,PSi+1  LOAD PSI CRU BASE ADDRESS

SBZ -1 EXIT CLOCK MODE TO UPDATE READ BUFFER
SBO -1 ENTER CLOCK MODE TO STABILIZE READ BUFFER
STCR R1.14 READ 14-BIT CLOCK READ BUFFER

TMS 9901 RESET LOGIC

You can reset a TMS 9901 in one of two ways:

1) By inputting a low signal at RST1.

2) By using a programmed reset via RST2, a CRU bit.

In order to use RST1. a low level must be input at this pin for at least two clock periods.

You can reset the TMS 9901 under program control only when clock mode is selected {CRU bit O is 0). At this time,
writing a 0 to CRU bit 15 (RST2) causes the device to be reset. Thus, the following instruction sequence causes a TMS
9901 device reset:

LI R12.PSI LOAD PSI CRU BASE ADDRESS
SBO 0 ENTER CLOCK MODE
SBz 15 RESET PSI

When the TMS 9901 is reset. the INTREQ signal is output high, ICO through IC3 are output low, all interrupt requests
are disabled, and all I/0 CRU bits are placed in input mode.
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THE TMS9902 ASYNCHRONOUS COMMUNICATIONS CONTROLLER

The TMS9902 microprocessor family includes two serial 1/0 parts. The TMS9902 is a simple, asynchronous
communications device; the TMS9903 is a more powerful, recently introduced multifunction device. Both of
these parts are peculiar to the TMS9900 since they communicate with the CPU via its CRU logic. The two parts
are also pin-compatible; that is, the same 20-pin socket can hold either the TMS9902 {an 18-pin part) or the
TMS9903.

The TMS9902, which we are about to describe. offers asynchronous 1/0 capabilities comparable with those of

parts which we describe in Volume 3. The TMS9902 lacks some features which other parts offer:

1) There are no external clocking signals for received or transmitted data. Receive and transmit rates are computed by
logic internal to the TMS9902.

2) There is a single interrupt request which has no accompanying status output lines. Thus interrupt service routines
must interrogate status in order to correctly service the interrupt.

3) The TMS9902 has only three Modem control lines and no other lines for handshaking with peripheral logic.

One advantage of the TMS9802 is that it occupies very little board space. It is an 18-pin part, the smallest serial

1/0 controller on the market. It requires less surrounding logic because it uses the system clock for its time base, and
because it provides almost no external status or handshake lines.

Another advantage of the TMS9902, when compared to other serial I/O parts, is the presence of real-time clock logic.
Anyone who has worked with serial I/0 logic will appreciate the ability to generate interrupt requests at fixed time in-
tervals.

The TMS9902 is fabricated using NMOS technology. It is packaged as an 18-pin DIP and requires a single +5V power
supply. All signals are TTL-level compatible.

TMS9902 ACC PINS AND SIGNAL ASSIGNMENTS

TMS9902 pins and signal assignments are illustrated in Figure 3-27. These signal assignments are the same as
those of pins 1 through 9 and 12 through 20 of the TMS9903.

INT ~-—— 1 18— vce (+5W)
TxD -#—] 2 17 jag—— CE
RxD ——@ 3 16 g O
CRUIN 4—-—‘ 4 15 j=g—— CRUCLK
TS @—— 5 TMS9902 14 feg—— S0 (MSB)
CTS ——ﬂ 6 13 f—— $1
DSR —=] 7 12 jug—— S2
CRUOUT —»t 8 11 jagg—— S3
Vgg (GND) —— 9 10 f=@—— S4 (LSB)
Pin Name Description Type
CRUIN CRU data output to CPU Output
CRUOUT CRU data input from CPU Input
CRUCLK CRU data strobe Input
CE Device select Input
$0-s4 CRU bit address Input
@ Synchronizing clock Input
DSR Data set ready indicator Input
RTS Request to send indicator  Output
CTS Clear to send indicator Input
RxD Serial data in Input
TxD Serial data out Output
INT Interrupt request to CPU Output
Vee. Vss Power, Ground reference

Figure 3-27. TMS9902 Asynchronous Communications Controller Pins and Signal Assignments
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Table 3-9. 'TMS9902 Control and Status Register Bit Interpretations

CONTROL REGISTER (WRITE) c;g’:ﬁ‘:},ssz? STATUS REGISTER (READ)
Device Reset (write 1 or 0) 31 Any interrupt pending*
- 30 One or more of control bits 17, 14, 13, 12,0r 11 set to
1
- 29 DSR or CTS input level change detected. Reset by writ-
ing 1 or O to CRU bit 21.
- 28 Complement of CTS input level
- 27 Complement of DSR input level
- 26 Complement of RTS output ievel
- 25 Timer time out®. Reset by writing 1 or 0 to CRU bit 20.
- 24 Timer overrun error®. Reset by writing 1 or 0 to CRU bit
20.
- 23 Transmit Shift register empty®. Automatic reset.
- 22 Transmit buffer empty*. Reset by writing to high-order
Transmit buffer bit.
Enable interrupts on DSR or CTs input level change 21 Receive buffer loaded*. Reset by writing 1 or O to CRU
{1 = enable, O = disable) bit 18.
Enable timer interrupts 20 DSR or CTS input level change interrupt pending*. Reset
{1 = enable, O = disable) by writing 1 or O to CRU bit 21.
Enable transmitter interrupts 19 Timer interrupt pending®. Reset by writing 1 or O to CRU
{1 = enable, O = disable) bit 20.
Enable receive interrupts 18 -
{1 = enable, O = disable)
Transmit Break 17 Transmit interrupt pending®. Reset either by writing O to
(1 = enable, O = disable) CRU bit 19 or by writing to high-order Transmit buffer bit |
Enable transmit logic 16 Receive interrupt pending”. Reset by writing 1 or O to
(Complement of RTS output) CRU bit 18.
Test mode select 15 RxD input tevel
(1 = Test mode, O = normal operation)
Write to Parameter register 14 Receive start bit detected”. Reset automatically at end
of received character.
Write to Timer register 13 Receive first data bit detected*. Reset automatically at
end of received character.
Write to Receive Data Rate register 12 Receive framing error detected*. Reset automatically by
error free received character.
Write to Transmit Data Rate register 11 Receive overrun error detected®. Reset automatically by
error-free received character.
10 Receive parity error detected.” Reset automatically by
( error-free received character.
9 Any receive error detected.” Reset automatically when
Status register bits 12, 11, and 10 are all O.
( 8
Receive Data Rate register 7
or 6
Transmit Data Rate register Parameter register, 5
Timer register, < 4
or Transmit buffer 3
|
1
o]

*1 = "true” condition. O = “‘false’’ condition.
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Signals that connect the TMS9902 to a TMS9900 series microprocessor include the three CRU signals CRUIN,
CRUOUT, and CRUCLK, together with device select logic signals CE and S0-S4. The TMS9902 uses these sig-
nals exactly as described for the TMS9901. CE must be low for the TMS9902 to be selected; if the TMS9902 is
selected, then data transfers occur via the CRUIN or CRUOUT lines. S0-S4 identify the CRU bit within the selected
TMS9902. Table 3-9 summarizes the way in which the TMS9902 assigns its 32 CRU bit addresses for read and
write operations.

DSR, RTS, and CTS are standard handshaking control signals for communications devices.

DSR is a general purpose input signal; its level is reported in Status register bit 27. You can program DSR to generate
an interrupt request when it makes a high-to-low or low-to-high transition. However. DSR plays no part in enabling
either transmit or receive logic.

The TMS9902 outputs RTS low while transmit logic is enabled. But the transmitter will not actually start transmitting
data until CTS is input low.

In a standard asynchronous protocol system, TMS9902 transmit logic will output TS low and sometime later receive a
low CTS input — at which time it will actually start transmitting data. But if TMS9902 transmit logic finds CTS low
when it outputs RTS low, it will start transmitting immediately.

For a discussion of Modem handshaking control signals, see Volume 1, Chapter 5.

Serial data is input via RxD_and output via TxD. External logic does not provide signals that clock the serial input
or output data. Instead, the ® synchronizing clock input signal is used to derive data transmit or receive rates. Usually.
@ will be the TIM3904 clock output @3 (the complement of CPU clock ®3). However, you may use any clock signal that
satisfies the timing requirements given in the TMS9902 data sheet at the end of this chapter.

TMS9902 DATA TRANSFER AND CONTROL
The various addressable locations within the TMS9902 are summarized in Figure 3-28.

When you write to CRU bits 31 through 11 you will always access the Control register; when you read these
bits you will access the Status register. CRU bits 10 and 9 are also read-only status flags.

CRU bits O through 7, on a read, always access the Receive buffer; but via CRU bits O through 10 you can send
data to a variety of write-only locations.

The Control register contains four address bits, each of which corresponds to one of the write-only | TMS9902
locations. When an address bit is set to 1, the associated write-only register will receive | REGISTER
data output via CRU bits O through 10. If more than one write-only location is selected, then | ADDRESSING
the select priorities shown in Table 3-10 apply. The Transmit Buffer is selected when all
four address bits contain 0. If any address bit is set to 1, Status register bit 30 will also contain 1.

When you write to the high-order (highest numbered) bit of the Parameter register, the Timer register, or the
Receive Rate register, you automatically reset that location’s address bit in the Control register.

Table 3-10. TMS9902 Write-Only Register Select Scheme

CRU Output Bit s
h Addressed Location ctgc:tlit: nm

14113 |12 | 11

1 X X X Parameter register 7-0
0 1 X X Timer register 7-0
o] o] 1 X* Receive Rate register 10-0
o] o X 1]1 Transmit Rate register 10-0
0 o] o] 0 Transmit buffer 70

“X"" means ‘“does not matter’’

* If both bits 11 and 12 are set to 1, data will be written to both Rate
registers at the same time.

Following a device reset, all write-only location address bits in the Control register are | TMS9902 DEVICE
set to 1. This allows you to write data to registers in the priority order shown in Table 3-10 | INITIALIZATION
during the device initialization process, without having to reset individual address bits. Thus
the initialization process will consist of these steps:

1) Reset the TMS9902 by writing to Control register bit 31.

2) Write to the Parameter register.
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3) Write to the Interval Timer register.
4) Write to the Receive Data Rate and Transmit Data Rate registers.
B) Write to the Control register and Transmit buffer.

—— RTS
Transmit
Logic
lt—— CTS
CRUOUT ceeeeiiit {}
CRLllJIN ] Transmit Transmit D
CRUCLK ! Buffer Register
TNT —-——
e CPU -
CE —» Interface Transmit Rate
SO —— Logic Register
S i
§2 it
g% et Status Register
H Control Register
| Parameter
i Register
Receive Rate
Register
Receive Receive RxD
Buffer Register X

Timer
Register

Receive
Logic

O
[72)
e

Timer
Logic

Figure 3-28. TMS9902 Functional Logic

Texas Instruments’ literature suggests an initialization instruction sequence such as the following:

LI R12,CRUBS INITIALIZE CRU BASE ADDRESS IN R12
SBO 31 RESET COMMAND

LDCR @CNTRL.8 LOAD PARAMETER AND RESET BIT 14
LDCR @INTVL.8 LOAD INTERVAL AND RESET BIT 13

LDCR @RDR, 11 LOAD RECEIVE RATE AND RESET BIT 12
LDCR @XDR,12 LOAD TRANSMIT RATE AND RESET BIT 11



In the sequence above, CRUBS represents the base address for the 32 CRU bits in the TMS9902. Four memory loca-
tions — labeled CNTRL, INTVL, RDR, and XDR — hold the values to be loaded into the write-only locations. Since CRU
bit 11 is not reset automatically. the instruction which writes to the Transmit Data Rate register writes 12 bits, the high-
order bit being a 0 for CRU bit 11.

Let us now examine Control register bits in detail. TMS9902
CONTROL
REGISTER

Control register bits may be divided into interrupt enable/disable bits, write-only location address
bits, the reset control, and the test mode control.

The test mode control (bit 15) is usually left at O: this causes normal operations to occur. When | TMS9902
you set the test mode control bit to 1, RTS is internally connected to CTS and RxD is inter- | TEST MODE
nally connected to TxD. Also, DSR is held low internally and the interval timer operates at 32
times its normal rate. You will operate the TMS9902 in this condition only when testing its logic.

You reset the TMS9902 by writing either a O or a 1 to Control register bit 31.

You will usually begin every event sequence with a Reset. The following instructions constitute [ TMS$S9902

TMS9902 resets: RESET
Ll R12,ACC L R12,ACC
SBO 31 or SBZ 31

ACC is a label identifying CRU bit O (the CRU base address) for the TMS9902.

When the TMS9902 is reset, the following events occur:

1) All interrupts are disabled.

2) RTS is output high; this is the inactive state for RTS.

3) Control register bits 11, 12, 13, and 14 are set to 1. All other Control register bits are reset to 0.

The TMS9902 should not be accessed for a minimum of eleven ® clock cycles following the reset command.

There are four interrupt enable control bits. They enable interrupts when set to 1 and disable | TMS9902
interrupts when reset to O. INTERRUPT
ENABLE

Control bit 21 enables CTS and DSR input signal level change interrupt requests.

Control bit 20 enables timer time out interrupt requests.
Control bit 19 enables Transmit buffer empty interrupt requests.
Control bit 18 enables Receive buffer full interrupt requests.

In each case a Status register bit is set to identify the condition that can generate an interrupt request. But the interrupt
will not actually be requested unless the associated interrupt enable control bit has been set to 1.

You acknowledge any interrupt other than a transmitter interrupt by writing to the interrupt's | TMS9902
enable control bit. To acknowledge an interrupt and leave it enabled. rewrite a 1 to the inter- | INTERRUPT

rupt enable control bit. To acknowledge an interrupt and then disable it, write a O to the inter- | ACKNOWLEDGE
rupt enable control bit. But remember. you must write either a O or a 1 to the interrupt enable
control bit, since this is the mechanism used to reset the status flags that identify the interrupting condition.

You acknowledge a transmitter interrupt by writing to bit 7 of the Transmit buffer. if you write a 0 to CRU bit 19, you
will disable the interrupt. but you will not reset the status flag which was set by the emptying of the Transmit buffer.

Control register bits 16 and 17 directly control two TMS9302 operations.

Control register bit 16 is the complement of the RTS output. You must write a 1 to this bit in order to set RTS low. In
order to enable transmit logic. RTS must be output low while CT CiSis being input low. You must leave RTS low while the
transmitter is active. To disable the transmitter you raise RTS high again by writing O to Control register bit 16; if
transmit logic is part way through transmitting a character when you write a 0 to Control register bit 16, then it will
complete transmitting the character —and the character in the Transmit buffer, if the buffer is full — before outputting
RTS high.

Transmit break logic is controlled via Control register bit 17. When you set this bit to 1, a | TMS9902
break (continuous low output) will be transmitted following the next underrun (that is, when both | BREAK
the Transmit register and Transmit buffer are empty). You must end the break by writing a 0 to | LOGIC
Control register bit 17 before you can restart transmitting by writing new data to the Transmit
buffer. f you leave Control register bit 17 reset to 0, then following an underrun the transmitter will mark (output a con-
tinuously high signal). You can end the mark at any time, and start transmitting a new message, by writing fresh data
to the Transmit buffer.
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When the break control bit is set to 1, Status register bit 30 will also contain a 1.

Let us now examine Status register bits; they may be grouped as follows: TMS9902
. - STATUS
1) Signal level indicators REGISTER

2) Transmit operation status
3) Receive operation status
4) Timer logic

5) Interrupt logic

Status register bits 27 and 28 report the complement of the DSR and CTS input signal levels. Bit 26 reports the
complement of the RTS output signal level.

When the DSR or CTS input changes level, bit 29 is set. You reset bit 29 by writing to Control register bit 21.

There are three transmit logic status bits. Bit 22 is set when the Transmit buffer is empty. The | TMS9902
bit is reset when you next write data to the Transmit buffer. Bit 23 is set when the Transmit | TRANSMITTER
Shift register is empty; this is an underrun condition. Following an underrun, a break or a mark } STATUS

will be transmitted, depending on the level of Control register bit 17. Bit 30 of the Status register
contains a 1 if any of the following Control register bits are set to 1:

« Bit 17, the break control bit
» Bits 14, 13, 12, and 11, the write-only. location address bits
Thus Status register bit 30 will be set to 1 whenever Transmit buffer loading is disabled.

For receive logic, bit 21 is set when the Receive buffer is full. The CPU resets this bit by writingto | TM$9902
bit 18 of the Control register; usually the program will read the contents of the Receive buffer | RECEIVER
before resetting the flag bit. STATUS

RxD, the serial data input line level, is reported at Status register bit 15.

The start of each received character is identified by Status register bits 14 and 13. When the start bit has been
detected, Status register bit 14 is set. One bit time later, when the first data bit is being detected, Status
register bit 13 is set. These two bits remain set until the end of the character. They are reset when the last stop bit has
been detected.

Framing, overrun, and parity errors are reported by Status register bits 12, 11, and 10, respectively. These error
status bits, once set, remain set until an error-free character is loaded into the Receive buffer.

If one or more of the three receive error conditions exist, then Status register bit 9 is set.

There are two timer status bits. Whenever the timer times out, Status register bit 25 is setto | TMS9902
1. This bit must be reset by writing 0 or 1 to Control register bit 20. If you do not do so before the | TIMER
next time out, then Status register bit 24 will be set, indicating a timer error. The timer erroris | STATUS
also cleared by writing O or 1 to Control register bit 20.

The four interrupt generating conditions have associated status bits which are set following an-interrupt request.

If the DSR or CTS input signal changes level, and the interrupt logic has been enabled, then | TMS9902
Status register bit 20 is set at the time that an interrupt request is generated. INTERRUPT
STATUS

If a time out occurs and timer interrupts have been enabled, then Status register bit 19 is
set at the time an interrupt request occurs.

When the Transmit buffer becomes empty, if transmitter interrupts have been enabled, then Status register bit
17 is set at the time an interrupt request occurs.

When the Receive buffer is full, if receive interrupts have been enabled, then Status register bit 16 is set at the
time a receiver interrupt request is generated.

If one or more of these interrupt requests are active, then Status register bit 31 is set.

Interrupt status bits remain set until you reset either the status bit for the interrupting condition, or its interrupt enable
bit in the Control register. In most cases, writing to the enable bit resets the status bit.

Fora Modem signal interrupt you must write to Control register bit 21 in order to acknowledge the interrupt, thus reset-
ting the two Status register bits.

For a timer interrupt you must write to Control register bit 20 to reset the interrupt.

For a Transmit buffer empty interrupt you must write new data to the Transmit buffer in order to acknowledge the inter-
rupt; specifically. you must write to bit 7 of the Transmit buffer.
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For a Receive buffer full interrupt, you must write to Control register bit 18 in order to acknowledge the interrupt.
Let us now examine Parameter register contents.

After resetting the TMS9902, the next step is to identify subsequent operations by loading ap- | TMS99802
propriate data into the Parameter register. Parameter register bits are interpreted as follows: PARAMETER
REGISTER

7 6 5 4 3 2 1 0 -a—SBitNo.

I I I I ] |XI I —I-C—‘Parameter register

W
00 - 5-bit data words
01 - 6-bit data words
10 - 7-bit data words
1 1 - 8-bit data words
- Divide d> by 3 to generate CLK

- Divide © by 4 to generate CLK
00 No parity bit
01 - No parity bit
10 - Even parity bit
11 - Odd parity bit
00 - Select 1Y stop bits
01 - Select 2 stop bits
10 - Select 1 stop bit
11 - Select 1 stop bit

The options presented by the Parameter register. as illustrated above, are self-evident, with | TMS9902 INTERNAL
the exception of Parameter register bit 3. This bit is used to generate an internal clock sig- | CLOCK SIGNAL

nal. CLK. Depending on the setting of Parameter register bit 3, the CLK frequency will be TRANSMIT AND

®/3 or ®/4. CLK is then used to specify the time interval between bit sampling for serial RECEIVE DATA

data input or output, as well as the interval timer rate. The frequency of CLK should not be RATE REGISTERS
greater than 1.1 MHz; therefore if ® is faster than 3.3 MHz, Parameter register bit 3 should
be setto 1.

After loading appropriate data into the Parameter register, you must load the Transmit and Receive Data Rate registers
in order to specify the time interval that will separate bit sampling. Data Rate register contents are interpreted as
follows:

6 5 4 3 2 1 0 «sg—BitNo

0o 9 8 7
I T [ l I l l l I I ] I‘— Transmit or Receive Data Rate register

Second scale factor (S).
Can have any value in the range 1 (000000001)

through 1023 (111111111}

First scale factor (F).
CanbeOor 1. If F =0, S should be > 4
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The time interval separating serial bits transmitted or received is given by the equation:
toLk x2x 8F x S
For example. suppose the Receive Data Rate register contains 11000111000. S = 56819 and F = 1:

11000111000
—

23816 = 56819 =S
1=F

If CLK = ®/3, and ® = 3 MHz, then the serial data transfer rate will be:
{1 x 106) + (2 x 8 x 568) = 110.04 bits per second

If F = 0. then the serial data transfer rate becomes:
{1 x 106) + {2 x 8 x 568) = 880.28 bits per second

Table 3-11 shows sample Data Rate register values for standard Baud rates. The assumed ® frequency produces very
precise Baud rates; it is also within the recommended operating range of TMS9900 series parts.

Table 3-11. Example of Data Rate Register Contents
for Standard Baud Rates

Frequency @ = 3.168 MHz

Frequency CLK = @ = 3 = 1.066 MHz

Data Rate Register
Contents Data Rate in
Decimal Bits per Second
Hexadeci ]

F S

0 55 037 9600

0| t10 06E 4800

0] 220 obc 2400

0} 440 1B8 1200

0 | 880 370 600

11 220 4DC 300

1| 440 5B8 150

1| 600 658 110

1] 880 770 75

Date Rate = CLK + (2 x 8F x §)

It is not strictly necessary to have data rates as precise as those we have shown in Table 3-11.
The devices which receive data from the TMS9902 will determine how precise the transmit rate must be.

TMS9902 Receive Logic resynchronizes itself with the beginning of each incoming character. It does this by starting its
bit-time count at a high-to-low transition of RxD. When the TMS9902 has counted half a bit-time, it samples RxD; if the
line is still low, Receive logic assumes a valid start bit is present. It then samples the line at single-bit-time intervals
after the first sample point, until a full character has been received:

Start Stop
bit Character bit
RxD j % A
Middle of start bit is } *
one-half bit time from TMS9902 samples RxD at the middle of each bit

this falling edge
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Because of this resynchronization, no skew errors will occur as long as the transmitted bit rate is within 4% of the
TMS9902 Receive data rate.

TMS9902 TRANSMIT OPERATIONS

Let us now examine a serial data transmit event sequence as illustrated in Figure 3-29.
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Figure 3-29. TMS9902 Character Transmit Event Sequence

TMS9902
In this example, all operations will begin with a Reset. Remember, you reset the TMS9902 by writ- SERIAL
inaa0ori - TRANSMIT
g a0or1 toCRU bit 31. EVENT
Next, output appropriate codes to the Control and Parameter registers and enable appropriate in- | SEQUENCE

terrupts.
Output Data Rate register settings.
Output the first character to the Transmit Buffer register.
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Transmit logic has now been initialized. You begin actual data transmission by setting RTS low. An appropriate in-
itialization instruction sequence was given earlier.

Setting RTS low enables transmit logic within the TMS9902, but actual data transmission does not begin until external
logic inputs CTS low. If TTS is already low when RTS is reset low, then data transmission will begin as soon as RTS is
output low.

When a character is transmitted, the Transmit buffer contents are moved to the Transmit register, at which time Status
register bit 22 is set. If transmit interrupt logic has been enabled, an interrupt request will occur at this time and Status
register bit 17 will be set.

The character is transmitted as illustrated in Figure 3-29; options are specified in the Parameter register. As soon as
the character’s stop bit (or bits) has been transmitted, transmission of the next data character begins, provided the CPU
has by this time loaded the next data character into the Transmit buffer. The CPU will normally have plenty of time to
reload the Transmit buffer, since it takes a long time, in terms of instruction execution times, to transmit a character.

Note that you must write to bit 7 of the Transmit buffer in order to reset the Transmit buffer empty flag. Thus even
though the character length is less than 8 bits, you will always write 8 bits to the Transmit buffer. You right-adjust
Transmit buffer characters; that is, bit O of the Transmit buffer is always the least significant bit of the character.

If transmit interrupts have been enabled, an interrupt request will occur when Status register bit 22 is set. The CPU will
respond to the interrupt request by interrogating Status register bits to identify the nature of the interrupt. Upon
detecting a 1 in bit 17, the CPU will output another data character. If transmit interrupt logic has not been enabled.
then the CPU must periodically poll the Status register and output the next data character upon detecting bit 22 set to
1.

If the Transmit buffer is empty at the end of a data character transfer, then the TMS$9902 | TMS9902
may transmit a Break (if Control register bit 17 is 1), or it may terminate operations and go | BREAK
into an idle state (if Control register bit 17 is O}.

The TMS9902 will transmit a Break if CTS is still low and Control register bit 17 is high. A Break is a continuous low
level output via TxD. External logic interprets a Break as a signal indicating temporary suspension of data transfer.

Break logic inhibits data transfers to the Transmit buffer. You must terminate a Break by resetting Control register
bit 17 to 0, then loading the next data character into the Transmit buffer.

TMS9902 transmit logic will enter an idle state if CTS is input high by external logic or if CTS is input low, but no new
data is ready to transmit and break logic is off. During this idle state TxD will be held high (marking).

The leve! of the RTS output is not affected by a change in the CTS input level.

If CTS goes high during a transmit operation and you leave RTS output low. then as soon as CTS goes low again the
transmitter will be re-enabled; but if you output RTS high by writing 0 to Control register bit 16, then the [ S input will
be ignored. In order to re-enable transmit logic you must output 1 to Control register bit 16, again semngﬂs low. If
CTSis low at this time, transmission will begin immediately; otherwise, transmission will begin as soon as CTS is input
low — after RTS has again been output low. This may be illustrated as follows:

RTS
CTs
LJ
Disable
transmit Enable
Enable Start i logic; stop transmit
transmit transmitting Itl)lsablg transmitting logic; start
logic ransmit  at end of character. mitti
logic :::;mmmg
RTS
&vs \

Stop transmitting at end of character
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TMS9902 RECEIVE OPERATIONS
As soon as the TMS9902 is reset, receive logic is enabled.

The TMS9902 outputs no ‘‘ready to receive’” signal to external logic telling it when to start transmitting data to
the TMS9902. You must create some such signal, since the Parameter register, interrupt flags, and Data Rate
register must be initialized before external logic starts to input data: otherwise, the TMS9902 will not know how to in-
terpret the serial data input. You have three options:

1) You could use a CRU data bit {perhaps via a TMS9901 pin) for this purpose.
2) You could use the RTS output for this purpose, provided transmit logic is not active.
3) External logic could decode a TMS9902 Reset from the CE and SO-S4 pins, then, after some standard delay time,

external logic could begin transmitting data to the TMS9902. For example, Reset could be used to trigger a one-
shot whose output initialized data transfer to the TMS9902.

It does not matter whether you do or do not create a “‘ready to receive” signal, receive logic within the TMS9902 will
begin operating as soon as it detects a high-to-low transition on the RxD input. One half of a bit-time after the RxD
transition, Status register bit 14 is set to 1. If RxD is high at this time, then Status register bit 14 is reset to 0 and receive
logic waits for the next high-to-low transition of RxD. If a true Start bit is present, however, then one bit-time after the
setting of bit 14, Status register bit 13 is set to 1 and receive logic assumes that valid data is being input.

Status register bits 14 and 13 are useful only for testing TMS9902 operations. For example, you can use them to verify
the Receive data rate. These bits are not particularly useful in normal operation.

As soon as a valid data character has been input, it is transmitted to the Receive buffer, and Status register bit 21 is set
to 1. If receive interrupt logic has been enabled, Status register bit 16 is set, and an interrupt request is generated. If in-
terrupts have not been enabled. the CPU will poll the Status register in order to detect a data character which must be
read.

There are a number of error conditions that can occur during a receive operation. TMS9902
If a valid Stop bit is not detected, the receive framing error status (bit 12) is set. gr:gsn

If parity has been specified but incorrect parity is detected, then Status register bit 10 is set.

If the CPU does not read a character in time (that is, before the next character is loaded into the
Receive Buffer register), then a receive overrun error occurs and Status register bit 11 is set.

Status register bit 9 is set when any receive error occurs.

A receive error does not generate an interrupt request. The CPU must check the receive error status flags in order to
find out if any error has occurred. This is normally a routine part of reading received data.

TMS9902 INTERVAL TIMER OPERATIONS
TMS9902 interval timer logic is quite straightforward.

You must initialize the interval timer by loading a value into the Interval Timer register. You subsequently start the in-
terval timer by resetting Control register bit 13 to 0. (Remember, this occurs automatically when you write into the
high-order Timer register bit.) At this time the contents of the Interval Timer register are moved to interval timer logic.
where they are decremented once every 64 internal clock cycles (CLK). Remember. a CLK cycle may be three or four
times as long as a @ cycle. When the interval timer decrements to O, Status register bit 25 is set and an interrupt re-
quest is generated if interval timer interrupt logic has been enabled. Immediately. the contents of the Interval Timer
register are moved to interval timer logic and decrementing begins again.

The CPU must reset Status register bit 256 before the next time out occurs; otherwise, when the next time out occurs,
an error will be indicated. Status register bit 24 is set to indicate this error.

The CPU can at any time reset the value in the Interval Timer register. However, it is impossible to read the contents of
the interval timer on the fly; that is to say. there is no way in which the CPU can read the current decrementing value
held within interval timer logic.

TMS9902 TEST MODE

In order to diagnose the TMS9902 on line you can put it into a test mode by writing 1 to Control register bit 15.
In Test mode, the following occurs:

1) CTS s connected internally to RTS; therefore, CTS will become true internally whenever RTS is output low. regard-
less of the level at the CTS input pin.

2) RxD is connected internally to TxD: therefore, whatever is transmitted and output via TxD will be received by
receive logic. regardless of the level at the RxD input pin.
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3) DSRis held low.
4) The interval timer decrements at 32 times its normal rate.

You can use the Tgst mode in order to check the TMS9902 when a TMS9900 microcomputer system would otherwise
be idle. For example, during times of inactivity. you will frequently execute a “'no operation” loop. waiting for an exter-
nal interrupt. Instead of executing a “'no operation” loop. you could execute a short program which puts the TMS9902
into Test mode, sends data to the device. and then checks received data to see if it is the same.

TxD and RTS act as normal outputs during Test mode. Therefore, you might wish to disconnect these lines from exter-
nal logic during the execution of the test program. One way to do this would be to use an external CRU bit to disable
TxD and RTS out; this bit would be set at the beginning of the Test mode program and reset before normal operations
resumed. Disconnect logic would be basic AND logic:

X0 ————d

TEST MODE

e D)— Ready to Send
—q

Transmitted Data

]
v
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THE TMS9903 SYNCHRONOUS COMMUNICATIONS CONTROLLER

The TMS9903 Synchronous Communications Controller is equivalent to the TMS9902 Asynchronous Com-
munications Controller, which we have just described, with synchronous and SDLC capabilities added.
Although the TMS9903 is referred to in Texas Instruments literature as a Synchronous Communications Con-
troller, it also has asynchronous communications capabilities.

Compared to devices described in Section C of Volume 3, you will find that the TMS9903 is a general purpose
device of average capabilities.

It is worth comparing the TMS9903 to serial /0 devices described in Section C of Volume 3, since these general pur-
pose serial I/0 devices can easily be included in a TMS9900 series microcomputer system in the place of a TMS9903.

This description of the TMS9903 assumes that you understand synchronous, asynchronous, and SDLC pro-
tocols. If you do not understand these protocols then see Volume 1, Chapter 5 for a description of synchronous and
asynchronous protocols. For a description of SDLC protocol see Volume 3, Chapter C1.

We describe the TMS9903 in this chapter, rather than Section C_of Volume 3, because the TMS9903 CPU interface
uses the TMS9900 series Communications Register Unit {CRU) logic.

The TMS9903 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 20-pin DIP, making it
the smallest synchronous controller chip on the market. All signals are TTL-level compatible. A single +5V power sup-
ply is required.

A TMS9903 FUNCTIONAL OVERVIEW
Logic of the TMS9903 is illustrated functionally in Figure 3-31.

On the CPU interface the TMS9903 occupies 32 CRU bits. High numbered CRU bits write to the Control register,
and are read from the Status register. Low numbered CRU bits form an internal Data Bus that is bidirectional and has
variable width. Via this Data Bus the CPU may read data from the Receive buffer, or it may read one of three cyclical re-
dundancy characters. The CPU may write to the Transmit buffer, the Parameter register, or one of the two Sync
registers; it may also output data to be included in either of two cyclical redundancy characters. Thus, when program-
ming a TMS9900 series microprocessor, you can visualize the TMS9903 32-bit CRU field as follows:

Status Register Receive Buffer

Computed Receive CRC

Received CRC

Computed Transmit CRC

— S ——
31 10
o AT 1]
~ S——
Transmit Buffer
Parameter Register
Sync1 Register
Sync2 Register
Control Register ' Timer register
Receive CRC
Transmit CRC
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l—— TxC
Transmit
Logic = RTS

la—— CTS
< Transmit CRC {}

CRUOUT —H T -
CRUIN --—— Transmit Buffer ng"iss'::: f}— TxD

CRUCLK ————n1

INT -— CPU
D —| Interface Q
CE ——— Logic

— <—
S0 :>

Status Register

S1 —— Control Register
YA

S3 —»

§4 —b» Parameter Register

Sync1 Register

Sync2 Register

| . Receive
K Receive Buffer Register RxD

Received SDLC -
Check Character

< Receive CRC

Vi

Timer Register lag}——— RxC
Receive

Logic

Timer Logic

Figure 3-31. TMS8903 Synchronous Communications Controller
"Functional Logic

As illustrated above, there are three cyclical redundancy check characters which can be read from the
TMS9903.

Transmit and receive logic each compute a cyclical redundancy character {under program control) for transmitted and
received messages.

In SDLC mode only, the cyclical redundancy character for a received frame is isolated by receive logic and held in a
register out of which it can be read.

3-96



We will describe programming aspects of cyclical redundancy characters in more detail as the discussion of the
TMS9903 proceeds.

Transmit and receive logic are each buffered. Data is moved from the Transmit buffer to the Transmit Shift register,
whence it is output serially via TxD. You have one character transmit time within which to write another character to
the Transmit buffer, otherwise an underrun will occur.

Characters are assembled by receive logic in the Receive Shift register; when assembled, they are transferred to the
Receive buffer. You have one character receive time within which to read the contents of the Receive buffer, or else a
receive overrun will occur.

Data buffers within the TMS9903 are alt nine bits wide; this gives you the option of appending a parity bit to
any 8-bit character. The Status register is 23 bits wide, the Control register is 20 bits wide, and the Parameter register
is 12 bits wide; these odd bit lengths cause no problems due to the nature of the CRU interface between the TMS9903
and the TMS9900 series microprocessor.

The Sync1 and Sync2 registers hold Sync characters; in certain protocols these two registers may hold special
control characters. Transmit logic may output the contents of one or both of these registers at the beginning of a
message and following an underrun. Receive logic uses the contents of the Sync1 register to detect Sync characters in
a received data stream.

You specify the number of data bits per character for received data via Parameter register bit settings.

When receive logic is assembling characters in the Receive Shift register, it uses the bits-per-character specification
that was in effect when the current character started to be assembled. If you change the bits-per-character specifica-
tion. the change will be recognized on the next receive character boundary.

The bits-per-character specification that you make in the Parameter register does not apply to transmit logic or
the Sync1 and Sync2 registers. For these three registers the number of data bits you write into the register
defines the number of data bits which will be transmitted. The most recently loaded Sync register determines
the character length for transmission of both Sync characters.

For exampile, if you output B-bit characters to these three registers. then 6-bit characters are assumed by transmit logic.
Likewise. if you output 9-bit characters, then transmit logic will subsequently assume 9-bit Sync1 and Sync2 charac-
ters.

Sync?t and Sync?2 registers should have the same bits-per-character specifications. However, you could, for example,
output a 7-bit character to Sync1 and then a 5-bit character to Sync2. If you did, the device would transmit just the
lower five bits of Syncl and Sync2. You could still specify 7-bit characters to receive logic; each received character
would be compared to all seven bits of Sync1. The Sync character bit length need not be the same as the bits-per-
character specification in the Parameter register or even the number of bits specified by loading the Transmit buffer.

As with the Receiver, you can change the Transmit character length from character to character. As each character is
shifted from the Transmit buffer to the Transmit Shift register, transmit logic attaches the bits-per-character specifica-
tion to the data in the Transmit Shift register. Therefore if you subsequently change the number of bits per transmit
character — namely, by loading a different-sized word into the Transmit buffer — it has no effect on the character
already in the Transmit Shift register.

Although Texas Instruments literature describes the TMS9903 as supporting six different | TMS9903
modes, in fact it supports three: Asynchronous, Synchronous, and SDLC/HDLC. MODES

Asynchronous and Synchronous mode capabilities are quite standard.

In Synchronous mode you can approximate IBM standard Monosync or Bisync protocols.

Asynchronous mode is well suited to RS-232C and RS-449 EIA standard protocols.

The TMS9903 can be operated in a point-to-point SDLC or HDLC system:; also, SDLC. loop mode is supported.
The TMS9903, like the TMS9902, has on-chip timer logic.

TMS9903 PINS AND SIGNALS

TMS9903 pins and signals are illustrated in Figure 3-32. Pins 1 through 9 and 12 through 20 are functionally
equivalent to TMS9902 pins 1 through 18.

On its CPU interface the TMS9903 has the same standard TMS9900 signals as the TMS9901 and | TMS9903 CPU
the TMS9902. These include: INTERFACE

1) The three standard CRU signals: CRUIN, CRUOUT, and CRUCLK. SIGNALS
2) Five select lines (S0-S4) that address a 32-bit CRU field.
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3) CE. an enable signal which must be low for the CPU interface to be enabled.
4) An input clock signal, normally connected to the TIM9904 &3 clock.

Refer to our earlier discussion of the TMS9901 for a description of CPU interfacing logic.

INT - 1 20 Vee (+5V)
TxD -@— 2 19 fa¢—— CE
RxD ——&»{ 3 18 f4— &
CRUIN -#—— 4 17 j-@—— CRUCLK
w5 ™ 5la—s0
TS —w{ g 9903 5 la— s1
DSR —#=] 7 14 f—— S2
CRUQUT ——»1 8 13 f—— S3
(GND) Vgg 9 12 f— S4
TxC ——={ 10 11 jf<@—— RxC
Pin Name Description Type
CRUIN Data output to CPU Output, tristate

CRUOUT Data input from CPU

Input, tristate

CRUCLK CPU data transfer clock Input
SO - 84 CRU bit address Input
CE Device enable Input
TxD Serial data out Output
TxC Serial data output clock Input
RxD Serial data in Input
RxC Serial data input clock Input
RTS Request to send indicator  Output
CTS Clear to send indicator Input
DSR Data set ready indicator Input
D System clock Input
INT Interrupt request to CPU  Output

Vee: Vss Power, ground reference

Figure 3-32. TMS9903 Synchronous Communications Controller
Pins and Signal Assignments

Let us now examine transmit and receive logic signals. TMS9903
SERIAL 1/0

Serial data is output by transmit logic via TxD, as clocked by TxC. Data is transmitted on SIGNALS

high-to-low transitions of TxC. :

RTS and CTS are two Modem control signals associated with transmit logic. In order to

transmit data you must input @Iow while transmit logic is enabled. You have the option of connecting RTS to
transmit enable logic. If you do, RTS will be output low while transmit logic is enabled and it will be output high while
transmit logic is disabled. You also have the option of selecting the RTS output level under program control, in which
case RTS is disconnected from transmit enable logic.

Receive logic receives data via RxD as clocked by RxC. Data is sampled on low-to-high transitions of RxC.

DSR is shown in Figure 3-31 as a receive logic Modem input signal; in reality it is an unassigned input control sig-
nal. The DSR signal level is reported in a Status register bit, and can generate an interrupt whenever it changes state.
DSR does not contribute to receive enable logic.

TMS9903 PROGRAMMABLE REGISTERS

The two principal programmable registers of the TMS9903 are the Control and Status registers. We refer to
these as “principal” registers because they are automatically accessed by high numbered CRU bits on any CRU access.
Low numbered CRU bits transfer data to or from a variety of addressable locations, as specified by Control register bit
settings.
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Table 3-12. TMS9903 Synchronous Communications Controller CRU Bit Assignments
When Writing to the TMS9903

« MODE
E o
@ g g o Q
HEHE
ozl < lola FUNCTION
31 X X X | 1 or O = Reset device.
30 X X X | 1 = Clear transmitter. O = Clear receiver. {In each case interrupts are disabled).
29 X X X | 1 = Clear transmit CRC register. O = Clear receive CRC register. (CRC register is reset to 0).
28 X 1 = Delete received Sync1 characters (in Bisync mode only).
X | 1 = Inhibit transmit logic’s zero bit insertion.
27 X | X | 1 =Load data at CRU bits O - 9 into Sync2 register.
26 X 1 = Load data at CRU bits O - 9 into Sync1 register (only for versions of Synchronous mode that use Sync1 register).
X | 1 = Read received check character via CRU bits O - 15.
' 0 = Reset Status register CRU bits 13 (Check Character Buffer full), 12 (Check Character overrun) and 10 (Zero insert detect error).
25 X X X | 1 = Load data output to CRU bits O - 8 into Transmit buffer, and update the transmit CRC. Select the transmit CRC to be read via CRU bits O - 15.
0 = Reset Status register bits 22 and 17.
24 X X X | 1 = Update the transmit CRC with the next output to CRU bits O - 9. Read transmit CRC at CRU bits O - 15.
23 X 1 = Transmit break (low level output) during underrun. Reset this bit to O before loading new data into Transmit buffer to end underrun.
X Specify synchronous modes’ underrun options. (See text)(General and Bisync only).
X | 1 = Transmit Sync2 register contents following an underrun. (Typically 7F g for an HDLC abort).
X X | O = Abort transmit following an underrun and set Status register bit 23. (General only).
22 X | X | 1 =Enable abort interrupt and reset Status register bits 23 and 18. (General only).
O = Disable abort interrupt and reset Status register bits 23 and 18. (General only).
21 X X X | 1 = Enable data set change interrupts and reset Status register bits 29 and 20.
O = Disable data set change interrupts and reset Status register bits 29 and 20.
20 X X X | 1 = Enable timer interrupts and reset Status register bits 25, 24 and 19.
O = Disable timer interrupts and reset Status register bits 25, 24 and 19.
19 X X X | 1 = Enable Transmit buffer empty interrupts.
0 = Disable Transmit buffer empty interrupts.
18 X X 1 = Enable Receive buffer full interrupts and reset Status register bits 21 and 11.
0 = Disable Receive buffer full interrupts and reset Status register bits 21 and 11.
X | 1 = Enable Receive buffer full, Received Check Character buffer full and received abort interrupts. Reset Status register bits 21, 14, 11 and 9.
0 = Disable interrupts listed above. Reset Status register bits 21, 14, 11 and 9.
17 X | X | X | Oor1=0utput complement via RTS and disable automatic RTS control logic.
16 X X X | 1 = Enable transmitter logic.
0 = Disable transmitter logic after transmitting available data.
15 X X X | 1 = Test mode. O = Normal operation.
14 X X X | 1 = Load data at CRU bits O - 11 into Control register.
13 X | X | X | 1=Load data at CRU bits O - 7 into Timer register.
0 = Move Timer register contents to timer and start timer.
12 X X X | 1 = Update the Receive CRC with the next output to CRU bits O - 9. Read Receive CRC at CRU bits O - 15.




Let us begin by examining the Control register; bit interpretations are defined in Table
3-12.

When you write to a TMS9903, CRU bits 31 through 12 will always access the Control register.
Control register bits may be divided into the following groups:

+ Device reset

» Register select

- Variations within mode specifications — which are made in the Parameter register
« Interrupt enable/disable

« Direct device control

In most cases, when you set or reset a TMS9903 Control register bit, this bit setting — and
its associated logic — remains in effect until you specifically change the bit setting. When
setting a bit to select a data register, be sure to reset any select bits that were previously
set. If two or more register select bits are set simultaneously, you will receive no error
message, but the device will probably malfunction.

Let us now examine Control register bits by group.
There are three device reset CPU bits: 31, 30, and 29.

When you write a 0 or a 1 to CRU bit 31, the entire device is reset; all interrupts are disabled
and all flags and register select bits are reset to O {with the exception of Control register bit 14
and Status register bit 22, which are set to 1). This causes the first data to be loaded into the
Parameter register, while a transmit buffer empty condition is reported in the Status register.

After resetting the TMS9903 by writing a 1 or 0 to CRU bit 31 and loading the
Parameter register {CRU bits 0 to 11), you must next clear the transmitter and
receiver by writing a 1 and then a 0 to CRU bit 30. (It does not matter whether you clear
transmitter or receiver logic first, so long as you do clear each set of logic before attempting
to use it.) You must also initialize CRC accumulation logic at the transmitter and the
receiver by writing 1 and then 0 to CRU bit 29.

In summary, the following steps are required to reset and initialize a TMS9903:

TMS9903
CONTROL
REGISTER

TMS9903
REGISTER
SELECT

TMS9903
DEVICE
RESET

TMS9903
INITIALIZE
TRANSMIT/
RECEIVE

INITIALIZE
CRC

1) Write 1 or 0 to CRU bit 31. This resets the entire device and enables loading of the Parameter register.
2) Load the Parameter register (CRU bits 0-11), establishing the operating mode and configuration.

3} Write 11 to CRU bits 30 and 29. This initializes the transmitter and transmitter CRC logic.
4)  Write 00 to CRU bits 30 and 29. This resets the receiver and receive CRC logic.

{Note that when you write to CRU bits 31, 30, and 29, you will always access Control register bits 30, 31, and 29; only

CRU bits 0-11 have multiple destinations within the TMS9903.)

After resetting the TMS9903 and initializing transmit/receive logic, you will next select addressable locations to read

from or write to.

Selecting the data location from which you will read is straightforward. Normally, CRU bits 0-8
will contain the Receive buffer contents, while CRU bits 9-31 are taken from the Status register.
But you can also read one of three 16-bit CRC characters. We may itlustrate TMS9903 register ad-
dressing during a CPU read as follows:

TMS9903
READ
REGISTER
ADDRESSING

From Status register
Computed CRC for received

message (Control register

bit 12=1)

- A \/—\/L’_\ Received CRC for received

3130 ¢ o « o« ¢  +1716151413 121110 9 8 7 6 56 4 3 2 1 0 SDLC frame (Control register

camme bit 26 = 1)
l | I | I l I l I I I I [ I I l l ] I l l I I ] C'omputed CRC for transmitted
o

Otherwise:

message (Control register
NN ——— T bit 24 or 25 = 1)

t

From Receive buffer
From Status register




Note carefully that in SDLC mode you can read two receive cyclical redundancy check characters: the first is
computed under program control by receive logic for the received frame; the second is received at the end of
the frame.

The final 16 bits of the information field are the received cyclical redundancy character. To read the received cyclical
redundancy character, set Control register bit 26 to 1. To read the cyclical redundancy character computed by receive
logic for the received frame, set Control register bit 12 to 1. These two cyclical redundancy characters will be identical
if a valid message was received.

In Synchronous and Asynchronous modes there is no defined end-of-message. Rather, a control character in the
received data stream is interpreted as an end-of-message indicator, in which case two previously received data charac-
ters are interpreted as the received cyclical redundancy character. Your program logic must compare the two data
characters which are being interpreted as the received CRC character with the computed check character, read from
receive logic after setting Control register bit 12 to 1.

When the CPU reads from the TMS9903, if Control register bits 12, 24, 25, and 26 are all reset to O, then as the default
case CRU bits 0-8 are taken from the Receive buffer; higher numbered CRU bits are taken from the Status register, as
always.

When writing to the TMS9903, Control register address bits used to select a data location | TMS9903

for the low numbered CRU bits may be illustrated as follows: WRITE
REGISTER
ADDRESSING

31 30 29 28 27 26 256 24 23 2221201918 1716151413 1211109 8 7 6 5 4 3 2 1 O

HEENESEERDOENEEEEEEEREEEEEEEEEEnEs

L )\ )
Y Y

{

Control Register

Control Register Bits

Sync2 register
{up to 10 bits)

Sync1 register

{(up to 10 bits)
Transmit buffer (9 bits)
(also default location)

Transmit CRC register
(up to 10 bits)

Parameter register
(12 bits)

Timer register
(8 bits)

Receive CRC register
(up to 10 bits)

High numbered CRU bits always go to the Control register. Low numbered bits go to the write location whose
register select bit within the Control register is 1.

Following a reset, Control register bit 14 is set to 1. therefore data written to CRU bits 0-11 loads the Parameter register.
When you write into the high-order Parameter register bit (bit 11), Control register bit 14 is automatically reset.
But this is an exception. When you set any other register select bit in the Control register it remains set until you
specifically reset it.

If the Parameter register setect bit (Control register bit 14) is set and you want to write to another addressable location,
then you must reset Control register bit 14 to O when setting another select bit to 1.

If all select bits in the Control register are 0, then as a default case data will be written to the Transmit buffer.
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You can only write into the Sync2 register in Synchronous or SDLC modes.

You can only write into the Sync1 register in Synchronous mode — and only in those variations of Synchronous mode
that use the Sync1 register. Variations of Synchronous mode are described later.

There are two Control register bits, 28 and 23, which you use to specify variations of mode specifications. We
will describe these two bits together with Parameter register bit settings, since Control register bits 23 and 28
are logically extensions of the Parameter register.

Five conditions capable of requesting interrupts have separate enable bits; these are Con- | TMS9903

trol register bits 22 through 18. When you write a 1 to any of these Control register bits, the | INTERRUPT
associated interrupt logic is enabled; when you write a 0 to that Control register bit, interrupt | ENABLE/DISABLE
logic is disabled. In most cases, when you write a O or a 1 to an enable/disable bit, you reset
any associated Status register bits. Exceptions are the Transmit buffer empty status and the Received CRC register full.

We will discuss individual interrupts in more detail later when looking at TMS9903 interrupt logic in general.
Direct device control bits consist of transmitter control and receiver controls.

Looking first at the transmitter, you must enable transmit logic, after clearing it, by setting | TMS9903
Control register bit 16 to 1; transmit logic remains enabled until you reset this bit to 0. Transmit | TRANSMIT
logic will not disable itself in the middle of transmitting a character; if you write a O to Control | CONTROLS
register bit 16 part way through a character’s transmission, the character will be transmitted and
transmit logic will then be disabled.

If you never write to Control register bit 17 following a reset, then the RTS output signal level is automatically
controlled by transmitter logic. As soon as you enable transmitter logic by writing a 1 to Control register bit 16, RTS is
output fow; RTS remains low until you disable transmitter logic by writing a 0 to Control register bit 16. But if you ever
write to Control register bit 17, you immediately disable the automatic control of the RTS output level. Now the RTS
output level becomes the reciprocal of Control register bit 17.

There are two ways in which you can include transmitted characters in any cyclical redundancy character com-
putation.

If you select the Transmit buffer by setting Control register bit 25 to 1, then the character which you write to the
Transmit buffer is also included in the transmit cyclical redundancy character computation.

If you select the Transmit buffer as the default write location (i.e.. no address bits in the Control register are set to 1),
then the character which you write to the Transmit buffer will not be included in the transmit cyclical redundancy
character computation unless you set Control register bit 24 to 1 and then output the character to Transmit CRC logic.
That is. using bit 24 of the Control register you can write to either the Transmit buffer or to Transmit CRC logic, but not
to both at the same time.

When a large sequence of contiguous characters is to be included in the transmit cyclical redundancy character
computation, use Control register bit 25.

When characters are to be selectively included and excluded in the transmit cyclical redundancy character com-
putation, use Control register bit 24.

There is no receiver enable control equivalent to the transmitter enable (Control register bit 16). As | TMS9903
soon as you clear receive logic, it is enabled and will begin to sample data arriving via RxD. As | RECEIVE CRC
each character is assembled, it is transferred to the Receive buffer. If a received character is to be
included in the computed receive cyclical redundancy character, program logic must output that character to Receive
CRC logic after reading it from the Receive buffer. When you set Control register bit 12, data output to CRU bits 0-9 will
go to Receive CRC logic.

Note that CRC logic is not necessarily connected to the transmitter or receiver. The cyclical redundancy calculation
registers may be used independently of transmit or receive logic.

The Test mode bit (Control register bit 15) is normally left reset to 0. When you set this bit | TMS9903
to 1 the following connections occur: TEST MODE

1) TxD is connected to RxD.
2) RTS is connected to CTS. and DSR is held low.
3) TxC and RxC are both connected to the timer logic clock. which operates at 32 times its normal rate.

This is similar to TMS9902 Test mode. with the exception that, in the TMS9903, the timer determines Receive and
Transmit data rates in Test mode.
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We will next describe the Parameter register. You will normally write into this register once | TMS9903
during any operation in order to define operating modes and options within these modes. PARAMETER
REGISTER

After resetting the TMS9903 by writing to CRU bit 31, you simply output the parameter code to
CRU bits 0-11. Resetting the device automatically selects the Parameter register as the write loca-
tion for the data at CRU bits 0-11. You could also select the Parameter register by writing Os to CRU bits 27, 26, 25, 24,
13, and 12, and writing a 1 to CRU bit 14. Parameter register contents are interpreted as follows:

11 10 9 1 0 <@—— CRU Bit

lAI | ] l Ll | l r] rlq—Parameterregister

Nt s Bt ——

T

0 - 5 bits/character
1 - 6 bits/character
0 - 7 bits/character
1 - 8 bits/character
0 - 9 bits/character

ivide @ by 3 to generate timer clock
ivide ® by 4 to generate timer clock

{9

o9

Non-SDLC_ SbLC
0 O - No parity Point-to-point
0 1 - No parity Loop master
1 O - Even parity Loop slave - inactive
1 1 - Odd parity Loop slave - active

0 0 0 - Synchronous - general
001-SDLC

0 1 0 - Monosync

0 1 1 -Bisync

1 0 O - Unassigned

1 0 1 - Asynchronous with two stop bits

1 1 0 - Asynchronous with one stop bit

1 1 1 - Unassigned

00-CRC-16 (X16 + xX15 4+ x2 4+ 1)
01-CRCC-12 (X12 4 X1 4+ x3 + X2 4+ X 4+ 1)
10 -Revised CRCC-16 (X16 + X14 4+ X 4+ 1)

1 1-CcRC-CCIT (X16 4+ x12 4 x5 + 1)

0 - Transmit/receive at input clock rate
1 - Transmit/receive at input clock rate =~ 32, and
use zero-complementing NRZ! encoding.

Parameter register bits 6, 7, and 8 determine the operating mode for transmit and receive logic, and some op-
tions within the selected mode.

When you select Asynchronous mode, you also select either one or two stop bits.

in Asynchronous mode, when you set Control register bit 23 to 1, then as soon as an un- | TMS9903

derrun occurs transmit logic will output a continuous low level (break) on TxD. But note | ASYNCHRONOUS
carefully that setting Control register bit 23 to 1 does nothing until an underrun occurs. Once } BREAK LOGIC

an underrun does occur, you cannot load new data into the Transmit buffer until you reset
Control register bit 23 to O to end the break.

If Control register bit 23 is reset to 0, then following an underrun a continuous high signal is output via TxD. You can at
any time restart transmission by ioading data into the Transmit buffer — in which case the high level output at TxD
ends and the next character is transmitted according to the Asynchronous protocol options specified in the Parameter
register.

There are three Synchronous mode options and one SDLC mode option. These four options share Sync character
logic, as shown in Table 3-13. This table applies to transmit and receive logic.

Let us first consider SDLC transmit logic.
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Table 3-13.

TMS9903 Synchronous and SDLC Mode Sync

Character and Underrun Options

Parameter Underrun Fill Character
Register SYNC
CRU Bit MODE Character Control Register Control Register
8171 6 CRUBit23=0 CRU Bit 23 =1
ojo] o Synchronous- None Abort [SYNC2]
General
of{o SDLC 716 Abort [SYNC2]
ol1]o Synchronous- [SYNC1] [SYNC2] [SYNC2]
Monosync
o1 |1 Synchronous- [SYNC1] - [SYNC2] [SYNC1] - [SYNC1] [SYNC2] - [SYNC1]
Bisync

{1 Means: “contents of register named within brackets’

Every frame must begin with a flag character, therefore 7E1¢ is always output as the leading Sync | TMS9903
character. You will subsequently reset Control register bit 23 to O, since underruns are not allowed | SDLC

within an SDLC frame. Should an underrun occur, the transmitter will abort, outputting a con- | TRANSMIT
tinuous high signal and setting appropriate status bits. In order to transmit a valid end-of- | OPERATION

message. you must read the computed transmit check character (selected via Control register bit
24 or 25), set Controt register bit 23 to 1, load a flag (7E1g) character into the Sync2 register, and output the computed
transmit check character as two data bytes. Now allow an underrun to occur; the contents will be output when the un-
derrun occurs. Since Sync2 contains a flag character, you will have terminated the frame by transmitting the message
check character and closing flag. as required by SDLC protocol.

There is another way of ending a frame's transmission.

Instead of allowing an underrun and outputting the frame's closing flag from the Sync2 register, you can suppress
SDLC 0 insertion by writing a 1 to Control register bit 28, then outputting the closing flag lor flags) as a simple se-
quence of 8-bit data characters.

TMS9903
HDLC ABORT

If you are operating the TMS9903 using HDLC protocol. then you must output 7F1g as your
abort character. To obtain a valid HDLC abort following a transmit underrun you should write
the HDLC abort character to the Sync2 register, then leave Control register bit 23 set to 1 while
the frame is being transmitted. Now if an underrun occurs, an HDLC abort character will be output from the Sync2
register.

When detecting a new frame, SDLC receive logic synchronizes itself on flag character 7Eq1g, | TMS9903
which is also the specified Sync character. Consequently the setting of Control register bit 23 | SDLC

and the underrun fill character options shown in Table 3-13 do not apply. When receive logic | RECEIVE
detects another flag character, it assumes it has received the frame’s closing flag. SDLC receive | LOGIC

logic can also detect an abort. SDLC receive logic sets appropriate status flags and generates an
interrupt request, if enabled.

The three Synchronous modes shown in Table -3-13, together with their underrun fill character options, allow
you (under program control) to emulate any of the synchronous protocol options commonly encountered.

External synchronization uses no leading Sync characters at the head of a message. You can | TMS9903
emulate this protocol by choosing the general synchronous option. EXTERNAL
For TMS9903 transmit logic, make sure that CTS is low before you enable the transmitter; then as SYNC LoGIC

soon as RTS goes low, message transmission begins. A station that receives this transmitted
message can use the low RTS output as its external Sync input.

TMS9903 receive logic will use the DSR Modem input as_its external synchronization signal. The station which
transmits the signal to the TMS9903 must generate a low DSR input just before it starts transmitting a message. The
program controlling TMS9903 receive logic must detect the low DSR input by interrogating the appropriate Status
register bit, and upon detecting DSR active should start receiving.
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In Monosync mode a single Sync character occurs at the head of a new message. In Bisync mode two Sync
characters occur at the head of a new message. Both of these options are allowed.

The Monosync mode outputs the contents of the Sync1 register at the head of a transmitted | TMS9903
message and synchronizes on a received message by matching received characters against the | MONOSYNC
contents of the Sync1 register. LOGIC

In Bisync mode Sync1 contents are output twice at the head of a transmitted message. | BISYNC
Receive logic assumes that a new message has been detected when two contiguous characters | LOGIC
match the contents of the Sync1 register.

By loading appropriate data into the Sync1 and Sync2 registers you can transmit and detect
ASCII, EBCDIC, or any other Sync characters.

When an underrun occurs in Monosync mode, a single Sync character is output. By loading the appropriate character
into the Sync2 register you can transmit and detect any underrun fill character.

In the Bisync option greater underrun flexibility is needed. In some cases, following any underrun two Sync characters
are transmitted; but in standard Bisync protocol DLE-SYN character combinations are output following an underrun.
When Control register bit 23 equals 0 the TMS3903 will output two Sync characters from the Sync1 register. To meet
the requirements of Bisync protocol you load the DLE character into the Sync2 register, load the SYN character into the
Sync1 register, and leave Control register bit 23 set to 1. Other bisync logic (in particular. the generation and detection
of special control character combinations) must be handled by a supervisory program.

Control register bit 28 adds some flexibility to the options shown in Table 3-13. However, this control bit applies
only to SDLC and Bisync modes. In SDLC mode. when Control register bit 28 is reset to 0, TMS9903 transmitter logic
will insert a O after every five consecutive 1s transmitted. Setting Control bit 28 to 1 inhibits this zero bit insertion in
SDLC mode. .

In Bisync mode, when Control register bit 28 is set to 1 any received character that matches | TMS9903
the contents of the Sync1 register is discarded. This allows you to strip received underrun | SYNC STRIP
Sync characters.

Parameter register bits 5 and 4 serve different functions in Synchronous and SDLC modes.

In Synchronous and Asynchronous modes Parameter register bits 5 and 4 are used to | TMS9903
specify odd parity, even parity, or no parity. When parity is specified, parity bits will automat- | PARITY
ically be generated for data characters that are transmitted and will be tested for data characters | OPTIONS
received. But parity does not apply to the contents of the Sync1 or Sync2 registers. You must
add your own parity bit to the contents of these registers if you want to transmit Sync characters with parity. The Sync
registers are each ten bits wide so that you can add one parity bit to the longest specifiable character (nine bits).
Receive logic will automatically check the parity of received Sync characters, since received logic treats all receive
characters as data.

In' SDLC mode, Parameter register bits 5 and 4 specify Loop or Non-loop mode; in fact, they | TMS9903 SDLC .
specify the way in which an EOP character (7F1g) is handled. CONFIGURATIONS

In a point-to-point configuration the EOP character has no significance, and is ignored.

As a loop master, transmit logic pays no attention to the EOP character; however, receive logic treats the EOP character
as a frame’s closing flag. This is necessary. since the polling EOP character which a loop master transmits around the
loop will eventually be received as the closing flag for the last frame transmitted by a loop secondary.

The loop slave inactive mode is selected for an SDLC loop secondary that is not transmitting data, but may be
receiving data. The loop slave active mode, in contrast, is selected for a secondary station in the SDLC loop that
wishes to transmit to the primary station.

In loop slave inactive mode, a TMS9903 will initially retransmit received data without delay. But, upon detecting an
EOP character in the received stream, the TMS9903 will introduce one bit delay before retransmitting received data. So
long as you never electrically disconnect a secondary station in an SDLC loop. the inactive slave mode will take care of
timing and protocol requirements of a secondary loop station coming on-line. But if you wish to electrically disconnect
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a TMS9903 secondary station in an SDLC loop, you will require external logic which detours upstream data around the
electrically disconnected secondary. while breaking the detour and including the secondary when it is electrically con-
nected. Here is the appropriate logic: )

Up-loop data &
RxD 4-—]
N LOOP CD

TxD

Down-loop data

You will normally leave a TMS9903 operating in loop slave active mode if it is functioning as a secondary station in an
SDLC loop. You will only switch to loop slave inactive mode when the secondary station has just entered the
loop and is not yet synchronized (has not received EOP). In the loop slave active mode, TMS9903 receive logic will
seek the next EOP character. Upon receiving an EOP character it will convert this character to a flag, which becomes
the opening flag for the frame which the station wishes to transmit to the primary. So long as a TMS9903 is left
operating in loop slave active mode, it will continue to trap receive EOP characters and transmit frames behind
them. When a TMS9903 has no further frames to transmit, you should leave it in loop slave active mode, but turn off
the transmitter by resetting Control register bit 16 to O.

For a discussion of SDLC loop secondary station logic see Chapter C1 in Volume 3.
Parameter register bits 0, 1, and 2 allow you to specify 5, 6, 7, 8, or 9 data bits per received | TMS9903

character. Note that if parity is enabled, the parity bit is not counted in this specification. RECEIVED
If Sync and control characters are eight bits wide, then you cannot specify less than 8-bit g:;:RACTER

characters in Synchronous mode. This is because receive logic does not automatically switch
from the specified bits per character to eight bits per character when receiving Sync or control
characters. Moreover, a program controlling receive logic cannot make this switch, since it does not know it has
received a Sync or special control character until the character is in the Receive buffer — by which time it is too late to
make a change.

Parameter register bit 11 allows you to transmit and receive data at the transmit and | TMS9903 CLOCK
receive clock rates, or at these clock rates divided by 32. This is normally a standard Syn- | RATE OPTION
chronous mode option. With the TMS9903 it is available in all modes: Synchronous, SDLC, NRZI SELECT
and Asynchronous. This bit should be reset to O during operation as an SDLC loop slave.

During synchronous or SDLC operation, if data is being sampled on every 32nd clock
pulse (Parameter register bit 11 is 1} then NRZI encoding and decoding of serial data is assumed; that is, the data
signal changes state to transmit a O or remains in the same state to represent a 1.

Parameter register bits 9 and 10 are used to specify the cyclical redundancy character | TMS9903
algorithm which will be used by transmit and receive logic. CRC OPTIONS

CRC-16 is the normal algorithm used by synchronous and asynchronous protocols.

CRCC-12 is the algorithm used in synchronous and asynchronous protocols with 6-bit characters.
Revised CRCC-16 is the protocol frequently used in standard Bisync protocol.

CRC-CCIT is the standard SDLC algorithm.

Parameter register bit 3 is used by interval timer logic. This bit will be discussed later when we describe the interval
timer.

We will now examine TMS9903 Status register bit settings, which are summarized in Table | TMS9903
3-14. Status register bits may be divided into the following groups: STATUS
REGISTER

- interrupt status

- Input signal levels

- Transmit logic status
- Receive logic status
« Timer logic status
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Table 3-14. TMS9903 Synchronous Communications Controller CRU Bit Assignments

when Reading from the TMS9903

< MODE
cale
S| £]8|8
E 2 5 E Q Fi : .
S21%|ala unction Reset Condition
31 XXX 1 = Any interrupt pending No interrupt pending
30 X XX 1 = One or more Register Load Control flags set. No Control flag set
29 |X | X |x | 1=DSR or CTS or automatic RTS signal level change occurred Output to CRU bit 21
28 | X IX|X Complement of Eg; input
27 |X X [X | Complement of DSR input
26 X IX X RTS level under automatic control. Transmitter active state if RTS is under program control
25 | X [X|X 1 = Timer decremented to O . Output to CRU bit 20
24 IX | X |X 1 = Timer error. Bit 25 was already 1 when timer decremented to O Output to CRU bit 20
23 X | x 1 = Abort followed an underrun {General only) Output to CRU bit 22
22 | X |X|X 1 = Transmit buffer empty Output O to CRU bit 25
21 |X | X | X | 1 =Receiver buffer full e Output to CRU bit 18
20 | X |X X 1 = Interrupt request accompanying RTS, DSR, or CTS signal level change (Bit 29 = 1) Bit 29 = 0 or Output to bit 21
19 |X (X ]|X 1 = Interrupt request accompanying timer time out (Bit 25 = 1) Bit 25 = O or Output to bit 20
18 X | X | 1 = Interrupt request accompanying an abort (Bit 23 = 1){General only} Bit 23 = O or Output to bit 22
17 (X | X |X 1 = Interrupt request accompanying a Transmit buffer empty Output O to CRU bit 25
16 | X 1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) only
X 1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) No active interrupting
X 1 = Interrupt request accompanying Receiver buffer full (Bit 21 = 1) or abort received condition
(Bit 14 = 1) or Closing flag received and received check character ready to be read
(Bit 13 =1)
15 | X [ X |X RxD input level
14 |X 1 = Start bit detected Stop bit(s) received
X 1 = Abort received QOutput to CRU bit 18
13 | X 1 = First character data bit received Stop bit(s) received
X 1 = Closing flag has been received and check character may be read Output O to bit 26
12 | X 1 = Receive framing error detected Error free character received
X 1 = Overrun error detected - receive data overrunning previous frame’s check character Output O to bit 26
11 |IX XX 1 = Receive overrun error detected Output to bit 18
10 | X | X 1 = Receive parity error detected Valid character received
X 1 = Zero insert error detected Output O to bit 26
9 |X|X 1 = Any receive error in most recently received character Valid character received
X 1 = Flag detected Output to bit 18




The interrupt status bits include CRU bit 31, which reports any active interrupt request, and CRU bits 20 through
16, which identify individual interrupts. These status bits-are self-evident. In non-vectored interrupt configurations you
will test CRU bit 31 to find out if this particular TMS9903 has any active interrupt requests. In a vectored interrupt con-
figuration you can ignore CRU bit 31, since the interrupt acknowledge process will identify the TMS9903 as the device
with the active interrupt request. In each case, the interrupt service routine must examine CRU bits 20 through 16 in
order to determine which interrupt requests are active. The interrupt service routine must resolve its own interrupt
priorities.

Input Modem signals DSR and CTS modify Status register bits 27 and 28, respectively. The complement of the
input signal level is reported. Status bit 29 is set to 1 when either DSR, CTS, or automatic RTS signal level
changes. This signal level change can cause an interrupt request, in which case Status register bit 20 is set. In
many serial /O devices, CTS going high in the middle of a transmit operation forces a transmit abort, while DSR going
high in the middle of a receive operation disables receive logic. The TMS9903 does not make such critical decisions:
the supervisory program must respond appropriately.

When RTS output level is being controlled automatically, the complement of RTS is reported in Status register
bit 26. But as soon as you start controlling RTS level by writing to Control register bit 17, Status register bit 26 reports
the active state of the transmitter.

The serial data input signal RxD has its level reported in Status register bit 15.

There are two status bits associated with transmitter logic: bit 22 reports Transmit buffer empty and bit 23 re-
ports a transmitter abort (in those modes that can generate an abort). If interrupt logic for these conditions has been
enabled, then Status register bits 18 and/or 17 will also be set.

There are a number of Status register bit settings associated with receive logic. but there is only one interrupt status
bit associated with receive logic — bit 16. Therefore you must use the various receive status bits in order to identify
active error or non-error conditions within receive logic.

In all modes Status register bit 21 is set when the Receive buffer is full — and should be read within one character
time.

In Synchronous mode, Status register bit 11 reports a receive overrun error, while Status register bit 10 reports
a receive parity error. Either of these errors causes Status register bit 9 to be set.

In Asynchronous mode, a receive framing error, overrun error, or parity error is reported in status bits 12, 11,
and 10, respectively. Status bit 9 reports one or more of these error conditions. In Asynchronous mode, two status
bits are also set at the beginning of each received character. Status bit 14 is set when a valid start bit has been
detected for the character, while status bit 13 is set when the first valid data bit has been detected.

In SDLC mode, areceive overrun is reported in status bit 11 and a receive zero insert error is reported in status
bit 10. The receive zero insert error means that five contiguous 1 bits were received, followed by a flag character, with-
out the expected zero inserted between them. Thus, status bit 10 will be set when the sequence 01111110111112 is
received. While a frame is being received, Status register bit 14 is set when an abort is detected and Status
register bit 9 is set when any flag character is detected.

An unusual and interesting error reported in SDLC mode is the receive CRC overrun error. If a new frame’s data
is received before you read the previous frame's cyclical redundancy check character, then status bit 12 is set.

There are two timer logic status bits: bit 25 is set to 1 whenever the timer decrements to zero. If timer interrupts
have been enabled, then status bit 19 is also set. You must acknowledge a time-out before another time-out occurs.
You acknowledge a time-out by outputting to Control register bit 20. If you do not do so, then on the next time-out
Status register bit 24 is set.

You can examine Status register bit 30 at any time to see if one or more write location select bits are set in the
Control register.
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TMS9903 INTERRUPT LOGIC

There are seven conditions that can generate interrupt requests within the TMS9903. Three of the seven condi-
tions combine to generate a single interrupt request status. Therefore, there are five interrupt request statuses for the
seven interrupt generating conditions. This may be illustrated as follows:

Control
Status  Register  Status
Register Interrupt Register
Condition Enable Interrupt

Bit No. Bit No.  Bit No. Interrupt
29 21 20 — DSR, CTS, or automatic RTS level change
25 20 19 — Timer time out
22 19 17 — Transmit buffer empty
23 22 18 — Transmit abort
Receive buffer full 21
End of SDLC frame 13 > 18 16 — Receive interrupt
Receive abort 14

The TMS9903 has no internal interrupt priority arbitration logic. When one or more conditions capable of request-
ing an interrupt occur, if the interrupt has been enabled, then INT is output low and Status register bit 31 is set to 1. An
interrupt service routine responding to the TMS9903 interrupt request must now interrogate Status register bits in
order to determine which interrupt requests are active. Program logic is responsible for all interrupt priority arbitra-
tion. These are the interrupt priorities which normally apply in serial 1/0 devices:

1) HIGHEST PRIORITY. Receive buffer full (Status register bits 16 and 21 set)

2) Transmit buffer empty (Status register bits 17 and 22 set)

3) Modem signal level change (Status register bits 20 and 29 set)

4) Receive abort detected (Status register bits 16 and 14 set)

5) Transmitter abort (Status register bits 18 and 23 set)

6) End of SDLC frame detected (Status register bits 16 and 13 set)

7) LOWEST PRIORITY. Timer interrupt (Status register bits 19 and 25 set)

TMS9903 INITIALIZATION PROGRAM LOGIC

The first step in any TMS9903 operation is usually to initialize the device. Here are the necessary steps:

1) Reset the device by writing 0 or 1 to Control register bit 31. TMS9903 DEVICE
2) Now output appropriate Parameter register settings. INITIALIZATION

3) Output data to Control register bits 18 through 22 to enable appropriate interrupts.

4) In Synchronous and SDLC modes, load appropriate codes into the Sync2 and/or Syncl registers. These two
registers are not used in Asynchronous mode.

) To initialize receive logic, write O to Control register bit 30. If cyclical redundancy is being used. initialize receive
CRC logic by writing 0 to Control register bit 29. As soon as this step is complete, receive logic becomes active and
starts to assemble received data.

6) Toinitialize transmit logic. write 1 to Control register bit 30. If cyclical redundancy is being used, initialize transmit
CRC logic by writing 1 to Control register bit 29. Transmit logic is now initialized. but it is not yet enabled.

7) Transmit logic will not become active until you enable the transmitter by writing 1 to Control register bit 16. When
you enable the transmitter, you should also toad data into the Transmit buffer. Refer to our earlier discussion of
Control register bits 25 and 24, where data output to the Transmit buffer is described, with or without associated
CRC accumulation.

TMS9903 ASYNCHRONOUS OPERATIONS

When you select Asynchronous mode, data will be transmitted with a parity bit if selected, | TMS9903

plus one or two stop bits, as specified by the Parameter register. Whenever the Transmit buffer | ASYNCHRONOUS
beconies empty. an interrupt request witl be generated if the Transmit buffer empty interrupt | TRANSMIT

has been enabled. and appropriate status bits will be set — as described earlier. You have one
character time within which to respond by outputting another character, or else an underrun will occur. Fotlowing an
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underrun, a continuous high (marking) signal or a continuous low (break) signal will be output, depending on the set-
ting of Control register bit 23. See the break discussion given earlier for details.

When beginning a receive operation, sample the start bit detected status (Status register bit | TMS9903

14) to identify the beginning of a new received message. This status cannot generate an inter- | ASYNCHRONOUS
rupt request. To process received characters. use Receive buffer full interrupt request logic. As | RECEIVE
characters are received, program logic must read characters out of the Receive buffer within
one character time, and check for any of the asynchronous receive error conditions by reading error Status register bits
at the same time. Received data and status can be read together by reading CRU bits O through 15 from the TMS9903.

There are no other special programming considerations associated with asynchronous operation of the TMS9903. Con-
versely, any other protocol requirements must be met by the supervisory program’s logic.

TMS9903 SYNCHRONOUS OPERATIONS

Most of the logic associated with Monosync and Bisync protocols must be provided by the supervisory program
that controls TMS9903 transmit and receive operations. The only logic capabilities provided by the TMS9903 itself
are the various Sync register programmable options, the error and normal operation statuses reported, and the
character length definition.

For a discussion of the Sync character options, refer to our earlier description of the Parameter register.

For a description of the statuses reported, see the Status register discussion and interrupt logic summary.

TMS9903 SDLC OPERATIONS

When discussing the Parameter register we explained how you will use the Sync2 register in order to transmit
and receive frames; but there are additional SDLC protocol requirements and some common protocol variations
which need to be discussed.

SDLC and HDLC protocols are described in Chapter C1 of Volume 3. In SDLC protocol, the first byte of every frame is
the address field, while the second byte is a control field. In HDLC protocol the address field can have any length, while
the control field can be either one or two bytes long. Some variations of SDLC protocol insert a logical control field after
the control field; the logical control field can have any length. Address field, control field, and logical control field
characters are all eight bits wide. Information field characters can have any data bit width. The number of bytes
in a multibyte address or logical control field is determined by examining a specific character bit. For example, a pro-
tocol may specify that the last byte of an address field will have a 1 in the low-order bit, while all prior bytes havea 0 in
the fow-order bit.

The TMS9903 has no on-chip logic designed to handle address, control, or logical control fields. Device program-
ming can specify the number of bits per character — and this specification may change from character to character —
and that is all. Moreover, the supervisory program must take into account primary or secondary station logic.

A supervisory program at a primary station must transmit secondary station addresses and must interpret received ad-
dresses as identifying a frame’s source.

At a secondary station, the supervisory program must always transmit its own address at the head of a frame and must
examine the address at the head of a received frame to see if the rest of the frame should be read or ignored.

When the last byte of the control field (or logical control field) has been received, program logic must change the bits-
per-character specification in the Parameter register before processing the first character of the information field —
should the information field use a different character length. Remember, the bits-per-character specification in the
Parameter register applies only to receiver logic; you specify transmit character size by the number of bits you output
to the Transmit buffer. Thus it is a simple matter to change character size from character to character as protocol may
require. It is also possible for a received character to have a different number of bits than a simultaneously transmitted
character.

TMS9903 receive logic in SDLC mode does have one very useful end-of-frame capability: the received check
character (which must be the 16 data bits preceding the frame's closing flag) is automatically loaded into a received
CRC register. The microprocessor can read this received check character and compare it with a computed check
character.

But there are some additional uses for this received CRC logic.

A valid SDLC frame must have at least 32 bits between the beginning and closing flags; these bits include an 8-bit con-
trol field, and a 16-bit cyclical redundancy check character. Frequently, 32-bit frames are transmitted and received to
pass a command or response with no associated data. An error occurring within such a short frame can cause complex
logic problems; it may be difficult to identify beginning and ending flags for subsequent frames, since the ending flag
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for the short frame may go undetected. But you can use the TMS9903 receive CRC logic to identify short received
frames. |f you do not get a valid status indicator telling you that the received check character is available, then you
know you have received a short frame.

SDLC protocols allow frames to be separated by a single flag character, which serves as the closing flag for one
frame and the opening flag for the next frame. Alternatively, a number of flag characters may separate two
frames. Either case can be handled by the TMS9903.

When describing the Parameter register, we explained how you can generate a frame's closing flag out of the Sync2
register, after allowing an underrun, or inhibit zero insertion and transmit flag characters as data. Since you can in-
dividually specify characters that will or will not be included in cyclical redundancy check accumulations, processing
non-data characters as though they are data characters presents no difficulties to a TMS9903. You can use either
method of ending a frame to separate frames with one or more flag characters. .

If you have generated an end-of-frame using underrun logic, then loading the next frame's first address field byte while
a single flag character is being transmitted will cause a single flag to separate the two frames. If you let the underrun
last longer, then flag characters will continue to be output until you begin the next frame by writing the frame’s first ad-
dress field byte as data to the Transmit buffer. If you are transmitting flags as data without zero insertion. then the num-
ber of flags separating frames is strictly a function of program control — but you must make certain that an underrun
does not occur.

Let us now examine programming requirements within an SDLC loop. TMS9903
SDLC LOOP

There are no special programming requirements for the primary station in an SDLC loop. If you
generate an abort at the end of a transmitted frame's closing flag. then the flag's trailing O bit,
together with the first seven 1 bits of the abort, constitute an EOP character — which is transmitted around the loop in
order to poll secondaries. When this EOP character returns to the primary station’s receive logic, it is treated as a clos-
ing flag. (Refer to our discussion of the TMS9903 Parameter register for details.)

Secondary stations within the SDLC loop should be run in the SDLC loop slave inactive mode until the secondary sta-
tion has become synchronized with the loop — that is, has received the EOP character and begun retransmitting with a
one-bit delay. At this time, change the secondary station mode to SDLC loop slave active. In the active condition, the
secondary station will seek the next EOP character arriving at RxD. If the transmitter has been enabled, the TMS9903
will convert this received EOP character to the opening flag character for the frame which it wishes to transmit. The
program controlling the secondary SDLC can end the transmission with a closing flag and then an abort, or with an
EOP character. The closing flag and following abort generate an EOP character for the next downstream secondary —
and multiple flags between frames. A closing EOP character will be converted by the next downstream secondary to a
flag or will be passed on to the primary. which interprets EOP characters at receive logic as closing flags. A closing EOP
character, therefore, generates a single flag separating two transmitted frames.

For a discussion of normal status and error status that may occur during transmit and receive operations, refer to
our earlier description of the Status register. Also, refer to our earlier description of the Parameter register for logic
which you will use to abort a mistransmitted frame. or to detect an abort in a received frame. But remember, it is en-
tirely up to the supervisory program to interpret status bits and to handle aborts as required by the local system logic.

TMS9903 INTERVAL TIMER LOGIC

The TMS9903 has an interval timer. You initialize the interval timer by loading a timer count into the Timer
register. Remember, you set Control register bit 13 to 1 in order to select the Timer register as the destination for data
output via CRU bits O through 7. As soon as you reset Control register bit 13 to O you enable the timer, which starts to
decrement. The rate at which the timer decrements depends on Parameter register bit 3 and Control register bit 15.

Parameter register bit 3 allows you to divide the ® clock by either 3 (Parameter register bit 3 = 0) or 4 (Parameter
register bit 3 = 1) in order to create a timer clock. The timer decrements once every 64 timer clock pulses. For ex-
ample, if @ is a 3 MHz clock and Parameter register bit 3 is 0, then the timer ciock will be 3 MHz divided by 3, or 1 MHz.
Therefore, the timer will decrement once every 64 microseconds.

The contents of the Timer register itself are never altered. Rather, the Timer register contents are shifted into timer
logic. where they are decremented. When a time-out occurs, Status register bit 25 is set; if timer interrupts have
been enabled, Status register bit 19 is also set when the interrupt request occurs. As soon as the timer decre-
ments to O it reloads Timer register contents and starts decrementing again. Thus the value you load into the Timer
register defines the interval between time-outs, which will apply until you load another value into the Timer register.

You must acknowledge a time-out by writing a 1 to Control register bit 20. |f this does not occur before another
time-out, then a timer error will be reported and Status register bit 24 will be set.

Timer logic is most frequently used with serial 1/0 in order to create default interrupts that alert a supervisory program
to hangup or any error condition which is not identifying itself.
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When you select the Test mode by writing 1 to Control register bit 15, the timer operates at 32 times its normal
speed. This allows you to speed up timer testing. In addition, the timer acts as both transmit clock and receive
clock in Test mode; therefore you can specify automatic baud rates for testing the transmitter and receiver.
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DATA SHEETS

The following pages contain specific electrical and timing data for the following devices:

+ TMS9900 CPU

+  TMS9940 Microcomputer

« TIM9940 Clock Generator/Driver

» TMS9901 Programmable Systems Interface

« TMS9902 Asynchronous Communications Controller
» TMS9903 Synchronous Communications Controller
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TMS9900

Supply voltage, Vo (see Note 1)
Supply voltage, Vpp (see Note 1)
Supply voltage, Vgg (see Note 1)

All input voltages (see Note 1) .
Qutput voltage (with respect to Vss) .
Continuous power dissipation
Operating free-air temperature range
Storage temperature range .

RECOMMENDED OPERATING CONDITIONS

TMS 9900 ELECTRICAL AND MECHANICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)*

. -03t020V
.—03to20V
.—03t020V
.~03to20V

—2Vto7V
12w
0°C to 70°C

. —55°C to 150°C

*Stresses beyond those listed under ‘‘Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the '“Recommended Operating Conditions’”
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1%: Under absolute maximum ratings voltage values are with respect to the most negative supply, Vgg (substrate), unless otherwise

noted. Throughout the remainder of this section, voltage values are with respect to Vgg.

MIN NOM MAX UNIT
Supply voltage, Vgg -5.256 -5 —4.75 \'
Supply voltage, Voo 4.75 5 5.25 v
Supply voltage, Vpp 1.4 12 126 \
Supply voltage, Vgs [ v
High-level input voltage, V)i (all inputs except clocks) 22 24 Vcctt \
High-leve! clock input voltage, Vi (g) Vpp—2 Vbp \4
Low-level input voltage, V| (all inputs except clocks) —1 0.4 0.8 v
Low-leve! clock input voltage, Vi {¢) -0.3 0.3 0.6 \
Operating free-air temperature, T 0 70 °Cc
ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)
PARAMETER TEST CONDITIONS MIN TYPt MAX UNIT
Data bus during DBIN V| =Vggto Voo +50 +100
F=————
WE, MEMEN, DBIN, Address Vi = Vee 1o V +50 100
- + +
Iy Input current | bus, Data bus during HOLDA ! ss cc A
Clock Vi=—031t0 126V +25 +75
Any other inputs V= VSSJ" Voo +1 +10
VoH  High-level output voltage lg=—0.4mA 24 Vee \
lp=3.2mA 0.65
Low-level output volt v
VoL w-level output voltage o= 2mA 0.50
Igglav) Supply current from Vgg 0.1 1 mA*
IcClav) Supply current from Voo 50 75 mA*
IpD{av) Supply current from Vpp 25 45 mA*
Input capacitance (any inputs except vgg = -5, f=1MHz,
G capacitance (any inputs P’ BB 5, i z, 10 15 of
clock and data bus) unmeasured pins at VSS
N . vgg =—-5, f=1MHz,
C; Clock-1 input capacitance BB ’ 100 150 F
iton) " unmeasured pins at Vgg P
R . vgg =—5, f=1MHz,
C; Clock-2 input capacitance 50
ile2) i P unmeasured pins at Vgg ! 200 pF
) ) vgg =—5, f=1MHz,
C; Clock-3 input capacitance 100 150 F
i(#3) s s unmeasured pins at Vgg P
. . vgg =—5, f=1MHz,
G Clock-4 input capacitance
i(04) P pact unmeasured pins at Vgg 100 150 pF
Vg = ! f=1MHz,
Cpg  Data bus capacitance 88 = =5, X ‘ 15 25 pF
unmeasured pins at Vgg

T All typical values are at Ta= 25°C and nominal voltages.
*D.C. Component of Operating Clock

Data sheets on pages 3-D2 through 3-D17 are reprinted by permission of Texas Instruments Incorporated.
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TMS9900

TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX | UNIT
telg) Clock cycle time 300 333  500| ns
tri¢) Clock rise time 5 12 ns
t(p) Clock fall time 10 12 ns
twig) Clock pulse width, high ievel 40 45 100| ns
ts(¢) Clock spacing, time between any two adjacent ciock pulses 0 5 ns
td(¢) Time between rising edge valid any two adjacent clock pulses 73 83 ‘ns
tsu Data or control setup time before clock 1 30 ns
th Data hold time after clock 1 10 ns

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
TEST
PARAMETER co s MIN TYP MAX | UNIT

tPLH(B)OTtPHL(B) All other ?utputs CL =200 pF 20 40 )] ns
tPLH (C) OF tPHL (C) Propagation delay CRUCLK, WE, MEMEN, WAIT, DBIN 30| ns

|

r< L ()]

[N |

| re—tg(e) "‘"I

[N

| [*tw(®)>

|

]i

ts(¢)"‘": }‘_

S/

P S S

CLOCK TIMING
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WEMEN la—tp 14(C) OR tpyy () — r*—tp H(C) OR tpyy (C)
- |

/ \

— re—tpy 14(B) OR toy, (B)

DBIN
ALL OTHER QUTPUTS

)

‘SIGNAL TIMING

TMS9940
TMS 9940E EPROM PROGRAMMING

ERASURE

Before programming, the TMS 9940E is erased by exposing the chip through the transparent lid to
high-intensity ultraviolet light (wavelength:253.7 nanometers). The recommended exposure is 10 watt - sec-
onds per square centimeter. This can be obtained by, for instance, 20 to 30 minutes exposure of a filterless
Model S52 shortwave UV lamp about 2.5 centimeters above the EPROM. After exposure all bits are in the
“0" state.

PROGRAMMING

The TMS 9940E should be initialized by RESET before the programming sequence begins. The EPROM
consists of 16K bits of program memory organized as 2K bytes (8 bits each) located at (starting) address
000016. Data is transferred into the CPU for programming through P24(MSB)—P31 (LSB). Taking the PE
signal active high (to V)p) initializes the internal address pointer of 00001 and inputs the first byte of data
(see Figure 8). After a minimum delay of 40 clock cycles, PROG can be applied (Vip, 50 ms) and the data
present on P24 —P31 updated to the next byte. The falling edge of PROG inputs the new byte of data to the
next location and after a minimum delay of 25 clock cycles the PROG pulse can be applied again. This
sequence is continued until the entire 2K bytes have been programmed. Note that the memory is pro-
grammed in sequence starting at 000016; and the input data must be valid at the rising edge of PE or falling
edge of PROG.
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RECOMMENDED PROGRAMMING/TEST FUNCTION CONDITIONS

PARAMETER MIN  NOM  MAX | UNIT
i TST, PE, PROG input rise time 100 ns
1 TST, PE, PROG input fall time 100 ns
tsu Input data setup time to rising edge of PE, TST or to falling edge of PROG 0 ns
th Input data hold time past rising edge of PE, TST 801c(¢) ns
th(P-da) Input data hold time past falling edge of PROG 50te(¢h) ns
th(P-PE,T) PE, TSTinput hold time past falling edge of PROG 0 ns
tsu(P-PE,T) PROG input setup time to rising edge of PE, TST 0 ns
th(1-PL) __ PROG Inpul pulse low past rising edge of 15T, PE B0ic(e) ns
tw(PL) PROG input pulse widthlow . 501c(¢) ns
tw(PHP) PROG input puise width high in the programming mode 50 ms
tw(PHT) PROG input pulse width high in the test mode 4ic(¢) ns

NOTE: Timing diagrams in Figure 8.

Vip

RSTPE  VIH

DATA

vip

viu

vie —

T _—/
INTV/TST vy |

tr da—el

i

tsu -—mws-mﬁ tsu 1--1 Q—!h(p.@).‘

th

<-m(P-da)’1

X XX XX

tu(PPET)w|  ja—th(T-PL) —w] le— tw(PL)
Vin
INT2/PROG

[+ twiPL)

FIGURE 8 — EPROM PROGRAMMING TIMING DIAGRAM
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FIGURE 9 — TEST FUNCTION TIMING DIAGRAM
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TMS9940

TESTFUNCTION

This test function allows loading a program into the RAM area of the TMS 9940 through pins P24 through
P31. This program can then be executed, and the results of this execution used to verify operation of the
TMS 9940. The program could include error messages as well as a successful completion message sentto
a peripheral device accessed through the CRU.

The processor should be initialized by RESET before any test sequence begins. Data is directly loaded in
sequence into the RAM through P24 (MSB)—P31 (LSB). Taking the TST signal high (to Vp) initializes the
internal address pointer to 83001 ¢ (starting address of RAM) and inputs the first byte of data (see Figure 9).
After a minimum delay of 40 clock cycles PROG can be applied (V|H, 4 clock cycles minimum) and the data
present on P24—P31 updated to the next byte. The falling edge of PROG inputs the new byte of data to the
next location and, after a minimum delay of 25 clock cycles, PROG can be applied again. This sequence is
continued until the desired data has been loaded into the RAM. Taking TST inactive will then jump the
processor to the address specified by the last 16 bits loaded. Note that the RAM is loaded in sequence
starting at 830016, and the input data must be valid at the rising edge of TST or on the falling edge of PROG.

TMS 9940 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS

OTHERWISE NOTED)*

Supply Voltage, VO CTT - v cee e e -03to20V
SUPPIY VORAGE, VT2 -ttt ittt e e -03t020V
Programming Voltage, PE ... .. .. ... -0.3t035V
AlLINPUtVORAGES ... ..o e —-0.3t020V
Output Voltage . ... ... ...t e —2to7V
Continuous Power Dissipation .. ... ... .. i 1.5W
Operating Free-Air TemperatureRange  ............. ... ..ot 0°C to 70°C
Storage Temperature Range ....................oiiiiiiiiiiiiiiiiiienean.ns —55°C to 150°C

* Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions beyond those indi inthe “F 1ded Operating Conditions™ section of this specification is not implied. Expasure to

al tor periods may affect device reliability.
1All voltage values are with respectto Vggs.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX| UNIT
Supply voltage, Vocq 5 \
Supply voltage, Vcc2 5 \
Supply voltage, Vsg 0 v
High-level input voltage, Vi 2 v
Low-level input voitage, V)i 08| Vv
Program/test input voitage, Vip 26 A
Operating free-air temperature, To 0 70| °C
ELECTRICAL CHARACTERISTICS
PARAMETER TEST CONDITIONS MIN  TYP MAX |UNITS|
] Input current, any inputs V) =VgsgtoVce +10 uA
VOH. High-level output voltage, any outputs lo=04mA 24 v
VoL Low-level output voltage, any outputs lp=2mA 04 \
Icca. Supply current from Vcc 10 mA
Icc2. Supply current from Vcco 150 mA
Cj, Input capacitance, any inputs f=1MHz, unmeasured pins at Vgg 15 pF
Cor Output capacitance, any outputs f = 1MHz, unmeasured pins at Vgg 15 pF
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CLOCK CHARACTERISTICS

The TMS 9940 has an internal oscillator and a two-phase clock generator controlled by an external or
crystal. The user may also disable the oscillator and directly inject a frequency source into the XTAL2 input.
The crystal frequency and the external frequency source must be double the desired system CLOCK

frequency.

Internal Oscillator

The internal oscillator is enabled by connecting a crystal across XTAL1 and XTAL2. The system CLOCK
frequency 1/t¢(4), is one-half the crystal oscillator frequency, fosc-

PARAMETER PART NUMBER TEST CONDITIONS MIN NOM MAX {UNITS
fosc TMS 9340E, TMS 9940M 0.5 5 5.12| MHz
fosc TMS 9940E-40, TMS 9340M-40 0.5 4 4.0 | MHz
fosc TMS 9940E-30, TMS 9940M-30 Ta =0°Cto 70°C 0.5 3 3.07 | MHz
fosc TMS 9940E-20, TMS 9940M-20 0.5 2 2.05| MHz
f9§£ TMS 9490E-10, TMS 8940M-10 0.5 1 1.02 [ MHz

Note: toy = 1/fosc
to(d) =2ty
TIM9904
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)
Supply voltage: Vo (seeNote 1) ... 7V
Vpp(seeNote 1) ... ... 13V
Inputvoltage: OSCIN ... .. o e 55V
FRD o -05Vto7V
Operating free-airtemperaturerange ................. ..., 0°Cto 70°C
Storagetemperature range  ................oiiiiiiiiiiiiiiiiie —65°C to 150°C
NOTE 1: Voltage values are with respect to the network ground terminals connected together.
Recommended Operating Conditions
MIN NOM MAX { UNIT
Supply voltages Vee 4.75 5 5.25 v
Vpp 1.4 12 126 Vv
High-level output current, Ioy 1. 62, ¢3, ¢4 —100 uA
All others —400 KA
Low-level output current, I 1.2, 03, 94 4] ma
All others 8 mA
Internal oscillator frequency, fosc 48 54 | MHz
E xternal oscillator pulise width, ty(osc) 25 ns
Setup time, FFD input (with respect to falling edge of ¢3), tg, 50 ns
Hald time, FFD input (with respect to falling edge of ¢3), ty, ~30 ns
Operating free-air temperature, Ta 0 70 °C
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Electrical Characteristics Over Recommended Operating Free-Air Temperature Range

(Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP} MAX [UNIT
ViK High-level input voltage 2 v
Low-level FFD 05
ViL v
nput voltage OSCIN 08
V1+ — VT Hysteresis FFD 0.4 08 \"
Vik Input clamp voltage Vce =475V, Vpp =114V, 1) = -18mA -15( Vv
v High-level 01,92, 93, 04|VcC =4.75 V, IoH = 100 uA |Vpp-2 Vpp—-15 VoD v
OH output voltage Other outputs|Vpp =114V 10 126 V loH = —400 uA 2.7 3.4
1,02, 03, 04 loL =4 mA 0.25 04
v Low-fevel Vee =475V, Vpp=11.4V [iloL =4 mA 025 04| mA
oL output voltage Other outputs cc=s « VDD : oL . -
toL =8 mA 0.35 0.5
input current at FFOD V=7V 0.1
I ] Vec =525V, Vpp=126V mA
maximum input voltage { OSCIN V=65V 03
High-level FFD 20
| Vee =5.28V, V =126V, V=27V A
tH input current OSCIN cc 00 ! 60 #
| Lowlevel Fro Vec =525V, Vpp=126V, V=04V 221 ma
=5. . =126V, V;=0. m
't input current OSCIN cc ob ! —-3.2
Short-circuit All except
! Veg =625V -20 -100| mA
0s output currentd o1, 62,03, 04 ¢
Ve =525V, FFDand OSCIN at GND,
Icc Supply current from Voo 105 175 mA
Qutputs open
Vec =525V, Vpp=126V,
| Supply current from V 12 201 mA
DO upply current fr DD FFD and OSCIN at GNO, Outputs open

YAl typical values are at Vec=5V.Vpp =12V, Tp = 25°C.
INot more than one cutput should be shorted at a time, and duration of the shart-circuit should not exceed one second. Outputs ¢1, 2, ¢3,
and ¢4 do not have short-circuit protection.

oscin _[
esc U UUyUUuUuvuyuuUuUuUuUuUruuuuuuruunuruouugrue
oscout__J} ™ 1 | 1 1 I M.
o L 1
[ I | 1
3__ I I I
o4 | I 1
a_T | US|
- L | | S |
[ S e —
£} L J J SO |
FFD L
FRQC -~ T T T T T M| 1
—_—
TIME

TYPICAL PHASE RELATIONSHIPS OF INPUTS AND OUTPUTS (INTERNAL OSC)
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Switching Characteristics, Ty = 25°C, Vocoq =5V, Voo = 12V, fggc= 48 MHz

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
fout Output frequency, any ¢ or ¢ TTL 3 MH2z
fout Output frequency, OSCOUT 12 MHz
te(o) Cycle time, any ¢ output 330 333 340 ns
tr(o) Rise time, any ¢ output 5 20 ns
() Fall time, any ¢ output 10 14 20 ns
o) Pulse width, any ¢ output high 40 55 70 ns
tp1L, ¢2H Delay time, ¢ 1 low 10 ¢2 high 0 5 15 ns
tp2L, 93H Delay time, ¢2 low to »3 high 0 5 15 ns
te3L, paH Delay time, ¢3 low to »4 high 0 5 15 ns
tpdL, p1H Delay time, ¢4 low to $1 high Output loads: 0 5 15 ns
tO1H, p2H Delay time, ¢ 1 high to »2 high ¢1,¢3,94: 100 pF 10 GND 73 83 96 ns
1p2H, ¢3H Delay time, 2 high to $3 high ¢2: 200 pF to GND 73 83 96 ns
153H, paH Delay time, $3 high to 4 high Others: R|_ = 2kS2, 73 83 96 ns
tpaH, p1H Delay time, 4 high to ¢1 high CL=15pF 73 83 96 | ns
toH, o TL Delay time, ¢n high to o TTL low —14 —4 6 ns
tol, pTH Delay time, o, fow to ¢ TTL high -2 -19 -9 ns
tp3L, QH Delay time, ¢3 iow to FFQ output high —18 -8 2 ns
t3L, QL Delay time, ¢3 low to FFQ output low -19 -9 1 ns
toL, OSOH Delay time, ¢ low to OSCOUT high -30 -20 —-10 ns
toH, OSOL Delay time, FFQ high to OSCOUT jow -27 -7 -7 ns

te- teo -l

= t1H, 02H -' "‘ toaH, o1H =
o 2.4 v 94v 94V
0.7V o7v | 0.7V,

to > te

ttp b= 162H. O3H

\
t YR | ! — todL, 01H SaV
| ’ { .
02 lou,ozn-t—oﬂ | ! |
! ! '03H, 04H —af | :
rozln. 3H 94V ! ! |
2
43 ' llo7v Norv ! | lo7v 0.7V
| T | T N 1
. | imw P
§ I to3L, 4 - 1
¢4 | ' 0.7V 0.7V |
T T
l | |
+
71 o ' !
y o= !-—'oL,oTHg f
OH,OTL el o | 'l
!

|
|
I
I [
. J H t
¢2 13 v\_fj | \
| . I
| : ]
| EANRY
|
¢3 | i
i |
] 1
7 toH, OSOL o .
4 gl
¢ \_/7 oL, osm_l,_.' | U
oscouTt !

>
2
4

fsu  —
— fo—
| \
FFD 13V | 1.3V
INPUT |

1631, QH  e—— l-—-.{—- to3t, QL

),
FEQ 75 sv 3¥

SWITCHING CHARACTERISTICS, VOLTAGE WAVEFORMS
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EQUIVALENT OF D INPUT EQUIVALENT OF OSCIN INPUT

EQUIVALENT OF XTAL 1 AND
XTAL 2 INPUTS

Vee————————— Vee
20 k2 NOM vee -
2.3k NOM
INPUT -
INPUT — INPUT
GND 1 GND 1
EQUIVALENT OF TYPICAL OF TYPICAL OF OSCOUT, Q, AND
TANK INPUTS 1, $2, 93 AND ¢4 OUTPUTS ALL 2 TTL OUTPUTS
—_ Vee
Vee - Vop 100 2 NOM
v VWA OUTPUT ouTPUT
Vee
INPUT 2 —_
GND 1 |
GND 2
GND 1
SCHEMATICS OF INPUTS AND OUTPUTS

TMS9901
TMS 9901 ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) *

SUPPlY VORAGE, VG - -« ot ettt it e e -03VtotOV

Allinputs andoutputvoltages .............. ... il -03Vto 10V

Continuous power dissipation ............ ... i i e e 0.85W

Operating free-air temperature range . ..............coeevenernenneniuaenenenananannns 0°Cto 70°C

Storage temperature range .................iiiiiiii i e —-65°Cto 150°C

*Stresses beyond thosa listed under “Absolute Maximum Ratings” maymusopumammmaoetomodwlco This is a stress rating only and functional operation of

the device at these or any other conditions beyond those i inthe “F Op g Conditions™ section of thi is notimplied. E
absolute maximum rated conditions for extended periods may affect device refiability.
Recommended Operating Conditions *
PARAMETER MIN NOM MAX |UNIT

Supply voitage, Vcc 475 50 52| V
Supply voltage, Vg 0 Vv
High-level input voitage, V) 20 Vec| V
Low-level input voitage, V. Vgs-.3 08| Vv
Operating free-air temperature, To 0 70 | °C
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Electrical Characteristics Over Full Range of Recommended Operating Conditions
(Unless Otherwise Noted) *

PARAMETER TEST CONDITIONS MIN TYP MAX |UNIT
IOH = —100 A 24 Vce | V
VOH  Highlevel output vokage ToH = —2004A 33 Voo | V
VoL Lowlevel output voltage oL =3.2mA Vss 04| V
I Input current (any input) Vi=0VioVco +100 | pA
ICC(av) Average supply current from Vce te(d) =330ns, Ta=70C 150 | mA
C Small signal input capacitance, any input f=1MHz 15 | pF
Timing Requirements Over Full Range of Operating Conditions
PARAMETER MIN TYP MAX |UNIT
te(¢)  Clock cycle time 300 333 2000 | ns
tr(¢) Clock rise time 5 40 | ns
() Clock fall time 10 40 | ns
[twigH) Clock pulse width (fighlevel) 225 ns
Clock pulse width (low level) 45 300 [ ns
tw(CC) CRUCLK puise width 100 185 ns
tsut Setup time for CE, S0-54, or CRUOUT before CRUCLK 100 ns
tsu2 Setup time for interrupt before ¢ low 60 ns
tsu3 Setup time for inputs before valid CRUIN 200 ns
th Hold time for CE, S0-S4, or CRUOUT after CRUCLK 60 ns
*NOTE: Ali voltage values are referenced to Vgs.
Switching Characteristics Over Full Range of Recommended Operating Conditions
PARAMETER ___TEST CONDITION MIN _TYP MAX |UNIT
tod1 Propagation delay, CE to valid CRUIN CL = 100pF 300 | ns
__lﬂg Propagation delay, S0-54 to valid CRUIN CL =100 pF 320 ns
g3 Propagation delay, 3 low to valid INTHEQ, ICO-IC3 CL = 100pF 10| ns
tpd Propagation delay, CHUCLK to valid data out (P0-P15) GL = 100pF 300 | ns
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SWITCHING CHARACTERISTICS

3-D12



TMS9902

TMS 9902 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted) *

Supplyvoltage, VOC =~ o e -0.3Vto10V
Allinputsandoutputvoltages ................coiiiiiiii i -0.3Vto10V
Continuous POWer diSSIPAtION .. .......ounitieii ittt et 055W
Operating free-air temperaturerange .................. T 0°Cto70°C
Storage temperature raNge ... ............c.oiuvenieununauniiiaiiaeainaanie.nn —-65°Cto 150°C
*Stresses beyond those listed under “Absolute Maximum Ratings” may cause perrnanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions beyond those indi inthe “F Op g Conditions™ section of this not implied. E: to
absolute maximum rated conditions for extended periods may affect device reliability.
Recommended Operating Conditions *
PARAMETER MIN NOM MAX | UNIT
Supply voltage, Voo 4.75 50 525| V
Supply voltage, Vgg 0 v
High-level input voltage, V|4 2.0 Vee| V
Low-level input voltage, Vi Vgs-.3 08| Vv
Operating free-air temperature, To 0 70 | °C
Electrical Characteristics Over Full Range of Recommended Operating Conditions
(Unless Otherwise Noted) *
PARAMETER TEST CONDITIONS MIN TYP MAX |[UNIT
. loH = —100 uA 24 Vee | V
VOH High level output voltage Ton = —200 A 53 Veo | V
VoL Low level output voltage loL=32mA Vss 04| V
h Input current (any input) Vi=0VtoVce +10 | pA
ICC(av) Average supply current from Vce le(d) —330ns, TA=70°C 100 | mA
Ci Small signal input capacitance, any input f=1MHz 15 | pF
Timing Requirements Over Full Range of Operating Conditions
PARAMETER MIN TYP MAX |UNIT
tc(d) Clock cycle time 300 333 667| ns
te(¢) Clock rise time 5 40| ns
t(9) Clock fall time 10 40 | ns
tw(pH) Clock pulse width (high level) 225 ns
tw(gL) Clock puise width (low level) 45 ns
tw(CC) CRUCLK puise width 100 185 ns
tsu1 Setup time for CE before CRUCLK 150 ns
tsu2 Setup time for SO-S4, or CRUOUT before CRUCLK 180 ns
th Hold time for CE. $0-54, or CRUOUT after CRUCLK 60 ns
*NOTE: All voltage values are referenced to Vss.
Switching Characteristics Over Full Range of Recommended Operating Conditions
TEST
PARAMETER CONDITION MIN  TYP MAX | UNIT
tpd1 Propagation delay, CE to valid CRUIN CL = 100pF 300] ns
tpd2 Propagation delay, 50-54 10 valid CRUIN CL = 100pF 320| ns

3-D13




TMS9902

NS\

) [

| |
tsul —1-—-{ In——‘-— th l-——*’—— tpd1

1 | P
: ‘[* : :—_"“s
CRU BIT ADDRESS n CRU BIT ADDRESS n+1
! ¢
f

¢
| T | ?

tsu2 ‘w(CC)—‘O—.”ﬂ——»’— th
'
i
L

S0-54 UNKNOWN CRU BIT ADDRESS m X

<

90%
CRUCLK |

—

[
I
|
|
i
|

!
‘e |
1§
CRUOUT UNKNOWN X CRUDATA OUT n X CRU DATA OUT n+1 X X UNKNOWN X
ps
R} I
5 f :
VALID
CRUIN DON‘T CARE DON'T CARE INPUT
. BITm
?

SWITCHING CHARACTERISTICS

NOTE: ALL SWITCHING TIMES ARE ASSUMED TO BE AT 10% OR 90% VALUES.

EQUIVALENT OF I/0 INPUTS EQUIVALENT OF 1/0 OUTPUTS
Vece cc Vee
j f OUTPUT
INPUT |
o— H _l

="

INPUT AND OUTPUT EQUIVALENTS
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EQUIVALENT OF OUTPUTS EQUIVALENT OF INPUTS
Vee Vee
I
N I
|
: I OUTPUT J
INPUT I 1 I i
° 1 1
TMS 9903 ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATING OVER OPERATING FREE AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*
Supply voltage, VCG (NOE)  ..... .ottt ittt e e e iaaaas -03Vtoi0V
Allinputs andoutput voltages . ............. ... .. i i -03Vio20V
Continuous power dissipation . ...............c.iuiii it i 0.7W
Operating free-airtemperaturerange ...................oieiiirrornreierneieneeneennns 0°Cto 70°C
Storage temperature raNg@  ..................eeeuientunernanaeeaniraearaanaaas -65°Ct0150°C

*Stresses beyond those listed under “Absolute Maximum Ratings™ maycauaopumamdunagetomm This is a stress rating only and functional operation of
the device at these or any other conditions beyond those i inthe Op g Conditions” section of this ification is not implied. E: to
absolute maximum rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX | UNIT
Supply voltage, Vco 475 50 525| V
Supply voltage, Vss 0 v
High-level input voltage, Vi 20 24 Vool V
Low-level input voitage, Vi Vgg —.3 0.4 08| Vv
Operating free-air temperature, Ta 0 701 °C

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING
CONDITIONS (UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN TYP MAX |UNIT
VOH  High-level output voltage 10H = ~100 pA 24 vee| v
IQH = —200 kA 2.2
VoL Low-level output vottage oL = 32mA Vss 041 V
L] input current (any input) Vi=0VtoVgce +10 pA
ICClav) Average supply current from Ve o) = 3301, ta = 70°C 150 mA
[#] Capacitance, any input f =1 MHz, all other pins at 0 V 15 pF

NOTE: A voltages are in reference to Vgs.
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- t¢(DC)
e twigH) =

SCR :

_(E

sCT

RIN

RECEIVE DATA /—\

I
!
[
I
|
'
[
|
[
|
'
TRANSMIT DATA :/_\ /—\

SAMPLE PULSE
SHIFT PULSE X
|
T
v‘v.v’vov‘v‘v’vv’v.v XX : = X VALID
xour SREKKRG Lo canc XKLILIK__vauo oara vauD oATA bava
"10%
I PARAMETER wn {Tve Ilux UNIT
| 1ypC)  Recsiver/transmit data clock cycle time 4 us
TwigH) _ CIock pulse width (high leve) 2 )
Tw(gL) _ CIock pulse widih (low Teve) 3 s
t Rise time 12 ns
i Talitme 1z o
e Setup time for AIN before SCR_(DRCK32 = 0)° s
th Hold time for RIN after SCR __ (DRCK32 = 0) 0 s
4 Delay ime, SCT o vaiid XOUT 300 s

*No setup, hold, or data synchronization is required for pin in the divide-by-32 mode (DRCK32 = 1).

RECEIVE/TRANSMIT DATA CLOCK TIMING DIAGRAM

3-D16




TMS9903

ﬂHING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
PARAMETER MIN  TYP MAX | UNIT
to(p) Clock cycle time 300 333 ns
Te)  Clocknsetime 5 ns |
o) Clock fall ime 10 ns
[ TwigH) Clock pulse widih (high level) 225 N8
twiol) level) 15 ns
w(CC) CRUCLK pulse widih 100 185 ns
tsu1 LK 180 ns
t5u2 Setup time for S0-54 or CRUOUT before CRUCLK 220 ns
th Hold time for S0-54, CE, or CRUOUT after CRUCLK 80 ns
SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING
CONDITIONS
TEST
PARAMETER CONDITION MIN TYP MAX |UNIT
toD1 Propagation delay, CE to valid CRUIN C =100 pF 300 ns
D2  Propagation delay, S0-54 to valid CRUIN C,_ =100 pF — 320 ns
i telo) >
N — I
€ soT | U \ /
10% o | ;
—’II i.- (o) (o) — 'r.___..'r_‘w( )
10% 10% 10%
! | |
tau1 —o] L_ | | N I___..}.__ D1
30% | o e 90% |
e D S 4 X oen X
10% ' | : 1 it 10% ; |
'uz—-‘l‘—-»: tw(CC) —14—-—' '4—91— th "——.:’_ o2
CRUCLK ! y_\ 90% ! | [
| 0% 10% | (e !
] I o h |
tuz—i-——ci }‘_,t_ th |
g0% | H — I
CRUOUT  UNKNOWN X "%3: TA x ca:u::u }( X UNKNOWN X
0% -4 |
!
90%
XA ROX R, X )
e XXX XXX XXX XXX XXX X Q)
10%
TIMING DIAGRAM
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Chapter 4
SINGLE CHIP NOVA MINICOMPUTER
CENTRAL PROCESSING UNITS

In this chapter we are going to look at two microprocessors which are the world’s first single chip reproductions
of established 16-bit minicomputers. We are going to describe two products which reproduce, on a single chip,
the logic of a Nova Central Processina Unit.

Nova minicomputers are built by Data General Corporation.

Data General Corporation offer a set of LS| chips centered on the MicroNova microprocessor. These chips are
described quite superficially in this chapter since Data General is not actively marketing them as LSI devices.
Rather, Data General favor the sale of MicroNova microcomputer systems.

Fairchild manufacture the 9440 microprocessor, which is sold primarily as an LS| device. The 9440 is therefore
described in some detail, together with standard Nova 1/0 bus and typical memory bus interface bus logic.

The Nova minicomputer was designed as a next generation enhancement of the PDP-8. The IM6100, which is de-
scribed in Chapter 13 of the Osborne 4 & 8-Bit Microprocessor Handbook is a single chip implementation of the PDP-8
Central Processing Unit.

If you compare the Nova architectures, which we describe in this chapter, with the IM1600, the two products will
indeed look very different. But conceptually they are similar. Both the Nova and the PDP-8 Central Processing Units
have few addressable registers; for computing power they rely upon instructions which may perform complex
sequences of operations. Similarities between the Nova and the PDP-8 will become more apparent if you compare
these two devices with the CP1600 and the TMS990 — which we have described in Chapters 2 and 3, respectively.

What is interesting about the Nova minicomputer is that it is one of the most popular in the world; and Data General

Corporation is the second largest minicomputer manufacturer in the world. despite the fact that many aspects of the
Nova Central Processing Unit may. on first inspection. appear to be very restricting.

The MicroNova is manufactured by:
DATA GENERAL CORPORATION
Mail Stop 6-58
Southborough. MA 01772

The 9440 is manufactured by:

FAIRCHILD SEMICONDUCTOR
464 Ellis Street
Mountain View, CA 94040

The MicroNova and the 9440 are not the same; differences, however, are small.

The MicroNova is equivalent to the Nova 3 minicomputer. The Nova 3 is a low-end minicomputer recently in-
troduced by Data General. Although it is a low-end product, it includes a number of features not found in the basic
Nova architecture.

The 9440 reproduces basic Nova architecture — that is, the lowest common denominator of architectural features
found-in any Nova Central Processing Unit. As such, the 9440 lacks a number of logic features provided by the
MicroNova. The 9440, however, has higher instruction execution speeds.

Because the MicroNova and the 9440 are very similar. we are going to describe them together in this chapter.

The MicroNova is manufactured using NMOS LS| technology. The 9440 is manufactured using Isoplanar integrated in-
jection logic (I3L) technology.

Both products are packaged as 40-pin DIPs.

The MicroNova requires four power supplies: -4.26V, +5V, +10V and +14V. The 9440 requires two power sup-
plies: +5V and +350 mA.



Using a 240 nanosecond clock. the MicroNova executes instructions in 2.4 to 10 microseconds.Using a 100 nanose-
cond clock, 9440 instructions will execute in 1 to 2.6 microseconds.

A PRODUCT OVERVIEW

Figure 4-1 illustrates that part of our general microcomputer system logic which has been implemented by the
MicroNova and the 9440.

Note that only the MicroNova has a Stack Pointer, and DMA logic.

Most Nova minicomputers do not have a Stack; the 9440 is a reproduction of the basic Nova architecture, which is why
the 9440 lacks a Stack.

The MicroNova and Nova 3 do contain Stacks, because the addition of the Stack is technologically straightforward,
while the lack of a Stack had been one of the most distressing features of earlier Nova minicomputers.

Both the 9440 and the MicroNova have DMA request and DMA acknowledge signals; however, in response to a DMA
request, the 9440 does nothing except float the System Bus. Itis up to you to provide any and all external logic needed
to actually perform a data transfer via direct memory access. The MicroNova, on the other hand, executes the required
sequence of /0 operations to actually perform the DMA transfer. That is why in Figure 4-1 DMA logic is shown as
being present on the MicroNova but not the 9440.

What about I/0 ports? 1/O ports interface logic is shown as absent in Figure 4-1 . The I/O port is a microcom-
puter concept.

In any microcomputer configuration, you will look upon I/0 ports as the ultimate interface between the microcomputer
system and external logic. You need a conduit via which data bits or signals can be transferred to, or received from
logic beyond the microcomputer system. Each conduit becomes an 1/0 port and an /O port becomes a set of pins.
which can be addressed as a unit on a support device. Minicomputers take a conceptually different approach to I/0
operations. To begin with, data is generally transferred to or from the CPU — not signals. The data finishes up on a
System Bus. Therefore a minicomputer's interface with the outside world consists of an [/0 System Bus and a memory
System Bus. In some cases the two busses are one; in other cases, such as the Nova minicomputers, these two are sep-
arate and distinct busses. Conceptually. what is important is the fact that the minicomputer anticipates transferring
data via its /0 System Bus to line printers, disk units. or other substantial devices each of which is capable of having a
significant amount of local logic. Thus the System Bus is as far as the minicomputer attempts to go when defining its
interface to the outside world.

Figure 4-1 , including bus interface logic within the logic of the Central Processing Unit, needs some clarifica-
tion. As we have just stated, the Nova minicomputer creates two separate System Busses: one for memory. the other
for I/0 devices. All the signals of these two busses originate at card edge pins. There is nothing very expensive about
adding more pins to the edge of a card. as there is to adding more pins to a DIP. Therefore the Nova System Bus has 47
signals. Since neither the MicroNova nor the 9440 can have 47 signals. neither of these two devices creates standard
Nova System Busses; but each device creates its own System Bus which could be used to drive external logic. That is
why interface logic is shown as being present in Figure 4-1.
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Interface Logic
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Figure 4-1. Logic of the Data General MicroNova and the Fairchild 9440




There is one further major difference between the MicroNova and the 9440 which is not evident from Figure
4-1. The MicroNova provides transparent dynamic memory refresh logic. The 9440 has no dynamic memory
refresh logic.

The MicroNova, but not the 9440, contains an elementary interval timer capability. Providing interrupt timer logic
is enabled, the MicroNova will generate an interrupt request every 20,000 instruction cycles. Using a standard 8.333
MHz clock, this translates to an interrupt request occurring every 2.4 msec.

Note that the MicroNova and the Nova 3 interval timer logic differ. The Nova 3 provides four programmable interval
timer options; the MicroNova provides just one.

NOVA PROGRAMMABLE REGISTERS
These are the programmable registers of the MicroNova and the 9440:

15 0

ACO
AC1

} Primary Accumulator

AC2 Accumulator and Index register

AC3 Accumulator, Index register and
Subroutine Return Address register

} MicroNova Only

Stack Pointer

Frame Pointer

4 0

Data General literature numbers registers and memory words from left to right. rather than as illustrated above, from
right to left. Also Data General is one of the few minicomputer manufacturers that uses octal numbering. In order to re-
main consistent with the rest of this book. we will use hexadecimal numbers, and we will number registers from right to
left; where confusions may arise, we will show both our standard numbers and Data General equivalents.

ACO and AC1 are typical primary Accumulators. AC2 and AC3 may be used as Accumulators or as Index
registers. The Jump-to-Subroutine instruction automatically stores the return address in AC3. If one subroutine
is going to call another (i.e., you are nesting subroutines). then the calling subroutine must save the contents of AC3
before itself calling another subroutine.

Only the MicroNova has a Stack Pointer. The only instructions that access the Stack Pointer are "Push’ and “Pop”
instructions.

The MicroNova, but not the 9440, also contains a Frame Pointer register. The Frame Pointer register is an address
buffer used to access the Stack. This may be illustrated as follows:

MEMORY

Stack Pointer identifies
current top of Stack

Use Frame Pointer
to hold important
Stack addresses

The Frame Pointer is a buffer register; it is not a Data Counter. There are no instructions that access the memory loca-
tion addressed by the Frame Pointer.

Observe that we show no programmable registers identified as Data Counters. even though in Figure 4-1 we show
Data Counter logic as being present. This is because the Data Counter is another microcomputer concept — in effect, a
subset of the Index register. If a memory reference instruction specifies direct. indexed addressing with a zero displace-
ment, then Index Registers AC2 and AC3 are equivalent to Data Counters.



NOVA MEMORY ADDRESSING MODES

Both the MicroNova and the 9440 offer the following standard Nova memory addressing modes:
1) Base page, direct addressing

2) Program relative, paged, direct addressing

3) Indirect addressing

4) Indirect addressing with auto-increment

5) Indirect addressing with auto-decrement

6) Direct, indexed addressing

7) Pre-indexed, indirect addressing

These addressing modes have been described in Volume 1, Chapter 6.

Nova memory addressing modes are heavily influenced by the fact that every Nova instruction generates a single 16-
bit object code — just as the predecessor PDP-8 instructions each generated a single 12-bit object code. Even memory
reference instructions are confined to 16 bits of object code; therefore the memory reference instruction can only pro-
vide a short address displacement. Whereas PDP-8 memory reference instructions provide a 7-bit address displace-
ment, the Nova provides an 8-bit address displacement, which is handled in a much more intelligent fashion.

Nova instructions that use simple, direct addressing treat the 8-bit displacements as a direct, page zero ad-
dress, or as a signed binary, program relative displacement. Thus you can directly address the first 256 words of
memory. or you can address any location within +127 to -128 words of the memory reference instruction itself:

MEMORY

0001
0002

yy can directly address
base page

OOFE
OOFF
0100

(xxxx) + FF80 (FF80 = -80)
(xxxx) + FF81(FF81 = -7F)
(xxxx) + FF82 (FF82 = -7E)
|~ Address displacement

Memory reference instruction

equals yy
yy can be added, as a 3
signed binary number, _ 1 Yy Jooox
0 xxxx, to address o0+ 1

program relative page

{(xxxx) + 